Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches


Midbrain dopamine (DA) neurons have diverse functions that can in part be explained by their heterogeneity. Although molecularly distinct subtypes of DA neurons have been identified by single-cell gene expression profiling, fundamental features such as their projection patterns have not been elucidated. Progress in this regard has been hindered by the lack of genetic tools for studying DA neuron subtypes. Here we develop intersectional genetic labeling strategies, based on combinatorial gene expression, to map the projections of molecularly defined DA neuron subtypes. We reveal distinct genetically defined dopaminergic pathways arising from the substantia nigra pars compacta and from the ventral tegmental area that innervate specific regions of the caudate putamen, nucleus accumbens and amygdala. Together, the genetic toolbox and DA neuron subtype projections presented here constitute a resource that will accelerate the investigation of this clinically significant neurotransmitter system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Generation and validation of Th-2A-Flpo.
Fig. 2: Three intersectional strategies to genetically target dopamine neuron subtypes.
Fig. 3: Dopamine neuron subtype projections to the caudate putamen.
Fig. 4: Dopamine neuron subtype projections to the nucleus accumbens and olfactory tubercle.
Fig. 5: Dopamine neuron subtype projections to the amygdala.
Fig. 6: Dopamine neuron subtype projections to other brain regions.
Fig. 7: Remarkable specificity of genetically defined dopamine neuron subtype projections within target regions.


  1. 1.

    Berke, J. D. What does dopamine mean? Nat. Neurosci. 21, 787–793 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    Björklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. Trends Neurosci. 30, 194–202 (2007).

    Article  CAS  Google Scholar 

  3. 3.

    Lammel, S., Lim, B. K. & Malenka, R. C. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76 (Pt. B), 351–359 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Roeper, J. Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci. 36, 336–342 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Ikemoto, S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res. Rev. 56, 27–78 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Poulin, J.-F. et al. Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep. 9, 930–943 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566–580.e19 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hook, P. W. et al. Single-cell RNA-seq of mouse dopaminergic neurons informs candidate gene selection for sporadic Parkinson disease. Am. J. Hum. Genet. 102, 427–446 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Poulin, J.-F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J. M. & Awatramani, R. Disentangling neural cell diversity using single-cell transcriptomics. Nat. Neurosci. 19, 1131–1141 (2016).

    Article  CAS  Google Scholar 

  12. 12.

    Brignani, S. & Pasterkamp, R. J. Neuronal subset-specific migration and axonal wiring mechanisms in the developing midbrain dopamine system. Front. Neuroanat. 11, 55 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Dymecki, S. M., Ray, R. S. & Kim, J. C. Mapping cell fate and function using recombinase-based intersectional strategies. Methods Enzymol. 477, 183–213 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Awatramani, R., Soriano, P., Rodriguez, C., Mai, J. J. & Dymecki, S. M. Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat. Genet. 35, 70–75 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    Cho, J. R. et al. Dorsal raphe dopamine neurons modulate arousal and promote wakefulness by salient stimuli. Neuron 94, 1205–1219.e8 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Lammel, S. et al. Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron 85, 429–438 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Fenno, L. E. et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat. Methods 11, 763–772 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Chen, L., Xie, Z., Turkson, S. & Zhuang, X. A53T human α-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J. Neurosci. 35, 890–905 (2015).

    Article  CAS  Google Scholar 

  20. 20.

    Nouri, N. & Awatramani, R. A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Development 144, 916–927 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Panman, L. et al. Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopamine neurons. Cell Rep. 8, 1018–1025 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Sgobio, C. et al. Aldehyde dehydrogenase 1-positive nigrostriatal dopaminergic fibers exhibit distinct projection pattern and dopamine release dynamics at mouse dorsal striatum. Sci. Rep. 7, 5283 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Trudeau, L.-E. et al. The multilingual nature of dopamine neurons. Prog. Brain Res. 211, 141–164 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Steinkellner, T. et al. Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons. J. Clin. Invest. 128, 774–788 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. Elife 4, e10032 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gerfen, C. R., Herkenham, M. & Thibault, J. The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J. Neurosci. 7, 3915–3934 (1987).

    CAS  Article  Google Scholar 

  27. 27.

    Gangarossa, G. et al. Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse nucleus accumbens. Front. Neural Circuits 7, 22 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Mingote, S. et al. Functional connectome analysis of dopamine neuron glutamatergic connections in forebrain regions. J. Neurosci. 35, 16259–16271 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Hintiryan, H. et al. The mouse cortico-striatal projectome. Nat. Neurosci. 19, 1100–1114 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Yetnikoff, L., Lavezzi, H. N., Reichard, R. A. & Zahm, D. S. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 282, 23–48 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Menegas, W., Babayan, B. M., Uchida, N. & Watabe-Uchida, M. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. Elife 6, 988 (2017).

    Article  Google Scholar 

  33. 33.

    Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535, 505–510 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Yin, H. H. et al. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat. Neurosci. 12, 333–341 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Thorn, C. A. C., Atallah, H., Howe, M. & Graybiel, A. M. A. Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66, 781–795 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Gangarossa, G. et al. Spatial distribution of D1R- and D2R-expressing medium-sized spiny neurons differs along the rostro-caudal axis of the mouse dorsal striatum. Front. Neural Circuits 7, 124 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Di Salvio, M. et al. Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat. Neurosci. 13, 1481–1488 (2010).

    Article  CAS  Google Scholar 

  39. 39.

    Khan, S. et al. Survival of a novel subset of midbrain dopaminergic neurons projecting to the lateral septum is dependent on NeuroD proteins. J. Neurosci. 37, 2305–2316 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Stuber, G. D., Hnasko, T. S., Britt, J. P., Edwards, R. H. & Bonci, A. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J. Neurosci. 30, 8229–8233 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Hnasko, T. S., Hjelmstad, G. O., Fields, H. L. & Edwards, R. H. Ventral tegmental area glutamate neurons: electrophysiological properties and projections. J. Neurosci. 32, 15076–15085 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Kabanova, A. et al. Function and developmental origin of a mesocortical inhibitory circuit. Nat. Neurosci. 18, 872–882 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Lammel, S. et al. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57, 760–773 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    Matthews, G. A. et al. Dorsal raphe dopamine neurons represent the experience of social isolation. Cell 164, 617–631 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Beier, K. T. et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 162, 622–634 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Baimel, C., Lau, B. K., Qiao, M. & Borgland, S. L. Projection-target-defined effects of orexin and dynorphin on VTA dopamine neurons. Cell Rep. 18, 1346–1355 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Duan, B. et al. Identification of spinal circuits transmitting and gating mechanical pain. Cell 159, 1417–1432 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Sciolino, N. R. et al. Recombinase-dependent mouse lines for chemogenetic activation of genetically defined cell types. Cell Rep. 15, 2563–2573 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Ray, R. S. et al. Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333, 637–642 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Bourane, S. et al. Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science 350, 550–554 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Osterwalder, M. et al. Dual RMCE for efficient re-engineering of mouse mutant alleles. Nat. Methods 7, 893–895 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Donnelly, M. L. et al. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J. Gen. Virol. 82, 1013–1025 (2001).

    CAS  Article  Google Scholar 

  54. 54.

    Anastassiadis, K. et al. Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis. Model. Mech. 2, 508–515 (2009).

    CAS  Article  Google Scholar 

  55. 55.

    Wallén, A. et al. Fate of mesencephalic AHD2-expressing dopamine progenitor cells in NURR1 mutant mice. Exp. Cell Res. 253, 737–746 (1999).

    Article  CAS  Google Scholar 

  56. 56.

    Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997).

    CAS  Article  Google Scholar 

  57. 57.

    Hsu, L. C., Chang, W. C., Hoffmann, I. & Duester, G. Molecular analysis of two closely related mouse aldehyde dehydrogenase genes: identification of a role for Aldh1, but not Aldh-pb, in the biosynthesis of retinoic acid. Biochem. J. 339, 387–395 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Meyers, E. N., Lewandoski, M. & Martin, G. R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat. Genet. 18, 136–141 (1998).

    CAS  Article  Google Scholar 

  59. 59.

    Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Jensen, P. et al. Redefining the serotonergic system by genetic lineage. Nat. Neurosci. 11, 417–419 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Chen, L. et al. Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J. Neurosci. 28, 425–433 (2008).

    Article  CAS  Google Scholar 

  62. 62.

    Sando, R. III et al. Inducible control of gene expression with destabilized Cre. Nat. Methods 10, 1085–1088 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Joksimovic, M. et al. Spatiotemporally separable Shh domains in the midbrain define distinct dopaminergic progenitor pools. Proc. Natl. Acad. Sci. USA 106, 19185–19190 (2009).

    CAS  Article  Google Scholar 

  64. 64.

    Anderegg, A. et al. An Lmx1b-miR135a2 regulatory circuit modulates Wnt1/Wnt signaling and determines the size of the midbrain dopaminergic progenitor pool. PLoS Genet. 9, e1003973 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors wish to thank S. Ganguli, M. Jurado and I. Oksuz for technical assistance, S. Pieraut and A. Maximov for help with trimethropin injection protocol, and X. Zhuang (University of Chicago) and B. Lowell (Harvard) for sharing mouse strains. This work was supported by NIH grants R01NS06977 and R01NS047085 to C.S.C.; NIH grant R01MH110556-01A1 to D.A.D.; NIH grants R01MH110556-01A1, 1R21NS072703-01A1 and R01NS096240-01 and NARSAD and Paul Ruby Foundation grants to R.A.; and grants from MJFF and CIHR to J.-F.P.

Author information




J.-F.P. designed and performed most experiments, and wrote the manuscript; G.C. generated and validated the Sox6-FSF-Cre mouse; C.H., Q.C., and B.H. performed stereotaxic surgeries and some immunofluorescence staining; C.R. and K.D. provided the intersectional viral vectors; C.S.C. and D.A.D. provided intellectual and experimental guidance, and edited the manuscript; R.A. designed experiments, supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Rajeshwar Awatramani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Flp-dependent mCherry expression in the midbrain of a Th-2A-Flpo;RC::Frepe mouse.

Scale bars = 100μm (apply to multiple panels).

Supplementary Figure 2 Th mRNA is present in the posterior hypothalamus (PH) / rostral linear (RLi) region and the interpeduncular nucleus (IPN).

At the level of the midbrain, we observed labeled neurons in the rostral linear (RLi) and posterior hypothalamic (PH) regions, as defined in the Allen Reference Atlas. Like all midbrain DA neurons, this population of neurons is derived from the midbrain floorplate and express the markers Dopa decarboxylase (Ddc mRNA), NURR1, FOXA2, and PITX3 (not shown). However, although Th mRNA is observed in this region in the adult, these neurons do not express detectable level of TH protein nor the dopamine transporter (Dat mRNA), and are not recombined with Dat-ires-Cre. Thus, labeled PH/RLi neurons share developmental origins with midbrain DA neurons, and harbor similar molecular profiles, apart from Dat expression. In addition to the PH/RLi, we also observed Flpo-induced recombination in the interpeduncular nucleus (IPN), another region in the vicinity of DA neurons, where Th mRNA is observed, and that is also recombined by Th-ires-Cre driver. However, IPN neurons have low/undetectable TH protein in adult brains. Further, these neurons are not related to midbrain DA neurons, since they do not express NURR1, FOXA2, PITX3 (not shown), Ddc mRNA, and are not derived from the midbrain floor plate.

Supplementary Figure 3 Examples of brain regions with Th-2A-Flpo recombination.

Comparison of Th mRNA expression (purple; Allen Brain Atlas), with TH protein and Th-2A-Flpo labeled cells (mCherry) distribution in a Th-2A-Flpo;RC::Frepe mouse brain. Some mCherry + neuron populations, such as cortical interneurons or medial forebrain neurons, displayed low or undetectable TH protein. However, since in Th-2A-Flpo the two coding sequences are separated by virtue of a ribosome skipping event that occurs at the glycyl-prolyl peptide bond at the C-terminus of the P2A peptide, effectively, an autocatalytic “cleavage”. By this design, TH proteins have to be translated for Flpo protein to be active. Scale bar: A-G = 100μm (applies to multiple panels).

Supplementary Figure 4 Image processing pipeline for projection analysis.

For this analysis, we first acquired images of four distinct rostrocaudal levels of the dorsal striatum based on Hintiryan et al.. These images were binarized, vectorized and superimposed onto reference sections of the Allen Reference Atlas. Depicted are projections of a Cck-Cre;Th-2A-Flpo mouse injected with AAV-CreON,FlpON-EYFP in the VTA.

Supplementary Figure 5 Representative traces of DAergic projections of SNc subtypes.

Ndnf and Sox6 projections densely cover most of the CPr, CPi, and CPc. This particular Sox6 experiment yielded less innervation of the dorsomedial striatum, but injections targeting the VTA in Sox6-FSF-Cre;Th-2A-Flpo, which also labeled the medial SNc (see experiment described in Fig. 4), resulted in labeling of the entire CPi (Table S1). The subtle differences between Sox6 and Ndnf projections might be explained by: 1) the limited diffusion of the virus did not permit the infection of all Sox6-expressing neurons, 2) the fact that while these genes are expressed principally in the same two subtypes, Ndnf expression is somewhat weaker in the Aldh1a1 + ventral tier neurons of the SNc compared to Sox6, resulting in a PBP/dorsal tier labeling bias. Aldh1a1 and Calb1 show somewhat complementary projection patterns in the CPr, CPi, and CPc. Vglut2 and Calb1 experiments show dense innervation of the CPt.

Supplementary Figure 6 Characterization and validation of the Sox6-FSF-Cre driver.

(A) Schematic of the Sox6-FSF-Cre allele. (B) We validated this strain by crossing it with a Cre reporter, after having removed the stop cassette with a Flp deleter mouse, which resulted in labeled βgal + DA and non-DA cells. Both TH + , and TH- (see arrowheads for example) neurons were observed in the midbrain, and the vast majority of recombined cells were SOX6 + . (C) SOX6 + DA neurons of the SNc were labeled by injection of AAV-CreON,FlpON-EYFP. EYFP + cells are TH + and SOX6 + . Scale bars: (B) low magnification = 100μm, high magnification = 50μm; (C) low magnification = 200μm, high magnification = 25μm.

Supplementary Figure 7 Characterization and validation of the Aldh1a1-CreERT2 driver.

(A) Schematic of the Aldh1a1-CreERT2 allele (black triangles represent FRT sites). (B) Recombination of the Cre reporter (tdTomato) by Aldh1a1-CreERT2 mouse injected with tamoxifen. (C) tdTomato + projections to the dorsolateral CP, ACB medial shell and lateral septum, but not the PFC, in the Aldh1a1-CreERT2;Th-2A-Flpo;Ai65 mouse. In the CP, tdTomato shows enrichment in several MOR + striosomes. (D) Colocalization of EYFP with ALDH1A1, OTX2, and SOX6 after viral injection of AAV-CreON-EYFP in the SNc or VTA of Aldh1a1-CreERT2 mice. Scale bars: B = 100 μm, C = 200 μm, D = 100 μm.

Supplementary Figure 8 Calb1-Cre;Dat-tTA;Ai82 experiment.

(A) Examples of EGFP + that are OTX2 + in the VTA (arrowheads). In the nigral region, most EGFP + cells in the medial SNc are SOX6 + (arrowheads), whereas most cells in the dorsolateral SNc are SOX6- (not shown). (B) Images of EGFP + fibers in the CPt and CPi. Since Calb1-Cre labels at least two populations (SOX6 + and SOX6-), our results can’t exclude that both these populations send projections to the medial CP. Scale bars: (A) low magnification = 200 μm, hign magnification = 50 μm; (B) low magnification = 200 μm.

Supplementary Figure 9 A population of cells in the SNc coexpress Th mRNA and Vglut2 mRNA.

Examples of DA neurons expressing Vglut2 mRNA are shown by arrowheads. The inset displayed cell in substantia nigra pars lateralis (SNpl) that are double positive. Scale bar: low magnification = 83 μm; high magnification = 40 μm.

Supplementary Figure 10 Representative traces of DAergic projections to the nucleus accumbens (ACB).

ACBr = rostral, ACBi = intermediate, ACBc = caudal.

Supplementary Figure 11 Vip-Cre experiments using strategy I (A) and Strategy III (B).

(A) tdTomato labeled cells in the PAG/DR region express TH, but not SOX6 and OTX2. (B) EGFP labeled neurons in the PAG/DR of a Vip-Cre;Dat-tTA;Ai82 mouse. EGFP + axons are observed in the lateral part of the central amygdala (CEAl) and oval nucleus of the bed nucleus of the stria terminalis (BSTov). Scale bars: (A) and (Β) low magnification = 100 μm; (A) high magnification = 40 μm.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Tables 1–2

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poulin, J., Caronia, G., Hofer, C. et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci 21, 1260–1271 (2018).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing