Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Animal models of neurodegenerative diseases

Abstract

Animal models of adult-onset neurodegenerative diseases have enhanced the understanding of the molecular pathogenesis of Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Nevertheless, our understanding of these disorders and the development of mechanistically designed therapeutics can still benefit from more rigorous use of the models and from generation of animals that more faithfully recapitulate human disease. Here we review the current state of rodent models for Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis. We discuss the limitations and utility of current models, issues regarding translatability, and future directions for developing animal models of these human disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Liu, C., Oikonomopoulos, A., Sayed, N. & Wu, J. C. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development 145, dev156166 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Holtzman, D. M., Morris, J. C. & Goate, A. M. Alzheimer’s disease: the challenge of the second century. Sci. Transl. Med. 3, 77sr1 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. Jack, C. R. Jr. et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87, 539–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holtzman, D. M. et al. Tau: From research to clinical development. Alzheimers Dement. 12, (1033–1039 (2016).

    Google Scholar 

  5. Carmona, S., Hardy, J. & Guerreiro, R. The genetic landscape of Alzheimer disease. Handb. Clin. Neurol. 148, 395–408 (2018).

    Article  PubMed  Google Scholar 

  6. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tansey, K. E., Cameron, D. & Hill, M. J. Genetic risk for Alzheimer’s disease is concentrated in specific macrophage and microglial transcriptional networks. Genome Med. 10, 14 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ashe, K. H. & Zahs, K. R. Probing the biology of Alzheimer’s disease in mice. Neuron 66, 631–645 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. LaFerla, F. M. & Green, K. N. Animal models of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006320 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Price, D. L., Tanzi, R. E., Borchelt, D. R. & Sisodia, S. S. Alzheimer’s disease: genetic studies and transgenic models. Annu. Rev. Genet. 32, 461–493 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Sasaguri, H. et al. APP mouse models for Alzheimer’s disease preclinical studies. EMBO J. 36, 2473–2487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Golde, T. E., Schneider, L. S. & Koo, E. H. Anti-aβ therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron 69, 203–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haass, C. & De Strooper, B. The presenilins in Alzheimer’s disease–proteolysis holds the key. Science 286, 916–919 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Spires, T. L. & Hyman, B. T. Neuronal structure is altered by amyloid plaques. Rev. Neurosci. 15, 267–278 (2004).

    Article  PubMed  Google Scholar 

  15. Kim, J. et al. Normal cognition in transgenic BRI2-Aβ mice. Mol. Neurodegener. 8, 15 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McGowan, E. et al. Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47, 191–199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saito, T. et al. Single App knock-in mouse models of Alzheimer’s disease. Nat. Neurosci. 17, 661–663 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Goedert, M., Eisenberg, D. S. & Crowther, R. A. Propagation of tau aggregates and neurodegeneration. Annu. Rev. Neurosci. 40, 189–210 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. McGowan, E., Eriksen, J. & Hutton, M. A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet. 22, 281–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Strang, K. H. et al. Distinct differences in prion-like seeding and aggregation between Tau protein variants provide mechanistic insights into tauopathies. J. Biol. Chem. 293, 2408–2421 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Andorfer, C. et al. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J. Neurosci. 25, 5446–5454 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lewis, J. et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet. 25, 402–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. de Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685–697 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Fu, H. et al. Tau pathology induces excitatory neuron loss, grid cell dysfunction, and spatial memory deficits reminiscent of early Alzheimer’s disease. Neuron 93, 533–541.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bolmont, T. et al. Induction of tau pathology by intracerebral infusion of amyloid-beta -containing brain extract and by amyloid-beta deposition in APP x Tau transgenic mice. Am. J. Pathol. 171, 2012–2020 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Götz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293, 1491–1495 (2001).

    Article  PubMed  Google Scholar 

  28. Lewis, J. et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Oddo, S. et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39, 409–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Savitt, J. M., Dawson, V. L. & Dawson, T. M. Diagnosis and treatment of Parkinson disease: molecules to medicine. J. Clin. Invest. 116, 1744–1754 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spillantini, M. G. et al. Alpha-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Klein, C. & Westenberger, A. Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a008888 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Martin, I., Dawson, V. L. & Dawson, T. M. Recent advances in the genetics of Parkinson’s disease. Annu. Rev. Genomics Hum. Genet. 12, 301–325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scott, L., Dawson, V. L. & Dawson, T. M. Trumping neurodegeneration: Targeting common pathways regulated by autosomal recessive Parkinson’s disease genes. Exp. Neurol. 298(Pt B.), 191–201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang, D. et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat. Genet. 49, 1511–1516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Braak, H. & Del Tredici, K. Neuropathological staging of brain pathology in sporadic Parkinson’s disease: separating the wheat from the chaff. J. Parkinsons Dis. 7(s1.), S71–S85 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Carlsson, A., Lindqvist, M. & Magnusson, T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180, 1200 (1957).

    Article  CAS  PubMed  Google Scholar 

  38. Lees, A. J., Tolosa, E. & Olanow, C. W. Four pioneers of L-dopa treatment: Arvid Carlsson, Oleh Hornykiewicz, George Cotzias, and Melvin Yahr. Mov. Disord. 30, 19–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Vingill, S., Connor-Robson, N. & Wade-Martins, R. Are rodent models of Parkinson’s disease behaving as they should? Behav. Brain Res. 352, 133–141 (2018).

    Article  PubMed  Google Scholar 

  40. Blesa, J. & Przedborski, S. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front. Neuroanat. 8, 155 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Athauda, D. & Foltynie, T. Challenges in detecting disease modification in Parkinson’s disease clinical trials. Parkinsonism Relat. Disord. 32, 1–11 (2016).

    Article  PubMed  Google Scholar 

  42. Olanow, C. W., Kieburtz, K. & Katz, R. Clinical approaches to the development of a neuroprotective therapy for PD. Exp. Neurol. 298(Pt B.), 246–251 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Koprich, J. B., Kalia, L. V. & Brotchie, J. M. Animal models of α-synucleinopathy for Parkinson disease drug development. Nat. Rev. Neurosci. 18, 515–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Visanji, N. P. et al. α-Synuclein-based animal models of Parkinson’s disease: challenges and opportunities in a new era. Trends Neurosci. 39, 750–762 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Hatami, A. & Chesselet, M. F. Transgenic rodent models to study alpha-synuclein pathogenesis, with a focus on cognitive deficits. Curr. Top. Behav. Neurosci. 22, 303–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Bezard, E., Yue, Z., Kirik, D. & Spillantini, M. G. Animal models of Parkinson’s disease: limits and relevance to neuroprotection studies. Mov. Disord. 28, 61–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Dawson, T. M., Ko, H. S. & Dawson, V. L. Genetic animal models of Parkinson’s disease. Neuron 66, 646–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McDowell, K. & Chesselet, M. F. Animal models of the non-motor features of Parkinson’s disease. Neurobiol. Dis. 46, 597–606 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xiong, Y., Dawson, T. M. & Dawson, V. L. Models of LRRK2-associated Parkinson’s disease. Adv. Neurobiol. 14, 163–191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lin, X. et al. Conditional expression of Parkinson’s disease-related mutant α-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J. Neurosci. 32, 9248–9264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Daniel, G. & Moore, D. J. Modeling LRRK2 pathobiology in Parkinson’s disease: from yeast to rodents. Curr. Top. Behav. Neurosci. 22, 331–368 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Van der Perren, A., Van den Haute, C. & Baekelandt, V. Viral vector-based models of Parkinson’s disease. Curr. Top. Behav. Neurosci. 22, 271–301 (2015).

    Article  PubMed  CAS  Google Scholar 

  53. Tofaris, G. K. et al. Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1-120): implications for Lewy body disorders. J. Neurosci. 26, 3942–3950 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Volta, M. & Melrose, H. LRRK2 mouse models: dissecting the behavior, striatal neurochemistry and neurophysiology of PD pathogenesis. Biochem. Soc. Trans. 45, 113–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Sloan, M., Alegre-Abarrategui, J. & Wade-Martins, R. Insights into LRRK2 function and dysfunction from transgenic and knockout rodent models. Biochem. Soc. Trans. 40, 1080–1085 (2012).

    CAS  Google Scholar 

  56. Lee, Y., Dawson, V. L. & Dawson, T. M. Animal models of Parkinson’s disease: vertebrate genetics. Cold Spring Harb. Perspect. Med. 2, a009324 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Lee, B. D. et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat. Med. 16, 998–1000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tsika, E. et al. Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson’s disease. Neurobiol. Dis. 77, 49–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Xiong, Y. et al. Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc. Natl. Acad. Sci. USA 115, 1635–1640 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Giaime, E. et al. Age-dependent dopaminergic neurodegeneration and impairment of the autophagy-lysosomal pathway in LRRK-deficient mice. Neuron 96, 796–807.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moehle, M. S. et al. LRRK2 inhibition attenuates microglial inflammatory responses. J. Neurosci. 32, 1602–1611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yun, S. P. et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med. 24, 931–938 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, Y. et al. PINK1 primes parkin-mediated ubiquitination of PARIS in dopaminergic neuronal survival. Cell Rep. 18, 918–932 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shin, J. H. et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144, 689–702 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kitada, T., Tong, Y., Gautier, C. A. & Shen, J. Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J. Neurochem. 111, 696–702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Low, B. E., Kutny, P. M. & Wiles, M. V. Simple, efficient CRISPR-Cas9-mediated gene editing in mice: strategies and methods. Methods Mol. Biol. 1438, 19–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Lee, Y. et al. Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat. Neurosci. 16, 1392–1400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu, X. H. et al. Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant alpha-synuclein. J. Neurosci. 29, 1962–1976 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Andersen, P. M. & Al-Chalabi, A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev. Neurol. 7, 603–615 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Lagier-Tourenne, C., Polymenidou, M. & Cleveland, D. W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19(R1), R46–R64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Taylor, J. P., Brown, R. H. Jr. & Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature 539, 197–206 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hutton, M., Lewis, J., Dickson, D., Yen, S. H. & McGowan, E. Analysis of tauopathies with transgenic mice. Trends Mol. Med. 7, 467–470 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Ittner, L. M. et al. FTD and ALS–translating mouse studies into clinical trials. Nat. Rev. Neurol. 11, 360–366 (2015).

    Article  PubMed  Google Scholar 

  77. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Philips, T. & Rothstein, J. D. Rodent models of amyotrophic lateral sclerosis. Curr. Protocols Pharmacol. 69, 1–21 (2015).

    Article  Google Scholar 

  79. Boillée, S., Vande Velde, C. & Cleveland, D. W. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52, 39–59 (2006).

    Article  PubMed  CAS  Google Scholar 

  80. Reaume, A. G. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet. 13, 43–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Ilieva, H., Polymenidou, M. & Cleveland, D. W. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu, L. S. et al. TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis 48, 56–62 (2010).

    CAS  PubMed  Google Scholar 

  83. Sephton, C. F. et al. TDP-43 is a developmentally regulated protein essential for early embryonic development. J. Biol. Chem. 285, 6826–6834 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Kraemer, B. C. et al. Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol. 119, 409–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Picher-Martel, V., Valdmanis, P. N., Gould, P. V., Julien, J. P. & Dupré, N. From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol. Commun. 4, 70 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Swarup, V. et al. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain 134, 2610–2626 (2011).

    Article  PubMed  Google Scholar 

  87. Arnold, E. S. et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc. Natl. Acad. Sci. USA 110, E736–E745 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. White, M. A. et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nat. Neurosci. 21, 552–563 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Walker, A. K. et al. Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. Acta Neuropathol. 130, 643–660 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Spiller, K. J. et al. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat. Neurosci. 21, 329–340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nolan, M., Talbot, K. & Ansorge, O. Pathogenesis of FUS-associated ALS and FTD: insights from rodent models. Acta Neuropathol. Commun. 4, 99 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Scekic-Zahirovic, J. et al. Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis. Acta Neuropathol. 133, 887–906 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Devoy, A. et al. Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in ‘FUSDelta14’ knockin mice. Brain 140, 2797–2805 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Le, N. T. et al. Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALS-FTD-linked UBQLN2 mutations. Proc. Natl. Acad. Sci. USA 113, E7580–E7589 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fil, D. et al. Mutant Profilin1 transgenic mice recapitulate cardinal features of motor neuron disease. Hum. Mol. Genet. 26, 686–701 (2017).

    CAS  PubMed  Google Scholar 

  96. Yang, C. et al. Mutant PFN1 causes ALS phenotypes and progressive motor neuron degeneration in mice by a gain of toxicity. Proc. Natl. Acad. Sci. USA 113, E6209–E6218 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wen, X., Westergard, T., Pasinelli, P. & Trotti, D. Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene. Neurosci. Lett. 636, 16–26 (2017).

  98. Shi, Y. et al. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat. Med. 24, 313–325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. O’Rourke, J. G. et al. C9orf72 is required for proper macrophage and microglial function in mice. Science 351, 1324–1329 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Burberry, A. et al. Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease. Sci. Transl. Med. 8, 347ra93 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Atanasio, A. et al. C9orf72 ablation causes immune dysregulation characterized by leukocyte expansion, autoantibody production, and glomerulonephropathy in mice. Sci. Rep. 6, 23204 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jiang, J. et al. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90, 535–550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chew, J. et al. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 348, 1151–1154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Peters, O. M. et al. Human C9ORF72 hexanucleotide expansion reproduces RNA foci and dipeptide repeat proteins but not neurodegeneration in BAC transgenic mice. Neuron 88, 902–909 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. O’Rourke, J. G. et al. C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD. Neuron 88, 892–901 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Liu, Y. et al. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron 90, 521–534 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, Y. J. et al. Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Nat. Med. 24, 1136–1142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, Y. J. et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat. Neurosci. 19, 668–677 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schludi, M. H. et al. Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathol. 134, 241–254 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Prusiner, S. B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guo, J. L. & Lee, V. M. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat. Med. 20, 130–138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stopschinski, B. E. & Diamond, M. I. The prion model for progression and diversity of neurodegenerative diseases. Lancet Neurol. 16, 323–332 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Walker, L. C., Diamond, M. I., Duff, K. E. & Hyman, B. T. Mechanisms of protein seeding in neurodegenerative diseases. JAMA Neurol. 70, 304–310 (2013).

    Article  PubMed  Google Scholar 

  114. Walker, L. C. & Jucker, M. Neurodegenerative diseases: expanding the prion concept. Annu. Rev. Neurosci. 38, 87–103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bilen, J. & Bonini, N. M. Drosophila as a model for human neurodegenerative disease. Annu. Rev. Genet. 39, 153–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Li, J. & Le, W. Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp. Neurol. 250, 94–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Link, C. D. Invertebrate models of Alzheimer’s disease. Genes Brain Behav. 4, 147–156 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Muqit, M. M. & Feany, M. B. Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat. Rev. Neurosci. 3, 237–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Prüßing, K., Voigt, A. & Schulz, J. B. Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol. Neurodegener. 8, 35 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Winderickx, J. et al. Protein folding diseases and neurodegeneration: lessons learned from yeast. Biochim. Biophys. Acta 1783, 1381–1395 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Heuer, E., Rosen, R. F., Cintron, A. & Walker, L. C. Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr. Pharm. Des. 18, 1159–1169 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Berry, J. D., Cudkowicz, M. E. & Shefner, J. M. Predicting success: optimizing phase II ALS trials for the transition to phase III. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 1–8 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Bateman, R. J. et al. The DIAN-TU next generation Alzheimer’s prevention trial: adaptive design and disease progression model. Alzheimers Dement. 13, 8–19 (2017).

    Article  PubMed  Google Scholar 

  124. Reiman, E. M., Langbaum, J. B. & Tariot, P. N. Alzheimer’s prevention initiative: a proposal to evaluate presymptomatic treatments as quickly as possible. Biomark. Med. 4, 3–14 (2010).

    Article  PubMed  Google Scholar 

  125. Sperling, R. A. et al. The A4 study: stopping AD before symptoms begin? Sci. Transl. Med. 6, 228fs13 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Scott, S. et al. Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph. Lateral Scler. 9, 4–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Ludolph, A. C. et al. Guidelines for preclinical animal research in ALS/MND: A consensus meeting. Amyotroph. Lateral Scler. 11, 38–45 (2010).

    Article  PubMed  Google Scholar 

  128. Gurney, M. E. et al. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann. Neurol. 39, 147–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Ito, H. et al. Treatment with edaravone, initiated at symptom onset, slows motor decline and decreases SOD1 deposition in ALS mice. Exp. Neurol. 213, 448–455 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Miller, T. M. et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 12, 435–442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nicholson, K. A., Cudkowicz, M. E. & Berry, J. D. Clinical trial designs in amyotrophic lateral sclerosis: does one design fit all? Neurotherapeutics 12, 376–383 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Breschi, A., Gingeras, T. R. & Guigó, R. Comparative transcriptomics in human and mouse. Nat. Rev. Genet. 18, 425–440 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ahmed, R. M. et al. Mouse models of frontotemporal dementia: A comparison of phenotypes with clinical symptomatology. Neurosci. Biobehav. Rev. 74(Pt A), 126–138 (2017).

    Article  PubMed  Google Scholar 

  134. Lutz, C. Mouse models of ALS: Past, present and future. Brain Res. 1693(Pt A), 1–10 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Onos, K. D., Sukoff Rizzo, S. J., Howell, G. R. & Sasner, M. Toward more predictive genetic mouse models of Alzheimer’s disease. Brain Res. Bull. 122, 1–11 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Liu, E. T. et al. Of mice and CRISPR: The post-CRISPR future of the mouse as a model system for the human condition. EMBO Rep. 18, 187–193 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. He, Z. et al. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat. Med. 24, 29–38 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Eisele, Y. S. et al. Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 330, 980–982 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kaufman, S. K. et al. Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92, 796–812 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Watts, J. C. et al. Serial propagation of distinct strains of Aβ prions from Alzheimer’s disease patients. Proc. Natl. Acad. Sci. USA 111, 10323–10328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Brettschneider, J., Del Tredici, K., Lee, V. M. & Trojanowski, J. Q. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev. Neurosci. 16, 109–120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lee, S. J., Desplats, P., Sigurdson, C., Tsigelny, I. & Masliah, E. Cell-to-cell transmission of non-prion protein aggregates. Nat. Rev. Neurol. 6, 702–706 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Brundin, P., Melki, R. & Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 11, 301–307 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Irwin, D. J. et al. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70, 462–468 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Collinge, J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 539, 217–226 (2016).

    Article  PubMed  Google Scholar 

  147. Golde, T. E., Borchelt, D. R., Giasson, B. I. & Lewis, J. Thinking laterally about neurodegenerative proteinopathies. J. Clin. Invest. 123, 1847–1855 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sacino, A. N. et al. Non-prion-type transmission in A53T α-synuclein transgenic mice: a normal component of spinal homogenates from naïve non-transgenic mice induces robust α-synuclein pathology. Acta Neuropathol. 131, 151–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH/NINDS NS38377 Morris K. Udall Parkinson’s Disease Research Center, NIH/NINDS NS082205, NIH/NINDS NS098006, the JPB Foundation and Michael J. Fox Foundation. T.M.D. is supported by the Abramson Professorship. T.M.D. acknowledges joint participation by the Adrienne Helis Malvin Medical Research Foundation through its direct engagement in the continuous active conduct of medical research in conjunction with The Johns Hopkins Hospital, the Johns Hopkins University School of Medicine, and the Foundation’s Parkinson’s Disease Program M-1, M-2, M-2015. Supported by grants from the NIH to T.E.G. (P01CA166009, U01AG046139 R01AG018454, P50AG047266) and to C.L.T. (R01NS087227). C.L.-T. was supported by grants from the ALS Association, the Target ALS Foundation, ALS Finding a Cure, the Association Française contre les Myopathies, and the Pape Adams Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ted M. Dawson, Todd E. Golde or Clotilde Lagier-Tourenne.

Ethics declarations

Competing interests

T.E.G. is a cofounder of Lacerta Inc. T.M.D. is a consultant and advisor to Sun Pharma Advanced Research Company Ltd. T.M.D. is a member of American Gene Technologies International Inc., advisory board and owns stock options in the company. T.M.D. is a consultant to Inhibikase Therapeutics and owns stock options in the company. T.M.D. is a founder of Valted, LLC and holds an ownership equity interest in the company. T.M.D. is an inventor of technology of Neuraly, Inc. that has optioned from Johns Hopkins University. T.M.D. is a founder of, and holds shares of stock options as well as equity in, Neuraly, Inc. All these arrangements have been reviewed and approved by the Johns Hopkins University in accordance with its conflict-of-interest policies.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawson, T.M., Golde, T.E. & Lagier-Tourenne, C. Animal models of neurodegenerative diseases. Nat Neurosci 21, 1370–1379 (2018). https://doi.org/10.1038/s41593-018-0236-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-018-0236-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing