Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

SYNAPTIC PLASTICITY

FRETting over postsynaptic PKC signaling

Protein kinases are key regulators of excitatory synapse plasticity. In this issue, using novel optical reporters of protein kinase C (PKC) activity, Colgan et al. identify PKCα as critical for integrating NMDA receptor and neurotrophin signaling to control dendritic spine structural plasticity, synaptic potentiation, and learning and memory.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: New FRET probes reveal that PKCα is a postsynaptic signal integrator that is uniquely responsible for structural long-term potentiation of excitatory synapses on dendritic spines.

References

  1. Colgan, L.A. et al. Nat. Neurosci. https://doi.org/10.1038/s41593-018-0184-3 (2018).

  2. Martin, K. J. & Arthur, J. S. Neuropharmacology 63, 1227–1237 (2012).

    Article  PubMed  CAS  Google Scholar 

  3. Woolfrey, K. M. & Dell’Acqua, M. L. J. Biol. Chem. 290, 28604–28612 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hanley, J. G. & Henley, J. M. EMBO J. 24, 3266–3278 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. O’Neill, A. K. et al. J. Biol. Chem. 286, 43559–43568 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Staudinger, J., Lu, J. & Olson, E. N. J. Biol. Chem. 272, 32019–32024 (1997).

    Article  PubMed  CAS  Google Scholar 

  7. Zhu, J., Shang, Y. & Zhang, M. Nat. Rev. Neurosci. 17, 209–223 (2016).

    Article  PubMed  CAS  Google Scholar 

  8. Gruart, A., Sciarretta, C., Valenzuela-Harrington, M., Delgado-García, J. M. & Minichiello, L. Learn. Mem. 14, 54–62 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harward, S. C. et al. Nature 538, 99–103 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lucke-Wold, B. P. et al. J. Alzheimers Dis. 43, 711–724 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Callender, J.A. et al. Proc. Natl. Acad. Sci. USA 115, E5497–E5505 (2018).

  12. Alfonso, S. I. et al. Sci. Signal. 9, ra47 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Maglione, M. & Sigrist, S. J. Nat. Neurosci. 16, 790–797 (2013).

    Article  PubMed  CAS  Google Scholar 

  14. Gross, G. G. et al. Neuron 78, 971–985 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mikuni, T., Nishiyama, J., Sun, Y., Kamasawa, N. & Yasuda, R. Cell 165, 1803–1817 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Dell’Acqua.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dell’Acqua, M.L., Woolfrey, K.M. FRETting over postsynaptic PKC signaling. Nat Neurosci 21, 1021–1022 (2018). https://doi.org/10.1038/s41593-018-0190-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-018-0190-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing