Differentiation of human pluripotent stem cells into neurons or cortical organoids requires transcriptional co-regulation by UTX and 53BP1


UTX is a chromatin modifier required for development and neural lineage specification, but how it controls these biological processes is unclear. To determine the molecular mechanisms of UTX, we identified novel UTX protein interaction partners. Here we show that UTX and 53BP1 directly interact and co-occupy promoters in human embryonic stem cells and differentiating neural progenitor cells. Human 53BP1 contains a UTX-binding site that diverges from its mouse homolog by 41%, and disruption of the 53BP1–UTX interaction abrogated human, but not mouse, neurogenesis in vitro. The 53BP1–UTX interaction is required to upregulate key neurodevelopmental genes during the differentiation of human embryonic stem cells into neurons or into cortical organoids. 53BP1 promotes UTX chromatin binding, and in turn H3K27 modifications and gene activation, at a subset of genomic regions, including neurogenic genes. Overall, our data suggest that the 53BP1–UTX interaction supports the activation of key genes required for human neurodevelopment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: 53BP1 binds UTX in hESCs.
Fig. 2: UTX and 53BP1 co-occupy promoters genome wide.
Fig. 3: UTX and 53BP1 binding correlates to gene activation in hNPCs.
Fig. 4: 53BP1 is required for the differentiation of neurons on monolayer culture and three-dimensional cortical organoids.
Fig. 5: UTX and 53BP1 promote a common set of genes related to nervous system development.
Fig. 6: The 53BP1–UTX interaction promotes the development of cortical organoids.
Fig. 7: 53BP1 affects H3K27me3 and H3K27ac during neural differentiation.

Code availability

Bash script for ChIP-seq is available from figshare https://doi.org/10.6084/m9.figshare.7411835.

Data availability

All sequencing data have been deposited in the Gene Expression Omnibus with the accession code GSE108116. Data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Wang, C. et al. UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proc. Natl Acad. Sci. USA 109, 15324–15329 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Welstead, G. G. et al. X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc. Natl Acad. Sci. USA 109, 13004–13009 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Guo, C. et al. Global identification of MLL2-targeted loci reveals MLL2’s role in diverse signaling pathways. Proc. Natl Acad. Sci. USA 109, 17603–17608 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Hong, S. et al. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl Acad. Sci. USA 104, 18439–18444 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    Tie, F., Banerjee, R., Conrad, P. A., Scacheri, P. C. & Harte, P. J. Histone demethylase UTX and chromatin remodeler BRM bind directly to CBP and modulate acetylation of histone H3 lysine 27. Mol. Cell. Biol. 32, 2323–2334 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Miller, S. A., Mohn, S. E. & Weinmann, A. S. Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol. Cell 40, 594–605 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Vandamme, J. et al. The C. elegans H3K27 demethylase UTX-1 is essential for normal development, independent of its enzymatic activity. PLoS Genet. 8, e1002647 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Shpargel, K. B., Starmer, J., Wang, C., Ge, K. & Magnuson, T. UTX-guided neural crest function underlies craniofacial features of Kabuki syndrome. Proc. Natl Acad. Sci. USA 114, E9046–E9055 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Petruk, S. et al. Delayed accumulation of H3K27me3 on nascent DNA is essential for recruitment of transcription factors at early stages of stem cell differentiation. Mol. Cell 66, 247–257.e5 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Wang, S. P. et al. A UTX-MLL4-p300 transcriptional regulatory network coordinately shapes active enhancer landscapes for eliciting transcription. Mol. Cell 67, 308–321.e6 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Gage, F. H. & Temple, S. Neural stem cells: generating and regenerating the brain. Neuron 80, 588–601 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Panier, S. & Boulton, S. J. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 15, 7–18 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Ward, I. M., Minn, K., van Deursen, J. & Chen, J. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol. Cell. Biol. 23, 2556–2563 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    Cuella-Martin, R. et al. 53BP1 integrates DNA repair and p53-dependent cell fate decisions via distinct mechanisms. Mol. Cell 64, 51–64 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Puc, J., Aggarwal, A. K. & Rosenfeld, M. G. Physiological functions of programmed DNA breaks in signal-induced transcription. Nat. Rev. Mol. Cell Biol. 18, 471–476 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Bunch, H. et al. Transcriptional elongation requires DNA break-induced signalling. Nat. Commun. 6, 10191 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Kuo, L. J. & Yang, L. X. Gamma-H2AX—a novel biomarker for DNA double-strand breaks. In Vivo 22, 305–309 (2008).

    CAS  PubMed  Google Scholar 

  20. 20.

    Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl Acad. Sci. USA 110, 20284–20289 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Lancaster, M. A. & Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    CAS  Article  Google Scholar 

  23. 23.

    Carl, M., Loosli, F. & Wittbrodt, J. Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development 129, 4057–4063 (2002).

    CAS  PubMed  Google Scholar 

  24. 24.

    Lagutin, O. V. et al. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev. 17, 368–379 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    Burgold, T. et al. The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One 3, e3034 (2008).

    Article  Google Scholar 

  26. 26.

    Jepsen, K. et al. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450, 415–419 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Park, D. H. et al. Activation of neuronal gene expression by the JMJD3 demethylase is required for postnatal and adult brain neurogenesis. Cell Rep. 8, 1290–1299 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Iwabuchi, K., Bartel, P.L., Li, B., Marraccino, R. & Fields, S. Two cellular proteins that bind to wild-type butnot mutant p53.Proc. Natl Acad. Sci. USA 91, 6098–6102 (1994).

    CAS  Article  Google Scholar 

  29. 29.

    Madabhushi, R. et al. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161, 1592–1605 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Schwer, B. et al. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells. Proc. Natl Acad. Sci. USA 113, 2258–2263 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Wei, P. C. et al. Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. Cell 164, 644–655 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Wang, X. et al. JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy. Mol. Cell. Proteomics 13, 3663–3673 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  Google Scholar 

  34. 34.

    Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    Kharchenko, P. V., Tolstorukov, M. Y. & Park, P. J. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat. Biotechnol. 26, 1351–1359 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Zhang, Y., Shin, H., Song, J. S., Lei, Y. & Liu, X. S. Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq. BMC Genomics 9, 537 (2008).

    Article  Google Scholar 

  38. 38.

    Zang, C. et al. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25, 1952–1958 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  Google Scholar 

  40. 40.

    Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Aldiri, I. et al. The dynamic epigenetic landscape of the retina during development, reprogramming, and tumorigenesis. Neuron 94, 550–568.e10 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  Google Scholar 

  43. 43.

    Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    Article  Google Scholar 

  44. 44.

    Downing, J. R. et al. The Pediatric Cancer Genome Project. Nat. Genet. 44, 619–622 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  Article  Google Scholar 

  48. 48.

    Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    CAS  Article  Google Scholar 

  49. 49.

    Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).

    CAS  Article  Google Scholar 

  50. 50.

    Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

    CAS  Article  Google Scholar 

Download references


The authors thank M. A. Dyer for helpful discussions; X. Cao, and Y.-G. Han for helpful comments; A. Andersen and C. Guess for editing the manuscript; J. Houston for cell sorting; S. Olsen and D. Roeber for sequencing samples; A. Nityanandam for optimizing the cortical organoid protocol and technical advice; V. Stewart for mouse embryo injection; S. Porter and S. Miller for mi-seq analysis of in-frame clones and mouse embryos; L. Ding and M. Rusch for sequencing mapping; V. Frohlich, J. Klein, L. Griffiths, J. Peters, L. Milburn, and Y. Li for experimental assistance. M.E. is funded by the NIH (1F32HD093276). J.P. is funded by American Lebanese Syrian Associated Charities and NIH (R01GM114260, R01AG047928, and R01AG053987). J.C.P is funded by American Lebanese Syrian Associated Charities and American Cancer Society (132096-RSG-18-032-01-DDC).

Author information




X.Y.: IP-WB, ChIP, 53BP1-KO, 53BP1 in-frame deletions, cortical organoids. B.X.: all seq analysis except whole-genome sequencing. B.M.: initial IP for mass spectrometry, IP-WB, and UTX mutant. M.E.: 53bp1 mutant analyses. S.J.: recombinant protein co-IP-WB. Y.-D.W.: whole-genome sequence analysis. V.P. and J.P.: proteomic analyses. A.P.: transcript profilings and image quantification. Y.F.: B.X. supervision. J.C.P: project design, ChIP, IP, data analysis, and manuscript writing.

Corresponding author

Correspondence to Jamy C. Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Xu, B., Mulvey, B. et al. Differentiation of human pluripotent stem cells into neurons or cortical organoids requires transcriptional co-regulation by UTX and 53BP1. Nat Neurosci 22, 362–373 (2019). https://doi.org/10.1038/s41593-018-0328-5

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing