Abstract
Addiction treatment has not been appreciably improved by neuroscientific research. One problem is that mechanistic studies using rodent models do not incorporate volitional social factors, which play a critical role in human addiction. Here, using rats, we introduce an operant model of choice between drugs and social interaction. Independent of sex, drug class, drug dose, training conditions, abstinence duration, social housing, or addiction score in Diagnostic & Statistical Manual IV-based and intermittent access models, operant social reward prevented drug self-administration. This protection was lessened by delay or punishment of the social reward but neither measure was correlated with the addiction score. Social-choice-induced abstinence also prevented incubation of methamphetamine craving. This protective effect was associated with activation of central amygdala PKCδ-expressing inhibitory neurons and inhibition of anterior insular cortex activity. These findings highlight the need for incorporating social factors into neuroscience-based addiction research and support the wider implantation of socially based addiction treatments.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Subcortical serotonin 5HT2c receptor-containing neurons sex-specifically regulate binge-like alcohol consumption, social, and arousal behaviors in mice
Nature Communications Open Access 31 March 2023
-
Pathways to the persistence of drug use despite its adverse consequences
Molecular Psychiatry Open Access 30 March 2023
-
Wistar rats choose alcohol over social interaction in a discrete-choice model
Neuropsychopharmacology Open Access 31 December 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
Materials, datasets, and protocols are available upon reasonable request to M.V. or Y.S. See the Nature Research Reporting Summary for details.
References
Nestler, E. J. Epigenetic mechanisms of drug addiction. Neuropharmacology 76, 259–268 (2014). Pt B.
Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).
Heilig, M., Epstein, D. H., Nader, M. A. & Shaham, Y. Time to connect: bringing social context into addiction neuroscience. Nat. Rev. Neurosci. 17, 592–599 (2016).
Marlatt, G. A., Baer, J. S., Donovan, D. M. & Kivlahan, D. R. Addictive behaviors: etiology and treatment. Annu. Rev. Psychol. 39, 223–252 (1988).
Bardo, M. T., Neisewander, J. L. & Kelly, T. H. Individual differences and social influences on the neurobehavioral pharmacology of abused drugs. Pharmacol. Rev. 65, 255–290 (2013).
Miczek, K. A., Yap, J. J. & Covington, H. E. III. Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol. Ther. 120, 102–128 (2008).
Nader, M. A. & Banks, M. L. Environmental modulation of drug taking: nonhuman primate models of cocaine abuse and PET neuroimaging. Neuropharmacology 76, 510–517 (2014). Pt B.
Stitzer, M. L., Jones, H. E., Tuten, M. & Wong, C. Community reinforcement approach and contingency management interventions for substance abuse. in: Handbook of Motivational Counseling: Goal-Based Approaches to Assessment and Intervention with Addiction and Other Problems. W. M. Cox & E. Klinger, eds. (John Wiley & Sons, Ltd, Chichester, UK, 2011).
Banks, M. L. & Negus, S. S. Insights from preclinical choice models on treating drug addiction. Trends Pharmacol. Sci. 38, 181–194 (2017).
Ahmed, S. H., Lenoir, M. & Guillem, K. Neurobiology of addiction versus drug use driven by lack of choice. Curr. Opin. Neurobiol. 23, 581–587 (2013).
Caprioli, D., Zeric, T., Thorndike, E. B. & Venniro, M. Persistent palatable food preference in rats with a history of limited and extended access to methamphetamine self-administration. Addict. Biol. 20, 913–926 (2015).
Venniro, M., Zhang, M., Shaham, Y. & Caprioli, D. Incubation of methamphetamine but not heroin craving after voluntary abstinence in male and female rats. Neuropsychopharmacology 42, 1126–1135 (2017).
Ahmed, S. H. Trying to make sense of rodents’ drug choice behavior. Prog. Neuropsychopharmacol. Biol. Psychiatry 87, 3–10 (2018). Pt A.
Azrin, N. H. et al. Follow-up results of supportive versus behavioral therapy for illicit drug use. Behav. Res. Ther. 34, 41–46 (1996).
Vanderschuren, L. J., Achterberg, E. J. & Trezza, V. The neurobiology of social play and its rewarding value in rats. Neurosci. Biobehav. Rev. 70, 86–105 (2016).
Solinas, M., Chauvet, C., Thiriet, N., El Rawas, R. & Jaber, M. Reversal of cocaine addiction by environmental enrichment. Proc. Natl. Acad. Sci. USA 105, 17145–17150 (2008).
Zlebnik, N. E. & Carroll, M. E. Prevention of the incubation of cocaine seeking by aerobic exercise in female rats. Psychopharmacology (Berl.) 232, 3507–3513 (2015).
Smith, M. A. Peer influences on drug self-administration: social facilitation and social inhibition of cocaine intake in male rats. Psychopharmacology (Berl.) 224, 81–90 (2012).
Strickland, J. C. & Smith, M. A. The effects of social contact on drug use: behavioral mechanisms controlling drug intake. Experiment Clin. Psychopharmacol. 22, 23–34 (2014).
Zernig, G., Kummer, K. K. & Prast, J. M. Dyadic social interaction as an alternative reward to cocaine. Front. Psychiatry 4, 100 (2013).
Fritz, M. et al. Reversal of cocaine-conditioned place preference and mesocorticolimbic Zif268 expression by social interaction in rats. Addict. Biol. 16, 273–284 (2011).
Deroche-Gamonet, V., Belin, D. & Piazza, P. V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004).
Zimmer, B. A., Oleson, E. B. & Roberts, D. C. The motivation to self-administer is increased after a history of spiking brain levels of cocaine. Neuropsychopharmacology 37, 1901–1910 (2012).
Li, X., Zeric, T., Kambhampati, S., Bossert, J. M. & Shaham, Y. The central amygdala nucleus is critical for incubation of methamphetamine craving. Neuropsychopharmacology 40, 1297–1306 (2015).
Gründemann, J. & Lüthi, A. Ensemble coding in amygdala circuits for associative learning. Curr. Opin. Neurobiol. 35, 200–206 (2015).
Venniro, M. et al. The anterior insular cortex→central amygdala glutamatergic pathway is critical to relapse after contingency management. Neuron 96, 414–427.e8 (2017).
Ahmed, S. H. & Koob, G. F. Transition from moderate to excessive drug intake: change in hedonic set point. Science 282, 298–300 (1998).
Piazza, P. V. & Deroche-Gamonet, V. A multistep general theory of transition to addiction. Psychopharmacology (Berl.) 229, 387–413 (2013).
Kawa, A. B., Bentzley, B. S. & Robinson, T. E. Less is more: prolonged intermittent access cocaine self-administration produces incentive-sensitization and addiction-like behavior. Psychopharmacology (Berl.) 233, 3587–3602 (2016).
Grimm, J. W., Hope, B. T., Wise, R. A. & Shaham, Y. Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 412, 141–142 (2001).
Caprioli, D. et al. Effect of the novel positive allosteric modulator of metabotropic glutamate receptor 2 AZD8529 on incubation of methamphetamine craving after prolonged voluntary abstinence in a rat model. Biol. Psychiatry 78, 463–473 (2015).
Dong, Y., Taylor, J. R., Wolf, M. E. & Shaham, Y. Circuit and synaptic plasticity mechanisms of drug relapse. J. Neurosci. 37, 10867–10876 (2017).
Balleine, B. W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419 (1998).
Pickens, C. L. et al. Neurobiology of the incubation of drug craving. Trends Neurosci. 34, 411–420 (2011).
Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S. A. & Tonegawa, S. Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 93, 1464–1479.e5 (2017).
Bossert, J. M., Marchant, N. J., Calu, D. J. & Shaham, Y. The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology (Berl.) 229, 453–476 (2013).
Solinas, M., Thiriet, N., Chauvet, C. & Jaber, M. Prevention and treatment of drug addiction by environmental enrichment. Prog. Neurobiol. 92, 572–592 (2010).
Augier, E. et al. A molecular mechanism for choosing alcohol over an alternative reward. Science 360, 1321–1326 (2018).
Wise, R. A. & Koob, G. F. The development and maintenance of drug addiction. Neuropsychopharmacology 39, 254–262 (2014).
Caprioli, D. et al. Role of dorsomedial striatum neuronal ensembles in incubation of methamphetamine craving after voluntary abstinence. J. Neurosci. 37, 1014–1027 (2017).
Thiel, K. J. et al. Environmental enrichment counters cocaine abstinence-induced stress and brain reactivity to cocaine cues but fails to prevent the incubation effect. Addict. Biol. 17, 365–377 (2012).
Chauvet, C., Goldberg, S. R., Jaber, M. & Solinas, M. Effects of environmental enrichment on the incubation of cocaine craving. Neuropharmacology 63, 635–641 (2012).
Schoenbaum, G., Chang, C. Y., Lucantonio, F. & Takahashi, Y. K. Thinking outside the box: orbitofrontal cortex, imagination, and how we can treat addiction. Neuropsychopharmacology 41, 2966–2976 (2016).
Heyman, G. M. Addiction and choice: theory and new data. Front. Psychiatry 4, 31 (2013).
Waldorf, D., Reinarman, C. & Murphy, S. Cocaine Changes: the Experience of Using and Quitting. (Temple University Press, Philadelphia, PA, USA, 1991).
Monterosso, J. & Ainslie, G. The behavioral economics of will in recovery from addiction. Drug Alcohol. Depend. 90, S100–S111 (2007). Suppl 1.
Tourigny, S. C. Some new dying trick: African American youths “choosing” HIV/AIDS. Qual. Health Res. 8, 149–167 (1998).
Higgins, S. T. et al. Community reinforcement therapy for cocaine-dependent outpatients. Arch. Gen. Psychiatry 60, 1043–1052 (2003).
Lash, S. J., Burden, J. L., Monteleone, B. R. & Lehmann, L. P. Social reinforcement of substance abuse treatment aftercare participation: Impact on outcome. Addict. Behav. 29, 337–342 (2004).
Insel, T. R. Digital phenotyping: technology for a new science of behavior. J. Am. Med. Assoc. 318, 1215–1216 (2017).
Theberge, F. R. et al. Effect of chronic delivery of the Toll-like receptor 4 antagonist (+)-naltrexone on incubation of heroin craving. Biol. Psychiatry 73, 729–737 (2013).
Li, X. et al. Incubation of methamphetamine craving is associated with selective increases in expression of Bdnf and trkb, glutamate receptors, and epigenetic enzymes in cue-activated fos-expressing dorsal striatal neurons. J. Neurosci. 35, 8232–8244 (2015).
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates. Sixth edn., (Academic Press, San Diego, CA, USA, 2008).
Calu, D. J., Chen, Y. W., Kawa, A. B., Nair, S. G. & Shaham, Y. The use of the reinstatement model to study relapse to palatable food seeking during dieting. Neuropharmacology 76, 395–406 (2014). Pt B.
Venniro, M., Caprioli, D. & Shaham, Y. Animal models of drug relapse and craving: From drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog. Brain. Res. 224, 25–52 (2016).
Wolf, M. E. Synaptic mechanisms underlying persistent cocaine craving. Nat. Rev. Neurosci. 17, 351–365 (2016).
Krasnova, I. N. et al. Incubation of methamphetamine and palatable food craving after punishment-induced abstinence. Neuropsychopharmacology 39, 2008–2016 (2014).
Marchant, N. J., Khuc, T. N., Pickens, C. L., Bonci, A. & Shaham, Y. Context-induced relapse to alcohol seeking after punishment in a rat model. Biol. Psychiatry 73, 256–262 (2013).
Pelloux, Y. et al. Context-induced relapse to cocaine seeking after punishment-imposed abstinence is associated with activation of cortical and subcortical brain regions. Addict. Biol. 23, 699–712 (2018).
Richardson, N. R. & Roberts, D. C. Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J. Neurosci. Methods 66, 1–11 (1996).
Acknowledgements
We thank M. Jin, A. Minier Toribio, and O. Lofaro for their help during the experiments. The research was supported by the Intramural Research Program of NIDA, a fellowship from the NIH Center on Compulsive Behaviors (M.V.), and NARSAD Distinguished Investigator Grant Award (Y.S.).
Author information
Authors and Affiliations
Contributions
M.V., D,C., and Y.S designed the experiments; M.V., M.Z., and D.C. built the custom-made social self-administration chambers, M.V., M.Z., D.C., J.K.H., S.A.G. and C.H. collected the behavioral data; M.V., M.Z., J.K.H., and M.M. performed and quantified the biochemical assays; M.V., M.Z., D.H.E., and Y.S. analyzed the data; M.V., M.M., D.H.E., and Y.S. wrote the paper with feedback from the other authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Integrated supplementary information
Supplementary Figure 1 Custom-made social-choice self-administration apparatus.
(Top) Five steps to build the apparatus, starting with a Standard Modular Operant Test Chamber with Modified Top for Rat (ENV—008CT, Med Associates). (Bottom) Picture of the apparatus in the configuration we used, plus a list of all the Med Associates components. Related to Fig. 1J.
Supplementary Figure 2 Addiction score-based methamphetamine self-administration.
(A) Methamphetamine self-administration training. Number of methamphetamine infusions during the training phase of the Low, Medium, and High addiction-score groups (Low n = 25; Medium n = 9; High n = 8). Related to Fig. 2 (Exp. 2). (B) Methamphetamine self-administration training. Number of methamphetamine infusions during the training phase of the Low, Medium, and High addiction-score groups (Low n = 13; Medium n = 8; High n = 6). Related to Fig. 3 (Exp. 3). Statistical details are included in Supplementary Table 1.
Supplementary Figure 3 Discrete-choice sessions during training, devaluation, or progressive-ratio tests.
(A) Discrete choice sessions during training (rewards: social, palatable pellets or drug infusion). Number of food or social rewards and methamphetamine infusions earned during the 3 choice sessions performed during self-administration training. (B) Devaluation/satiety tests. Number of food or social rewards and methamphetamine infusions earned during the 6 choice sessions performed after extended exposure to palatable food or social partner in the homecage, respectively. (C) Progressive ratio. Number of food or social rewards and methamphetamine infusions earned during progressive-ratio tests. Data are mean±SEM. Food-choice-induced versus Social-choice-induced abstinence n = 10 and 12, respectively; Related to Fig. 4 (Exp. 4A). Statistical details are included in Supplementary Table 1.
Supplementary Figure 4 Effect of social-choice voluntary abstinence on c-Fos expression, and c-Fos + PKCδ or c-Fos + SOM in CeL and CeM: RNAscope.
(A) Timeline of the experiment. (B) Self-administration training (rewards: social or drug infusion). Number of social rewards (2 h) or methamphetamine infusions (6 h). (C) Voluntary abstinence. Number of social rewards or methamphetamine infusions earned during the 10 discrete-choice sessions. (D) Relapse test day 15 (RNAscope®). Lever presses on the active or inactive levers during the 90-min test session on day 15 (No-test, Day 15 Forced and Social-induced-abstinence, n = 7 per group). (E) RNAscope. Representative photomicrographs of PKCδ or SOM in CeL and CeM, Scale bar: 100 µm. (F) Representative CeL and CeM photomicrographs of Fos expression in PKCδ or SOM positive cells in the No-test group (left panels, n = 7), Social-choice Day 15 group (middle panels, n = 7), and Forced abstinence Day 15 group (right panels, n = 7). Arrows indicate representative cells and double arrows indicate double-labeled cells (Fos, white; PKCδ, green; SOM, red), Scale bar: 20 µm. (G) Fos neurons quantification. Number of Fos-IR nuclei per mm2 in the CeL and CeM. (H) Double-labeled cells quantification. Number of Fos-IR double-labeled with PKCδ or SOM per mm2 in the CeL and CeM. (I) PKCδ and SOM quantification. Number of PKCδ-IR or SOM-IR in CeL and CeM. * Different from other groups, p<0.05; # Different from the No-test group, p<0.05. Data are mean±SEM. Related to Fig. 5. Statistical details are included in Supplementary Table 1.
Supplementary Figure 5 Quantification of c-Fos expression in other brain regions.
(A) Immunohistochemistry. Quantification of Fos-IR positive cells in (B) anterior insular cortex ventral and dorsal (AIV, AID), (C) anterior cingulate cortex (ACC), (D) dorsal and (E) ventral medial PFC (dmPFC and vmPFC), (F) medial and lateral OFC (mOFC and lOFC), and (G) basolateral amygdala (BLA). * Different from the no-test group, # Different from the Day 1 group, p<0.05. Data are mean±SEM. Scale bar: 100 µm. (No-test, n = 15; Day 1, n = 16; Day 15 Forced and Social-induced-abstinence, n = 7 per group). Related to Fig. 5. Statistical details are included in Supplementary Table 1.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–5
Rights and permissions
About this article
Cite this article
Venniro, M., Zhang, M., Caprioli, D. et al. Volitional social interaction prevents drug addiction in rat models. Nat Neurosci 21, 1520–1529 (2018). https://doi.org/10.1038/s41593-018-0246-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41593-018-0246-6
This article is cited by
-
Pathways to the persistence of drug use despite its adverse consequences
Molecular Psychiatry (2023)
-
Wistar rats choose alcohol over social interaction in a discrete-choice model
Neuropsychopharmacology (2023)
-
Subcortical serotonin 5HT2c receptor-containing neurons sex-specifically regulate binge-like alcohol consumption, social, and arousal behaviors in mice
Nature Communications (2023)
-
An operant social self-administration and choice model in mice
Nature Protocols (2023)
-
The complexity of drug choice: rats prefer alcohol over social interaction
Neuropsychopharmacology (2023)