Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases

Abstract

Many neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, are characterized by the progressive appearance of abnormal proteinaceous assemblies in the nervous system. Studies in experimental systems indicate that the assemblies originate from the prion-like seeded aggregation of specific misfolded proteins that proliferate and amass to form the intracellular and/or extracellular lesions typical of each disorder. The host in which the proteopathic seeds arise provides the biochemical and physiological environment that either supports or restricts their emergence, proliferation, self-assembly, and spread. Multiple mechanisms influence the spatiotemporal spread of seeds and the nature of the resulting lesions, one of which is the cellular uptake, release, and transport of seeds along neural pathways and networks. The characteristics of cells and regions in the affected network govern their vulnerability and thereby influence the neuropathological and clinical attributes of the disease. The propagation of pathogenic protein assemblies within the nervous system is thus determined by the interaction of the proteopathic agent and the host milieu.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors governing the genesis, replication, and spread of proteopathic seeds.
Fig. 2: Compatibility of seed and cognate host protein regulates the propagation of proteopathic seeds at the organismic level.
Fig. 3: Compatibility of seed and cognate cellular protein governs propagation at the cellular or compartmental level.

Similar content being viewed by others

References

  1. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 133, 571–573 (1889).

    Google Scholar 

  2. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    CAS  PubMed  Google Scholar 

  3. Prusiner, S. B. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet. 47, 601–623 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mead, S. & Reilly, M. M. A new prion disease: relationship with central and peripheral amyloidoses. Nat. Rev. Neurol. 11, 90–97 (2015).

    CAS  PubMed  Google Scholar 

  5. Imran, M. & Mahmood, S. An overview of animal prion diseases. Virol. J. 8, 493 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Imran, M. & Mahmood, S. An overview of human prion diseases. Virol. J. 8, 559 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. DeArmond, S. J. & Prusiner, S. B. Etiology and pathogenesis of prion diseases. Am. J. Pathol. 146, 785–811 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Walker, L. C. & Jucker, M. Neurodegenerative diseases: expanding the prion concept. Annu. Rev. Neurosci. 38, 87–103 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Collinge, J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 539, 217–226 (2016).

    PubMed  Google Scholar 

  11. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Goedert, M. Neurodegeneration. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349, 1255555 (2015).

    PubMed  Google Scholar 

  13. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    CAS  PubMed  Google Scholar 

  14. Brettschneider, J., Del Tredici, K., Lee, V. M. & Trojanowski, J. Q. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev. Neurosci. 16, 109–120 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Del Tredici, K. & Braak, H. Review: sporadic Parkinson’s disease: development and distribution of α-synuclein pathology. Neuropathol. Appl. Neurobiol. 42, 33–50 (2016).

    PubMed  Google Scholar 

  16. Saper, C. B., Wainer, B. H. & German, D. C. Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuroscience 23, 389–398 (1987).

    CAS  PubMed  Google Scholar 

  17. Iturria-Medina, Y. & Evans, A. C. On the central role of brain connectivity in neurodegenerative disease progression. Front. Aging Neurosci. 7, 90 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Palmqvist, S. et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 8, 1214 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Kane, M. D. et al. Evidence for seeding of beta -amyloid by intracerebral infusion of Alzheimer brain extracts in beta -amyloid precursor protein-transgenic mice. J. Neurosci. 20, 3606–3611 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Meyer-Luehmann, M. et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    CAS  PubMed  Google Scholar 

  21. Langer, F. et al. Soluble Aβ seeds are potent inducers of cerebral β-amyloid deposition. J. Neurosci. 31, 14488–14495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Morales, R., Duran-Aniotz, C., Castilla, J., Estrada, L. D. & Soto, C. De novo induction of amyloid-β deposition in vivo. Mol. Psychiatry 17, 1347–1353 (2012).

    CAS  PubMed  Google Scholar 

  23. Fritschi, S. K. et al. Highly potent soluble amyloid-β seeds in human Alzheimer brain but not cerebrospinal fluid. Brain 137, 2909–2915 (2014).

    PubMed  Google Scholar 

  24. Watts, J. C. et al. Serial propagation of distinct strains of Aβ prions from Alzheimer’s disease patients. Proc. Natl. Acad. Sci. USA 111, 10323–10328 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rasmussen, J. et al. Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 114, 13018–13023 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruiz-Riquelme, A. et al. Prion-like propagation of β-amyloid aggregates in the absence of APP overexpression. Acta Neuropathol. Commun. 6, 26 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. Aguzzi, A. & Calella, A. M. Prions: protein aggregation and infectious diseases. Physiol. Rev. 89, 1105–1152 (2009).

    CAS  PubMed  Google Scholar 

  28. Hamaguchi, T. et al. The presence of Aβ seeds, and not age per se, is critical to the initiation of Aβ deposition in the brain. Acta Neuropathol. 123, 31–37 (2012).

    CAS  PubMed  Google Scholar 

  29. Ye, L. et al. Progression of seed-induced Aβ deposition within the limbic connectome. Brain Pathol. 25, 743–752 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Domert, J. et al. Spreading of amyloid-β peptides via neuritic cell-to-cell transfer is dependent on insufficient cellular clearance. Neurobiol. Dis. 65, 82–92 (2014).

    CAS  PubMed  Google Scholar 

  31. Brahic, M., Bousset, L., Bieri, G., Melki, R. & Gitler, A. D. Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathol. 131, 539–548 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Marzesco, A. M. et al. Highly potent intracellular membrane-associated Aβ seeds. Sci. Rep. 6, 28125 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Eisele, Y. S. et al. Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 330, 980–982 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Eisele, Y. S. et al. Multiple factors contribute to the peripheral induction of cerebral β-amyloidosis. J. Neurosci. 34, 10264–10273 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Burwinkel, M., Lutzenberger, M., Heppner, F. L., Schulz-Schaeffer, W. & Baier, M. Intravenous injection of beta-amyloid seeds promotes cerebral amyloid angiopathy (CAA). Acta Neuropathol. Commun. 6, 23 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. Jaunmuktane, Z. et al. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature 525, 247–250 (2015).

    CAS  PubMed  Google Scholar 

  37. Brown, P. et al. Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg. Infect. Dis. 18, 901–907 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. Cali, I. et al. Iatrogenic Creutzfeldt-Jakob disease with amyloid-β pathology: an international study. Acta Neuropathol. Commun. 6, 5 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Will, R. G. Acquired prion disease: iatrogenic CJD, variant CJD, kuru. Br. Med. Bull. 66, 255–265 (2003).

    CAS  PubMed  Google Scholar 

  40. Ritchie, D. L. et al. Amyloid-β accumulation in the CNS in human growth hormone recipients in the UK. Acta Neuropathol. 134, 221–240 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Frontzek, K., Lutz, M. I., Aguzzi, A., Kovacs, G. G. & Budka, H. Amyloid-β pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt-Jakob disease after dural grafting. Swiss Med. Wkly. 146, w14287 (2016).

    PubMed  Google Scholar 

  42. Hamaguchi, T. et al. Significant association of cadaveric dura mater grafting with subpial Aβ deposition and meningeal amyloid angiopathy. Acta Neuropathol. 132, 313–315 (2016).

    PubMed  Google Scholar 

  43. Hervé, D. et al. Fatal Aβ cerebral amyloid angiopathy 4 decades after a dural graft at the age of 2 years. Acta Neuropathol. 135, 801–803 (2018).

    PubMed  Google Scholar 

  44. Duyckaerts, C. et al. Neuropathology of iatrogenic Creutzfeldt-Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology. Acta Neuropathol. 135, 201–212 (2018).

    CAS  PubMed  Google Scholar 

  45. Kovacs, G. G. et al. Dura mater is a potential source of Aβ seeds. Acta Neuropathol. 131, 911–923 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Irwin, D. J. et al. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70, 462–468 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. Rasmussen, J. et al. Infectious prions do not induce Aβ deposition in an in vivo seeding model. Acta Neuropathol. 135, 965–967 (2018).

    CAS  PubMed  Google Scholar 

  48. Jack, C. R. Jr. et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Spillantini, M. G. & Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol. 12, 609–622 (2013).

    CAS  PubMed  Google Scholar 

  50. Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909–913 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaufman, S. K. et al. Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92, 796–812 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl. Acad. Sci. USA 110, 9535–9540 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lasagna-Reeves, C. A. et al. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci. Rep. 2, 700 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Guo, J. L. et al. Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice. J. Exp. Med. 213, 2635–2654 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Iba, M. et al. Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC’s afferent and efferent connections. Acta Neuropathol. 130, 349–362 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ahmed, Z. et al. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol. 127, 667–683 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Stancu, I. C. et al. Templated misfolding of Tau by prion-like seeding along neuronal connections impairs neuronal network function and associated behavioral outcomes in Tau transgenic mice. Acta Neuropathol. 129, 875–894 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, J. W. et al. Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem. 288, 1856–1870 (2013).

    CAS  PubMed  Google Scholar 

  59. Holmes, B. B. et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc. Natl. Acad. Sci. USA 110, E3138–E3147 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sanders, D. W. et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82, 1271–1288 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Clavaguera, F. et al. Peripheral administration of tau aggregates triggers intracerebral tauopathy in transgenic mice. Acta Neuropathol. 127, 299–301 (2014).

    PubMed  Google Scholar 

  62. de Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685–697 (2012).

    PubMed  PubMed Central  Google Scholar 

  63. Liu, L. et al. Trans-synaptic spread of tau pathology in vivo. PLoS One 7, e31302 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yetman, M. J., Lillehaug, S., Bjaalie, J. G., Leergaard, T. B. & Jankowsky, J. L. Transgene expression in the Nop-tTA driver line is not inherently restricted to the entorhinal cortex. Brain Struct. Funct. 221, 2231–2249 (2016).

    CAS  PubMed  Google Scholar 

  65. Irwin, D. J. et al. Deep clinical and neuropathological phenotyping of Pick disease. Ann. Neurol. 79, 272–287 (2016).

    CAS  PubMed  Google Scholar 

  66. McKee, A. C. et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 136, 43–64 (2013).

    PubMed  Google Scholar 

  67. Dubois, B. et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 12, 292–323 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Götz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293, 1491–1495 (2001).

    PubMed  Google Scholar 

  69. Bolmont, T. et al. Induction of tau pathology by intracerebral infusion of amyloid-beta -containing brain extract and by amyloid-beta deposition in APP x Tau transgenic mice. Am. J. Pathol. 171, 2012–2020 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pooler, A. M. et al. Amyloid accelerates tau propagation and toxicity in a model of early Alzheimer’s disease. Acta Neuropathol. Commun. 3, 14 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Li, T. et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer’s disease mouse model. Nat. Commun. 7, 12082 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. He, Z. et al. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat. Med. 24, 29–38 (2018).

    CAS  PubMed  Google Scholar 

  73. Vasconcelos, B. et al. Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathol. 131, 549–569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Busche, M. A. et al. Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 109, 8740–8745 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu, J. W. et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat. Neurosci. 19, 1085–1092 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013).

    CAS  PubMed  Google Scholar 

  77. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med. 14, 504–506 (2008).

    CAS  PubMed  Google Scholar 

  78. Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    CAS  PubMed  Google Scholar 

  79. Mougenot, A. L. et al. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol. Aging 33, 2225–2228 (2012).

    CAS  PubMed  Google Scholar 

  80. Luk, K. C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 209, 975–986 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Masuda-Suzukake, M. et al. Pathological alpha-synuclein propagates through neural networks. Acta Neuropathol. Commun. 2, 88 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Recasens, A. et al. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann. Neurol. 75, 351–362 (2014).

    CAS  PubMed  Google Scholar 

  84. Peng, C. et al. Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature 557, 558–563 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Prusiner, S. B. et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc. Natl. Acad. Sci. USA 112, E5308–E5317 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Masuda-Suzukake, M. et al. Prion-like spreading of pathological α-synuclein in brain. Brain 136, 1128–1138 (2013).

    PubMed  PubMed Central  Google Scholar 

  87. Rey, N. L. et al. Widespread transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J. Exp. Med. 213, 1759–1778 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sacino, A. N. et al. Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc. Natl. Acad. Sci. USA 111, 10732–10737 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Peelaerts, W. et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344 (2015).

    CAS  PubMed  Google Scholar 

  90. Ayers, J. I. et al. Robust central nervous system pathology in transgenic mice following peripheral injection of α-synuclein fibrils. J. Virol. 91, e02095–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sargent, D. et al. ‘Prion-like’ propagation of the synucleinopathy of M83 transgenic mice depends on the mouse genotype and type of inoculum. J. Neurochem. 143, 126–135 (2017).

    CAS  PubMed  Google Scholar 

  92. Parkinson, J. An essay on the shaking palsy. 1817. J. Neuropsychiatry Clin. Neurosci. 14, 223–236 (2002). discussion 222.

    PubMed  Google Scholar 

  93. Braak, H., de Vos, R. A., Bohl, J. & Del Tredici, K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci. Lett. 396, 67–72 (2006).

    CAS  PubMed  Google Scholar 

  94. Ayers, J. I. et al. Experimental transmissibility of mutant SOD1 motor neuron disease. Acta Neuropathol. 128, 791–803 (2014).

    CAS  PubMed  Google Scholar 

  95. Porta, Y.X. et al. Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nat. Commun. (in the press).

  96. Zhou, Q. et al. Antibodies inhibit transmission and aggregation of C9orf72 poly-GA dipeptide repeat proteins. EMBO Mol. Med. 9, 687–702 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Collinge, J. & Clarke, A. R. A general model of prion strains and their pathogenicity. Science 318, 930–936 (2007).

    CAS  PubMed  Google Scholar 

  98. Li, J., Browning, S., Mahal, S. P., Oelschlegel, A. M. & Weissmann, C. Darwinian evolution of prions in cell culture. Science 327, 869–872 (2010).

    CAS  PubMed  Google Scholar 

  99. Tanaka, M., Collins, S. R., Toyama, B. H. & Weissman, J. S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006).

    CAS  PubMed  Google Scholar 

  100. Qiang, W., Yau, W. M., Lu, J. X., Collinge, J. & Tycko, R. Structural variation in amyloid-β fibrils from Alzheimer’s disease clinical subtypes. Nature 541, 217–221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Condello, C. et al. Structural heterogeneity and intersubject variability of Aβ in familial and sporadic Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 115, E782–E791 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Di Fede, G. et al. Molecular subtypes of Alzheimer’s disease. Sci. Rep. 8, 3269 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Cohen, M. L. et al. Rapidly progressive Alzheimer’s disease features distinct structures of amyloid-β. Brain 138, 1009–1022 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. Narasimhan, S. et al. Pathological tau strains from human brains recapitulate the diversity of tauopathies in nontransgenic mouse brain. J. Neurosci. 37, 11406–11423 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gremer, L. et al. Fibril structure of amyloid-β(1-42) by cryo-electron microscopy. Science 358, 116–119 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185–190 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Heilbronner, G. et al. Seeded strain-like transmission of β-amyloid morphotypes in APP transgenic mice. EMBO Rep. 14, 1017–1022 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Boluda, S. et al. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains. Acta Neuropathol. 129, 221–237 (2015).

    CAS  PubMed  Google Scholar 

  109. Guo, J. L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013).

    CAS  PubMed  Google Scholar 

  110. Woerman, A. L. et al. Familial Parkinson’s point mutation abolishes multiple system atrophy prion replication. Proc. Natl. Acad. Sci. USA 115, 409–414 (2018).

    CAS  PubMed  Google Scholar 

  111. Wille, H. & Requena, J. R. The structure of PrPSc prions. Pathogens 7, E20 (2018).

    PubMed  Google Scholar 

  112. Fritschi, S. K. et al. Aβ seeds resist inactivation by formaldehyde. Acta Neuropathol. 128, 477–484 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kaufman, S. K., Thomas, T. L., Del Tredici, K., Braak, H. & Diamond, M. I. Characterization of tau prion seeding activity and strains from formaldehyde-fixed tissue. Acta Neuropathol. Commun. 5, 41 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. Schweighauser, M. et al. Formaldehyde-fixed brain tissue from spontaneously ill α-synuclein transgenic mice induces fatal α-synucleinopathy in transgenic hosts. Acta Neuropathol. 129, 157–159 (2015).

    PubMed  Google Scholar 

  115. Woerman, A. L. et al. MSA prions exhibit remarkable stability and resistance to inactivation. Acta Neuropathol. 135, 49–63 (2018).

    CAS  PubMed  Google Scholar 

  116. Eisele, Y. S. et al. Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc. Natl. Acad. Sci. USA 106, 12926–12931 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ye, L. et al. Persistence of Aβ seeds in APP null mouse brain. Nat. Neurosci. 18, 1559–1561 (2015).

    CAS  PubMed  Google Scholar 

  118. Diack, A. B. et al. Insights into mechanisms of chronic neurodegeneration. Int. J. Mol. Sci. 17, E82 (2016).

    PubMed  Google Scholar 

  119. Kim, C. et al. Small protease sensitive oligomers of PrPSc in distinct human prions determine conversion rate of PrP(C). PLoS Pathog. 8, e1002835 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Silveira, J. R. et al. The most infectious prion protein particles. Nature 437, 257–261 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gerson, J. et al. Tau oligomers derived from traumatic brain injury cause cognitive impairment and accelerate onset of pathology in hTau mice. J. Neurotrauma 33, 2034–2043 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. Mirbaha, H., Holmes, B. B., Sanders, D. W., Bieschke, J. & Diamond, M. I. Tau trimers are the minimal propagation unit spontaneously internalized to seed intracellular aggregation. J. Biol. Chem. 290, 14893–14903 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Jackson, S. J. et al. Short fibrils constitute the major species of seed-competent tau in the brains of mice transgenic for human P301S tau. J. Neurosci. 36, 762–772 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Falcon, B. et al. Conformation determines the seeding potencies of native and recombinant Tau aggregates. J. Biol. Chem. 290, 1049–1065 (2015).

    CAS  PubMed  Google Scholar 

  125. Iba, M. et al. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J. Neurosci. 33, 1024–1037 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Stöhr, J. et al. Purified and synthetic Alzheimer’s amyloid beta (Aβ) prions. Proc. Natl. Acad. Sci. USA 109, 11025–11030 (2012).

    PubMed  PubMed Central  Google Scholar 

  127. Supattapone, S. Synthesis of high titer infectious prions with cofactor molecules. J. Biol. Chem. 289, 19850–19854 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Novotny, R. et al. Conversion of synthetic Aβ to in vivo active seeds and amyloid plaque formation in a hippocampal slice culture model. J. Neurosci. 36, 5084–5093 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Labbadia, J. & Morimoto, R. I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435–464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Surmeier, D. J., Obeso, J. A. & Halliday, G. M. Parkinson’s disease is not simply a prion disorder. J. Neurosci. 37, 9799–9807 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Mattsson, N., Schott, J. M., Hardy, J., Turner, M. R. & Zetterberg, H. Selective vulnerability in neurodegeneration: insights from clinical variants of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 87, 1000–1004 (2016).

    PubMed  Google Scholar 

  132. Luna, E. et al. Differential α-synuclein expression contributes to selective vulnerability of hippocampal neuron subpopulations to fibril-induced toxicity. Acta Neuropathol. 135, 855–875 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Mezias, C. & Raj, A. Analysis of amyloid-β pathology spread in mouse models suggests spread is driven by spatial proximity, not connectivity. Front. Neurol. 8, 653 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Hu, P. P. et al. Role of prion replication in the strain-dependent brain regional distribution of prions. J. Biol. Chem. 291, 12880–12887 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Freer, R. et al. A protein homeostasis signature in healthy brains recapitulates tissue vulnerability to Alzheimer’s disease. Sci. Adv. 2, e1600947 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Rangel, A. et al. Distinct patterns of spread of prion infection in brains of mice expressing anchorless or anchored forms of prion protein. Acta Neuropathol. Commun. 2, 8 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. Mao, X. et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353, aah3374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lee, J. G., Takahama, S., Zhang, G., Tomarev, S. I. & Ye, Y. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nat. Cell Biol. 18, 765–776 (2016).

    CAS  PubMed  Google Scholar 

  139. Katsinelos, T. et al. Unconventional secretion mediates the trans-cellular spreading of tau. Cell Rep. 23, 2039–2055 (2018).

    CAS  PubMed  Google Scholar 

  140. Ye, L. et al. Aβ seeding potency peaks in the early stages of cerebral β-amyloidosis. EMBO Rep. 18, 1536–1544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bero, A. W. et al. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat. Neurosci. 14, 750–756 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Yamada, K. et al. Neuronal activity regulates extracellular tau in vivo. J. Exp. Med. 211, 387–393 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Yamada, K. & Iwatsubo, T. Extracellular α-synuclein levels are regulated by neuronal activity. Mol. Neurodegener. 13, 9 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. Phinney, A. L. et al. Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J. Neurosci. 19, 8552–8559 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18, 1584–1593 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    CAS  PubMed  Google Scholar 

  147. Venegas, C. et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552, 355–361 (2017).

    CAS  PubMed  Google Scholar 

  148. DeVos, S. L. et al. Synaptic tau seeding precedes tau pathology in human Alzheimer’s disease brain. Front. Neurosci. 12, 267 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. Kaufman, S. K., Del Tredici, K., Thomas, T. L., Braak, H. & Diamond, M. I. Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer’s disease and PART. Acta Neuropathol. https://doi.org/10.1007/s00401-018-1855-6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Shen, M. M. Cancer: the complex seeds of metastasis. Nature 520, 298–299 (2015).

    CAS  PubMed  Google Scholar 

  151. Cicchetti, F. et al. Mutant huntingtin is present in neuronal grafts in huntington disease patients. Ann. Neurol. 76, 31–42 (2014).

    CAS  PubMed  Google Scholar 

  152. Jeon, I. et al. Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol. 132, 577–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Rasmussen, M. Bacioglu, and the members of our laboratories for critical discussions and comments. The help of A. Apel and G. Rose with the manuscript and figures is gratefully acknowledged. Supported by the EC Joint Programme on Neurodegenerative Diseases under the Grants JPND-NewTargets and JPND-REfrAME (M.J.), Horizon 2020 IMPRiND (M.J.), National Institutes of Health (NIH) grants P50 AG025688 and ORIP/OD P51OD011132, and by the Alexander von Humboldt Foundation (L.C.W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathias Jucker or Lary C. Walker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jucker, M., Walker, L.C. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat Neurosci 21, 1341–1349 (2018). https://doi.org/10.1038/s41593-018-0238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-018-0238-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing