News & Views | Published:

DOPAMINE SIGNALING

Double threat in striatal dopamine signaling

Nature Neurosciencevolume 21pages12961297 (2018) | Download Citation

In this issue of Nature Neuroscience, Menegas et al. demonstrate a role for midbrain dopamine neurons projecting to the tail of the striatum in encoding stimulus novelty and threat avoidance. From this study emerges a model whereby distinct dopaminergic projections to striatum influence behavior along at least two axes, one representing value and one representing threat.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Thierry, A. M., Tassin, J. P., Blanc, G. & Glowinski, J. Nature 263, 242–244 (1976).

  2. 2.

    Matthews, G. A. et al. Cell 164, 617–631 (2016).

  3. 3.

    Lammel, S. et al. Nature 491, 212–217 (2012).

  4. 4.

    Howe, M. W. & Dombeck, D. A. Nature 535, 505–510 (2016).

  5. 5.

    Di Chiara, G. & Imperato, A. Proc. Natl. Acad. Sci. USA 85, 5274–5278 (1988).

  6. 6.

    Phillips, P. E. M., Stuber, G. D., Heien, M. L. A. V., Wightman, R. M. & Carelli, R. M. Nature 422, 614–618 (2003).

  7. 7.

    Schultz, W., Dayan, P. & Montague, P. R. Science 275, 1593–1599 (1997).

  8. 8.

    Steinberg, E. E. et al. Nat. Neurosci. 16, 966–973 (2013).

  9. 9.

    Everitt, B. J. & Robbins, T. W. Nat. Neurosci. 8, 1481–1489 (2005).

  10. 10.

    Menegas, W. et al. eLife 4, e10032 (2015).

  11. 11.

    Menegas, W., Babayan, B. M., Uchida, N. & Watabe-Uchida, M. eLife 6, e21886 (2017).

  12. 12.

    Menegas, W., et al. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci. https://doi.org/10.1038/s41593-018-0222-1 (2018).

  13. 13.

    Rice, M. E. & Cragg, S. J. Nat. Neurosci. 7, 583–584 (2004).

  14. 14.

    Parker, N. F. et al. Nat. Neurosci. 19, 845–854 (2016).

  15. 15.

    Pereira, D. B. et al. Nat. Neurosci. 19, 578–586 (2016).

Download references

Acknowledgements

C.A.S. is supported by NIH grants F32 MH111216 (NIMH) and K99 DA045103 (NIDA) and by a NARSAD Young Investigator Award (Brain and Behavior Research Foundation). F.M. is supported by a postdoctoral fellowship from the Canadian Institutes of Health Research. K.M.T. is a New York Stem Cell Foundation - Robertson Investigator and McKnight Scholar and this work was supported by funding from the JPB Foundation, the PIIF, PNDRF, JFDP, New York Stem Cell Foundation, R01-MH102441 (NIMH), the NIH Director’s New Innovator Award DP2-DK102256 (NIDDK), and Pioneer Award DP1-AT009925 (NCCIH).

Author information

Affiliations

  1. The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Cody A. Siciliano
    • , Fergil Mills
    •  & Kay M. Tye
  2. The Salk Institute for Biological Sciences, La Jolla, CA, USA

    • Fergil Mills
    •  & Kay M. Tye

Authors

  1. Search for Cody A. Siciliano in:

  2. Search for Fergil Mills in:

  3. Search for Kay M. Tye in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Kay M. Tye.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41593-018-0243-9

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing