Abstract

Fragile X syndrome results from a loss of the RNA-binding protein fragile X mental retardation protein (FMRP). How FMRP regulates neuronal development and function remains unclear. Here we show that FMRP-deficient immature neurons exhibit impaired dendritic maturation, altered expression of mitochondrial genes, fragmented mitochondria, impaired mitochondrial function, and increased oxidative stress. Enhancing mitochondrial fusion partially rescued dendritic abnormalities in FMRP-deficient immature neurons. We show that FMRP deficiency leads to reduced Htt mRNA and protein levels and that HTT mediates FMRP regulation of mitochondrial fusion and dendritic maturation. Mice with hippocampal Htt knockdown and Fmr1-knockout mice showed similar behavioral deficits that could be rescued by treatment with a mitochondrial fusion compound. Our data unveil mitochondrial dysfunction as a contributor to the impaired dendritic maturation of FMRP-deficient neurons and suggest a role for interactions between FMRP and HTT in the pathogenesis of fragile X syndrome.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Code availability

Transcriptome data for this project are available on the Gene Expression Omnibus (accession number GSE117111). We have used only published software and freely accessible software for data analyses. Further details can be requested from the corresponding author.

Data availability

Source data associated with Fig. 3 can be accessed through GEO: GSE117111. All data are reported in the main text and supplementary materials, stored at the University of Wisconsin-Madison and are available from the corresponding author upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Berry-Kravis, E. M. et al. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat. Rev. Drug. Discov. 17, 280–299 (2018).

  2. 2.

    Hagerman, R. J. & Polussa, J. Treatment of the psychiatric problems associated with fragile X syndrome. Curr. Opin. Psychiatry 28, 107–112 (2015).

  3. 3.

    Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

  4. 4.

    Irwin, S. A. et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am. J. Med. Genet. 98, 161–167 (2001).

  5. 5.

    Doers, M. E. et al. iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth. Stem Cells. Dev. 23, 1777–1787 (2014).

  6. 6.

    Telias, M., Kuznitsov-Yanovsky, L., Segal, M. & Ben-Yosef, D. Functional deficiencies in fragile X neurons derived from human embryonic stem cells. J. Neurosci. 35, 15295–15306 (2015).

  7. 7.

    Telias, M., Segal, M. & Ben-Yosef, D. Immature responses to GABA in fragile X neurons derived from human embryonic stem cells. Front. Cell Neurosci. 10, 121 (2016).

  8. 8.

    Contractor, A., Klyachko, V. A. & Portera-Cailliau, C. Altered neuronal and circuit excitability in fragile X syndrome. Neuron 87, 699–715 (2015).

  9. 9.

    Guo, W. et al. Fragile X proteins FMRP and FXR2P control synaptic GluA1 expression and neuronal maturation via distinct mechanisms. Cell Rep. 11, 1651–1666 (2015).

  10. 10.

    Maurin, T. et al. HITS-CLIP in various brain areas reveals new targets and new modalities of RNA binding by fragile X mental retardation protein. Nucleic Acids Res. 46, 6344–6355 (2018).

  11. 11.

    Ascano, M. Jr. et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492, 382–386 (2012).

  12. 12.

    Devine, M. J. & Kittler, J. T. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 19, 63–80 (2018).

  13. 13.

    Wakabayashi, J. et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J. Cell. Biol. 186, 805–816 (2009).

  14. 14.

    Ishihara, N. et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11, 958–966 (2009).

  15. 15.

    Li, Z., Okamoto, K., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887 (2004).

  16. 16.

    Steib, K., Schäffner, I., Jagasia, R., Ebert, B. & Lie, D. C. Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J. Neurosci. 34, 6624–6633 (2014).

  17. 17.

    Schon, E. A. & Przedborski, S. Mitochondria: the next (neurode)generation. Neuron 70, 1033–1053 (2011).

  18. 18.

    Qin, M., Kang, J. & Smith, C. B. Increased rates of cerebral glucose metabolism in a mouse model of fragile X mental retardation. Proc. Natl Acad. Sci. USA 99, 15758–15763 (2002).

  19. 19.

    Davidovic, L. et al. A metabolomic and systems biology perspective on the brain of the fragile X syndrome mouse model. Genome Res. 21, 2190–2202 (2011).

  20. 20.

    Lima-Cabello, E. et al. An abnormal nitric oxide metabolism contributes to brain oxidative stress in the mouse model for the fragile X syndrome, a possible role in intellectual disability. Oxid. Med. Cell Longev. 2016, 8548910 (2016).

  21. 21.

    el Bekay, R. et al. Enhanced markers of oxidative stress, altered antioxidants and NADPH-oxidase activation in brains from Fragile X mental retardation 1-deficient mice, a pathological model for Fragile X syndrome. Eur. J. Neurosci. 26, 3169–3180 (2007).

  22. 22.

    Lumaban, J. G. & Nelson, D. L. The Fragile X proteins Fmrp and Fxr2p cooperate to regulate glucose metabolism in mice. Hum. Mol. Genet. 24, 2175–2184 (2015).

  23. 23.

    Bechara, E. G. et al. A novel function for fragile X mental retardation protein in translational activation. PLoS Biol. 7, e16 (2009).

  24. 24.

    Guo, W. et al. Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning. Nat. Med. 17, 559–565 (2011).

  25. 25.

    Guo, W. et al. Inhibition of GSK3β improves hippocampus-dependent learning and rescues neurogenesis in a mouse model of fragile X syndrome. Hum. Mol. Genet. 21, 681–691 (2012).

  26. 26.

    Li, Y. et al. MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome. Sci. Transl. Med. 8, 336ra61 (2016).

  27. 27.

    Li, Y. et al. Reducing histone acetylation rescues cognitive deficits in a mouse model of Fragile X syndrome. Nat. Commun. 9, 2494 (2018).

  28. 28.

    Kempermann, G., Song, H. & Gage, F. H. Neurogenesis in the AdultHippocampus. Cold Spring Harb. Perspect. Biol. 7, a018812 (2015).

  29. 29.

    Luo, Y. et al. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet. 6, e1000898 (2010).

  30. 30.

    Gao, Y. et al. Integrative single-cell transcriptomics reveals molecular networks defining neuronal maturation during postnatal neurogenesis. Cereb. Cortex 27, 2064–2077 (2017).

  31. 31.

    Li, M. et al. Establishment of reporter lines for detecting fragile X mental retardation (FMR1) gene reactivation in human neural cells. Stem Cells 35, 158–169 (2017).

  32. 32.

    Wang, D. et al. A small molecule promotes mitochondrial fusion in mammalian cells. Angew. Chem. Int. Ed. Engl. 51, 9302–9305 (2012).

  33. 33.

    Carmo, C., Naia, L., Lopes, C. & Rego, A. C. Mitochondrial Dysfunction in Huntington’s Disease. Adv. Exp. Med. Biol. 1049, 59–83 (2018).

  34. 34.

    Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

  35. 35.

    Sidhu, H., Dansie, L. E., Hickmott, P. W., Ethell, D. W. & Ethell, I. M. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J. Neurosci. 34, 9867–9879 (2014).

  36. 36.

    Dolan, B. M. et al. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc. Natl Acad. Sci. USA 110, 5671–5676 (2013).

  37. 37.

    Niu, B. et al. GRK5 regulates social behavior via suppression of mTORC1 signaling in medial prefrontal cortex. Cereb. Cortex 28, 421–432 (2018).

  38. 38.

    Pratt, K. G., Zimmerman, E. C., Cook, D. G. & Sullivan, J. M. Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling. Nat. Neurosci. 14, 1112–1114 (2011).

  39. 39.

    Kaplan, E. S. et al. Early mitochondrial abnormalities in hippocampal neurons cultured from Fmr1 pre-mutation mouse model. J. Neurochem. 123, 613–621 (2012).

  40. 40.

    Ross-Inta, C. et al. Evidence of mitochondrial dysfunction in fragile X-associated tremor/ataxia syndrome. Biochem. J. 429, 545–552 (2010).

  41. 41.

    Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884 (2010).

  42. 42.

    Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell. Biol. 160, 189–200 (2003).

  43. 43.

    Filadi, R., Pendin, D. & Pizzo, P. Mitofusin 2: from functions to disease. Cell Death Dis. 9, 330 (2018).

  44. 44.

    Pham, A. H., Meng, S., Chu, Q. N. & Chan, D. C. Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum. Mol. Genet. 21, 4817–4826 (2012).

  45. 45.

    Berthet, A., Margolis, E. B., Zhang, J., Hsieh, I. & Zhang, J. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J. Neurosci. 34, 14304–14317 (2014).

  46. 46.

    Jiang, S. et al. Mfn2 ablation causes an oxidative stress response and eventual neuronal death in the hippocampus and cortex. Mol. Neurodegener. 13, 5 (2018).

  47. 47.

    Fang, D., Yan, S., Yu, Q., Chen, D. & Yan, S. S. Mfn2 is required for mitochondrial development and synapse formation in human induced pluripotent stem cells/hiPSC derived cortical neurons. Sci. Rep. 6, 31462 (2016).

  48. 48.

    Shirendeb, U. et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum. Mol. Genet. 20, 1438–1455 (2011).

  49. 49.

    Ochaba, J. et al. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc. Natl Acad. Sci. USA 111, 16889–16894 (2014).

  50. 50.

    Culver, B. P. et al. Huntington’s disease protein huntingtin associates with its own mRNA. J. Huntingtons Dis 5, 39–51 (2016).

  51. 51.

    Mientjes, E. J. et al. The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo. Neurobiol. Dis. 21, 549–555 (2006).

  52. 52.

    Wang, X., Qiu, R., Tsark, W. & Lu, Q. Rapid promoter analysis in developing mouse brain and genetic labeling of young neurons by doublecortin-DsRed-express. J. Neurosci. Res. 85, 3567–3573 (2007).

  53. 53.

    Lagace, D. C. et al. Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J. Neurosci. 27, 12623–12629 (2007).

  54. 54.

    Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

  55. 55.

    Smrt, R. D. et al. Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol. Dis. 27, 77–89 (2007).

  56. 56.

    Zhao, C., Teng, E. M., Summers, R. G. Jr., Ming, G. L. & Gage, F. H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11 (2006).

  57. 57.

    Vivar, C. et al. Monosynaptic inputs to new neurons in the dentate gyrus. Nat. Commun. 3, 1107 (2012).

  58. 58.

    Bu, Q., Wang, A. & Hamzah, H. CREB signaling is involved in rett syndrome pathogenesis. J. Neurosci. 37, 3671–3685 (2017).

  59. 59.

    Smrt, R. D. et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28, 1060–1070 (2010).

  60. 60.

    Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

  61. 61.

    Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

  62. 62.

    Barkho, B. Z. et al. Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells 26, 3139–3149 (2008).

  63. 63.

    Li, X. et al. Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. J. Biol. Chem. 283, 27644–27652 (2008).

  64. 64.

    Liu, C. et al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell. Stem. Cell. 6, 433–444 (2010).

  65. 65.

    Gao, Y. et al. Inhibition of miR-15a Promotes BDNF expression and rescues dendritic maturation deficits in MeCP2-deficient neurons. Stem Cells 33, 1618–1629 (2015).

  66. 66.

    Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R. & Lieb, J. D. FAIRE (Formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).

  67. 67.

    Dagda, R. K. et al. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J. Biol. Chem. 284, 13843–13855 (2009).

  68. 68.

    Guo, W., Patzlaff, N. E., Jobe, E. M. & Zhao, X. Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse. Nat. Protoc. 7, 2005–2012 (2012).

  69. 69.

    Thomas, P. D. et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141 (2003).

  70. 70.

    Zhang, B., Kirov, S. & Snoddy, J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 33, W741–W748 (2005).

  71. 71.

    Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).

  72. 72.

    Guo, W. et al. RNA-binding protein FXR2 regulates adult hippocampal neurogenesis by reducing Noggin expression. Neuron 70, 924–938 (2011).

  73. 73.

    Zhang, M. et al. Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat. Methods 9, 727–729 (2012).

  74. 74.

    Beckel-Mitchener, A. C., Miera, A., Keller, R. & Perrone-Bizzozero, N. I. Poly(A) tail length-dependent stabilization of GAP-43 mRNA by the RNA-binding protein HuD. J. Biol. Chem. 277, 27996–28002 (2002).

  75. 75.

    Contestabile, A. et al. Lithium rescues synaptic plasticity and memory in Down syndrome mice. J. Clin. Invest. 123, 348–361 (2013).

  76. 76.

    Gantois, I. et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat. Med. 23, 674–677 (2017).

  77. 77.

    Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

  78. 78.

    Guillaume, D. J., Johnson, M. A., Li, X. J. & Zhang, S. C. Human embryonic stem cell-derived neural precursors develop into neurons and integrate into the host brain. J. Neurosci. Res. 84, 1165–1176 (2006).

Download references

Acknowledgements

We thank Y. Xing, S. Malone, H. Zhao, E. Berndt, Y. Zhao, J. Le, Y. Sun, J. Hoang, Y. Tao, J. Wang, and R. Spitzer for technical assistance; Q. Bu, A. Wang, Q. Chang, D. Joshi, S. Shapiro, and W. Qiu for help with mitochondrial analysis; K. Knobel, J. Pinnow, H. Mitchell at the Waisman IDD Model Core; UW Carbone Cancer Center Flow Cytometry lab for help with cell isolation; and S. Splinter-BonDurant and the UW-Madison Biotechnology Center for next generation sequencing services. We also thank U. Mueller (Scripps Institute, San Diego, CA) for Tg(Dcx -CreERT2) mice and D. Lie (Friedrich-Alexander University, Erlangen, Germany) and C. Chang for viral vectors expressing mitochondrial markers. This work was supported by grants from the National Institutes of Health (R01MH078972, R56MH113146, R01NS105200 and R01MH116582 to X.Z., P30HD03352, U54HD090256 to the Waisman Center, MH061876 and NS097362 to E.R.C., F32NS098604 to J.D.V.), UW Vilas Trust (Kellett Mid-Career Award) and UW-Madison and Wisconsin Alumni Research Foundation (to X.Z.), Jenni and Kyle Professorship (to X.Z.), John Merck Fund (to X.Z, and A.B)., and in part by the National Institute on Aging, Intramural Research Program (to H.v.P.).

Author information

Author notes

    • Feifei Wang

    Present address: State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China

    • Henriette van Praag

    Present address: Department of Biomedical Science, Charles E. Schmidt College of Medicine; and Brain Institute, Florida Atlantic University, Jupiter, FL, USA

Affiliations

  1. Waisman Center, University of Wisconsin-Madison, Madison, WI, USA

    • Minjie Shen
    • , Feifei Wang
    • , Meng Li
    • , Michael E. Stockton
    • , Joseph J. Tidei
    • , Yu Gao
    • , Tomer Korabelnikov
    • , Sudharsan Kannan
    • , Anita Bhattacharyya
    •  & Xinyu Zhao
  2. Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA

    • Minjie Shen
    • , Feifei Wang
    • , Meng Li
    • , Michael E. Stockton
    • , Joseph J. Tidei
    • , Yu Gao
    • , Tomer Korabelnikov
    • , Sudharsan Kannan
    • , Jason D. Vevea
    • , Edwin R. Chapman
    •  & Xinyu Zhao
  3. Neuroplasticity and Behavior Unit, National Institute on Aging, Baltimore, MD, USA

    • Nirnath Sah
    •  & Henriette van Praag
  4. Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA

    • Jason D. Vevea
    •  & Edwin R. Chapman
  5. Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA

    • Anita Bhattacharyya

Authors

  1. Search for Minjie Shen in:

  2. Search for Feifei Wang in:

  3. Search for Meng Li in:

  4. Search for Nirnath Sah in:

  5. Search for Michael E. Stockton in:

  6. Search for Joseph J. Tidei in:

  7. Search for Yu Gao in:

  8. Search for Tomer Korabelnikov in:

  9. Search for Sudharsan Kannan in:

  10. Search for Jason D. Vevea in:

  11. Search for Edwin R. Chapman in:

  12. Search for Anita Bhattacharyya in:

  13. Search for Henriette van Praag in:

  14. Search for Xinyu Zhao in:

Contributions

X.Z. conceived and designed the project, approved the experimental plans, kept track of the project, wrote and submitted the manuscript. M.S. designed the experiments, collected and analyzed data for most figures, kept track of the progress of the project, wrote and submitted the manuscript. F.W. designed the experiments, collected and analyzed data in Fig. 1 and performed FACS-seq in Fig. 3. M.L. created sgRNA/dCas9 system and helped with bioinformatics analysis and human iPSC differentiation. M.E.S. collected some of the qPCR, western blotting and confocal microscopy data for phenotypic analysis of both mouse and human neurons. J.J.T. collected data for in vivo analysis in Fig. 1. T.K. performed quantitative analysis of most of the in vitro neuronal dendrites, S.K. collected data for retroviral-labeled neurons. Y.G. created retroviral and lentiviral Cre and shRNA constructs. N.S. and H.v.P. performed electrophysiological analysis. J.D.V. and E.R.C. analyzed mitochondria dynamics using live imaging. A.B. worked with M.S. in human iPSC differentiation and transplantation.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Xinyu Zhao.

Supplementary information

  1. Supplementary Figures 1–25

    Supplementary Figures 1–25

  2. Reporting Summary

  3. Supplementary Note

    Information on antibodies.

  4. Supplementary Table 1

    DE genes in Fmr1-KO Dcx-DsRed neurons.

  5. Supplementary Table 2

    WebGestalt enrichment.

  6. Supplementary Table 3

    PANTHER GO analysis.

  7. Supplementary Table 4

    Shared targets among published FMRP targets.

  8. Supplementary Table 5

    Physical and genetic interactions among all mouse genes (Mus musculus Version 3.4.161) as determined by BIOGRID.

  9. Supplementary Table 6

    FMRP targets interacting with DE genes in KO.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41593-019-0338-y