Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Behavioral tracking gets real

A deep-learning-based software package called DeepLabCut rapidly and easily enables video-based motion tracking in any animal species. Such tracking technology is bound to revolutionize movement science and behavioral tracking in the laboratory and is also poised to find many applications in the real world.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Motion capture examples.


  1. Stringer, C. et al. Preprint at bioRxiv (2018).

    Article  Google Scholar 

  2. Muybridge, E. Animal Locomotion: An Electro-photographic Investigation of Consecutive Phases of Animal Movements 1872–1885 (Univ. of Pennsylvania, Philadelphia, 1887).

  3. Marey, E.-J. Le mouvement (G. Masson, Paris, 1894).

  4. Johansson, G. Sci. Am. 232, 76–88 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Mathis, A. et al. Nat. Neurosci. (2018).

    Article  PubMed  Google Scholar 

  6. Aggarwal, J. K. & Duda, R. O. IEEE Trans. Comput. C-24, 966–976 (1975).

    Article  Google Scholar 

  7. Dell, A. I. et al. Trends Ecol. Evol. 29, 417–428 (2014).

    Article  PubMed  Google Scholar 

  8. Guo, J. Z. et al. Elife 4, e10774 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Deng, J. et al. ImageNet: a large-scale hierarchical image database. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2009 248–255 (IEEE, Piscataway, NJ, USA, 2009).

  10. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M. & Schiele, B. DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. in European Conference on Computer Vision 34–50 (Springer, New York, 2016).

  11. Barris, S. & Button, C. Sports Med. 38, 1025–1043 (2008).

    Article  PubMed  Google Scholar 

  12. Mayhew, S. & Wenger, H. J. Hum. Mov. Stud. 11, 49–52 (1985).

    Google Scholar 

  13. Jones, E. J., Gliga, T., Bedford, R., Charman, T. & Johnson, M. H. Neurosci. Biobehav. Rev. 39, 1–33 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhou, H. & Hu, H. Biomed. Signal Process. Control 3, 1–18 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Kunlin Wei or Konrad Paul Kording.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K., Kording, K.P. Behavioral tracking gets real. Nat Neurosci 21, 1146–1147 (2018).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research