Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inhibitory connectivity defines the realm of excitatory plasticity

An Author Correction to this article was published on 01 November 2019

This article has been updated


Recent experiments demonstrate substantial volatility of excitatory connectivity in the absence of any learning. This challenges the hypothesis that stable synaptic connections are necessary for long-term maintenance of acquired information. Here we measure ongoing synaptic volatility and use theoretical modeling to study its consequences on cortical dynamics. We show that in the balanced cortex, patterns of neural activity are primarily determined by inhibitory connectivity, despite the fact that most synapses and neurons are excitatory. Similarly, we show that the inhibitory network is more effective in storing memory patterns than the excitatory one. As a result, network activity is robust to ongoing volatility of excitatory synapses, as long as this volatility does not disrupt the balance between excitation and inhibition. We thus hypothesize that inhibitory connectivity, rather than excitatory, controls the maintenance and loss of information over long periods of time in the volatile cortex.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The spiking network model.
Fig. 2: Volatility in the E → E connectivity has little effect on network activity.
Fig. 3: Rewiring different synaptic types differentially affects the patterns of network activity.
Fig. 4: Synaptic rewiring in a feedforward network.
Fig. 5: Synaptic rewiring and memory in a spiking network model.
Fig. 6: Storage capacity using different synaptic types.
Fig. 7: The effect of heterogeneous addition of E → E connections.

Data availability

The dataset analyzed in the current study is available in

Change history

  • 01 November 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Lai, C. S., Franke, T. F. & Gan, W. B. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 483, 87–91 (2012).

    CAS  PubMed  Google Scholar 

  2. 2.

    Moczulska, K. E. et al. Dynamics of dendritic spines in the mouse auditory cortex during memory formation and memory recall. Proc. Natl. Acad. Sci. USA 110, 18315–18320 (2013).

    CAS  PubMed  Google Scholar 

  3. 3.

    Xu, T. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Yang, G., Pan, F. & Gan, W. B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Hayashi-Takagi, A. et al. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525, 333–338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Caroni, P., Donato, F. & Muller, D. Structural plasticity upon learning: regulation and functions. Nat. Rev. Neurosci. 13, 478–490 (2012).

    CAS  PubMed  Google Scholar 

  7. 7.

    Zuo, Y., Lin, A., Chang, P. & Gan, W. B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189 (2005).

    CAS  PubMed  Google Scholar 

  8. 8.

    Holtmaat, A. J. et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279–291 (2005).

    CAS  PubMed  Google Scholar 

  9. 9.

    Loewenstein, Y., Yanover, U. & Rumpel, S. Predicting the dynamics of network connectivity in the neocortex. J. Neurosci. 35, 12535–12544 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Chambers, A. R. & Rumpel, S. A stable brain from unstable components: Emerging concepts and implications for neural computation. Neuroscience 357, 172–184 (2017).

    CAS  PubMed  Google Scholar 

  11. 11.

    Mongillo, G., Rumpel, S. & Loewenstein, Y. Intrinsic volatility of synaptic connections–a challenge to the synaptic trace theory of memory. Curr. Opin. Neurobiol. 46, 7–13 (2017).

    CAS  PubMed  Google Scholar 

  12. 12.

    Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A. & Noguchi, J. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 33, 121–129 (2010).

    CAS  PubMed  Google Scholar 

  14. 14.

    Knott, G. W., Holtmaat, A., Wilbrecht, L., Welker, E. & Svoboda, K. Spine growth precedes synapse formation in the adult neocortex in vivo. Nat. Neurosci. 9, 1117–1124 (2006).

    CAS  PubMed  Google Scholar 

  15. 15.

    Loewenstein, Y., Kuras, A. & Rumpel, S. Multiplicative dynamics underlie the emergence of the log-normal distribution of spine sizes in the neocortex in vivo. J. Neurosci. 31, 9481–9488 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    DeFelipe, J. & Jones, E. G. in Handbook of Brain Microcircuits (eds. Shepherd, G. M. & Grillner, S.). Ch. 1,5–14 (Oxford University Press, 2010).

  17. 17.

    Gentet, L. J., Avermann, M., Matyas, F., Staiger, J. F. & Petersen, C. C. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435 (2010).

    CAS  PubMed  Google Scholar 

  18. 18.

    Karnani, M. M., Agetsuma, M. & Yuste, R. A blanket of inhibition: functional inferences from dense inhibitory connectivity. Curr. Opin. Neurobiol. 26, 96–102 (2014).

    CAS  PubMed  Google Scholar 

  19. 19.

    Bhatt, D. H., Zhang, S. & Gan, W. B. Dendritic spine dynamics. Annu. Rev. Physiol. 71, 261–282 (2009).

    CAS  PubMed  Google Scholar 

  20. 20.

    Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Avermann, M., Tomm, C., Mateo, C., Gerstner, W. & Petersen, C. C. Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. J. Neurophysiol. 107, 3116–3134 (2012).

    CAS  PubMed  Google Scholar 

  22. 22.

    Buzsáki, G. & Mizuseki, K. The log-dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci. 15, 264–278 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Renart, A. et al. The asynchronous state in cortical circuits. Science 327, 587–590 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    PubMed  Google Scholar 

  25. 25.

    Roxin, A., Brunel, N., Hansel, D., Mongillo, G. & van Vreeswijk, C. On the distribution of firing rates in networks of cortical neurons. J. Neurosci. 31, 16217–16226 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Hendin, O., Horn, D. & Tsodyks, M. V. The role of inhibition in an associative memory model of the olfactory bulb. J. Comput. Neurosci. 4, 173–182 (1997).

    CAS  PubMed  Google Scholar 

  27. 27.

    Rumpel, S., LeDoux, J., Zador, A. & Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science 308, 83–88 (2005).

    CAS  PubMed  Google Scholar 

  28. 28.

    Landau, I. D., Egger, R., Dercksen, V. J., Oberlaender, M. & Sompolinsky, H. The impact of structural heterogeneity on excitation-inhibition balance in cortical networks. Neuron 92, 1106–1121 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Froemke, R. C., Merzenich, M. M. & Schreiner, C. E. A synaptic memory trace for cortical receptive field plasticity. Nature 450, 425–429 (2007).

    CAS  PubMed  Google Scholar 

  30. 30.

    Rubinski, A. & Ziv, N. E. Remodeling and tenacity of inhibitory synapses: relationships with network activity and neighboring excitatory synapses. PLoS Comput. Biol. 11, e1004632 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Denève, S. & Machens, C. K. Efficient codes and balanced networks. Nat. Neurosci. 19, 375–382 (2016).

    PubMed  Google Scholar 

  32. 32.

    Hennequin, G., Vogels, T. P. & Gerstner, W. Optimal control of transient dynamics in balanced networks supports generation of complex movements. Neuron 82, 1394–1406 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Griffen, T. C. & Maffei, A. GABAergic synapses: their plasticity and role in sensory cortex. Front. Cell. Neurosci. 8, 91 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Isaacson, J. S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Doron, G., von Heimendahl, M., Schlattmann, P., Houweling, A. R. & Brecht, M. Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation. Neuron 81, 653–663 (2014).

    CAS  PubMed  Google Scholar 

  36. 36.

    Liberti, W. A. et al. Unstable neurons underlie a stable learned behavior. Nat. Neurosci. 19, 1665–1671 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Chen, J. L. et al. Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74, 361–373 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    van Versendaal, D. et al. Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity. Neuron 74, 374–383 (2012).

    PubMed  Google Scholar 

  39. 39.

    Hensch, T. K. et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Huang, Z. J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999).

    CAS  PubMed  Google Scholar 

  41. 41.

    Levelt, C. N. & Hübener, M. Critical-period plasticity in the visual cortex. Annu. Rev. Neurosci. 35, 309–330 (2012).

    CAS  PubMed  Google Scholar 

  42. 42.

    Letzkus, J. J., Wolff, S. B. & Lüthi, A. Disinhibition, a circuit mechanism for associative learning and memory. Neuron 88, 264–276 (2015).

    CAS  PubMed  Google Scholar 

  43. 43.

    Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N. & Harvey, C. D. Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell 170, 986–999.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Maass, W. Searching for principles of brain computation. Curr. Opin. Behav. Sci. 11, 81–92 (2016).

    Google Scholar 

  45. 45.

    Gaiarsa, J. L., Caillard, O. & Ben-Ari, Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. 25, 564–570 (2002).

    CAS  PubMed  Google Scholar 

  46. 46.

    Kullmann, D. M., Moreau, A. W., Bakiri, Y. & Nicholson, E. Plasticity of inhibition. Neuron 75, 951–962 (2012).

    CAS  PubMed  Google Scholar 

  47. 47.

    Woodin, M. A., Ganguly, K. & Poo, M. M. Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity. Neuron 39, 807–820 (2003).

    CAS  PubMed  Google Scholar 

  48. 48.

    Donato, F., Rompani, S. B. & Caroni, P. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504, 272–276 (2013).

    CAS  PubMed  Google Scholar 

  49. 49.

    Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C. & Gerstner, W. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569–1573 (2011).

    CAS  PubMed  Google Scholar 

  50. 50.

    Luz, Y. & Shamir, M. Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity. PLoS Comput. Biol. 8, e1002334 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    CAS  PubMed  Google Scholar 

  52. 52.

    Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    CAS  PubMed  Google Scholar 

  53. 53.

    Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    CAS  PubMed  Google Scholar 

  54. 54.

    Keck, T. et al. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat. Neurosci. 11, 1162–1167 (2008).

    CAS  PubMed  Google Scholar 

  55. 55.

    Kasthuri, N. et al. Saturated reconstruction of a volume of neocortex. Cell 162, 648–661 (2015).

    CAS  PubMed  Google Scholar 

  56. 56.

    Markram, H. et al. Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456–492 (2015).

    CAS  PubMed  Google Scholar 

  57. 57.

    Renart, A., Brunel, N. & Wang, X. Computational Neuroscience: A Comprehensive Approach. (CRC Press, Boca Raton, FL, USA,, 2003). Chapter 15.

    Google Scholar 

  58. 58.

    Amit, D. J., Gutfreund, H. & Sompolinsky, H. Spin-glass models of neural networks. Phys. Rev. A. Gen. Phys. 32, 1007–1018 (1985).

    CAS  PubMed  Google Scholar 

Download references


We thank L. Abbott and D. Hansel for their careful reading of our manuscript and their insightful comments. This work was performed in the framework of the the France-Israel Center for Neural Computation and was supported by the Israel Science Foundation (Grant No. 757/16, Y.L.), the DFG (CRC 1080, Y.L. and S.R.), the Gatsby Charitable Foundation (Y.L.), and by ANR (14-NEUC-0001-01 and 13-BSV4-0014-02, G.M.).

Author information




S.R. performed the experiments, G.M., S.R. and Y.L. analyzed the data, G.M. and Y.L. developed the theory, G.M. performed the numerical simulations, G.M., S.R. and Y.L. wrote the paper.

Corresponding authors

Correspondence to Gianluigi Mongillo or Yonatan Loewenstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Sensitivity of the firing rate of neurons to the excitatory and inhibitory inputs.

(a), The firing rate of the excitatory neuron of Fig. 4a in response to its excitatory input, measured in units of standard deviation relative to its mean. Line corresponds to average rate and shaded area denote mean ± 2 standard deviations. (b), same as in a for the inhibitory input. Note that the firing rate of the neuron is far more sensitive to its inhibitory input than to its excitatory input. (c), and (d), same as (a), and (b), for the inhibitory neuron in Fig. 4b.

Supplementary Figure 2 Dependence of the effect of rewiring on the distributions of firing rates.

The circles denote the correlation coefficients of the vectors of the firing rates of excitatory (blue) and inhibitory (red), as in Fig. 3, before and after the rewiring of the different synaptic types (from left to right: Top, E→E, E→I; Bottom, I→E, I→I), as a function of the relative averaged squared firing rate of the excitatory neurons. Each circle corresponds to a different value of pair of external inputs. Black diamonds correspond to cortical parameters (Fig. 3). The correlation coefficients and firing rates were computed using the mean field approximation.

Supplementary Figure 3 The effect of different levels of heterogeneous addition of E→E connections to targeted neurons.

Same as in Fig. 7d, the autocorrelogram of the vectors of firing rates of the excitatory ((a), blue) and inhibitory ((b), red) neurons as a function of the fraction of excitatory neurons that were targeted. Dotted line denotes a ΔC = 10% increase in the number of connections (probability of input from previously-unconnected excitatory neurons is 0.025); solid line denoted a ΔC = 20% increase in the number of connections (probability of new connections is 0.05, same as Fig. 7d); Dashed line denotes a ΔC = 40% increase (probability 0.1).

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mongillo, G., Rumpel, S. & Loewenstein, Y. Inhibitory connectivity defines the realm of excitatory plasticity. Nat Neurosci 21, 1463–1470 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing