Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Synaptic N6-methyladenosine (m6A) epitranscriptome reveals functional partitioning of localized transcripts

An Author Correction to this article was published on 10 August 2018

This article has been updated

Abstract

A localized transcriptome at the synapse facilitates synapse-, stimulus- and transcript-specific local protein synthesis in response to neuronal activity. While enzyme-mediated mRNA modifications are known to regulate cellular mRNA turnover, the role of these modifications in regulating synaptic RNA has not been studied. We established low-input m6A-sequencing of synaptosomal RNA to determine the chemically modified local transcriptome in healthy adult mouse forebrains and identified 4,469 selectively enriched m6A sites in 2,921 genes as the synaptic m6A epitranscriptome (SME). The SME is functionally enriched in synthesis and modulation of tripartite synapses and in pathways implicated in neurodevelopmental and neuropsychiatric diseases. Interrupting m6A-mediated regulation via knockdown of readers in hippocampal neurons altered expression of SME member Apc, resulting in synaptic dysfunction including immature spine morphology and dampened excitatory synaptic transmission concomitant with decreased clusters of postsynaptic density-95 (PSD-95) and decreased surface expression of AMPA receptor subunit GluA1. Our findings indicate that chemical modifications of synaptic mRNAs critically contribute to synaptic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Low-input m6A-seq protocol and synaptic transcriptome.
Fig. 2: Characterization of m6A peaks in HOM and SYN.
Fig. 3: Synaptic m6A epitranscriptome.
Fig. 4: m6A modification partitions synaptic transcripts for synaptic function.
Fig. 5: m6A regulatory proteins are distributed to dendrites and near synapses both in brain slices and in cultures.
Fig. 6: Reducing m6A reader expression in hippocampal neurons causes structural and functional synaptic deficits.
Fig. 7: mRNA for dendritically localized SME member Apc, but not Apc2, is dependent on YTHDF1 for translation.
Fig. 8: Methylated transcripts encapsulate surface-associated intercellular signaling network involving tripartite synapse.

Similar content being viewed by others

Change history

  • 10 August 2018

    In the version of this article initially published, a Supplementary Fig. 6f was cited in the last paragraph of the Results. No such panel exists; the citation has been deleted. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Kelsch, W., Lin, C.-W. & Lois, C. Sequential development of synapses in dendritic domains during adult neurogenesis. Proc. Natl. Acad. Sci. USA 105, 16803–16808 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008).

    Article  PubMed  Google Scholar 

  4. Sutton, M. A. & Schuman, E. M. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Kelleher, R. J. III, Govindarajan, A. & Tonegawa, S. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44, 59–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Bassell, G. J. & Warren, S. T. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201–214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kelleher, R. J. III & Bear, M. F. The autistic neuron: troubled translation? Cell 135, 401–406 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Santini, E. et al. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493, 411–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Cajigas, I. J. et al. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perea, G., Navarrete, M. & Araque, A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32, 421–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Eroglu, C. & Barres, B. A. Regulation of synaptic connectivity by glia. Nature 468, 223–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakers, K. et al. Astrocytes locallytranslate transcripts in their peripheral processes. Proc. Natl. Acad. Sci. USA 114, E3830–E3838 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kiebler, M. A. & Bassell, G. J. Neuronal RNA granules: movers and makers. Neuron 51, 685–690 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Bramham, C. R. & Wells, D. G. Dendritic mRNA: transport, translation and function. Nat. Rev. Neurosci. 8, 776–789 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Martin, K. C. & Ephrussi, A. mRNA localization: gene expression in the spatial dimension. Cell 136, 719–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, D. O., Martin, K. C. & Zukin, R. S. Spatially restricting gene expression by local translation at synapses. Trends Neurosci. 33, 173–182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fernandez-Moya, S. M., Bauer, K. E. & Kiebler, M. A. Meet the players: local translation at the synapse. Front. Mol. Neurosci. 7, 84 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gilbert, W. V., Bell, T. A. & Schaening, C. Messenger RNA modifications: Form, distribution, and function. Science 352, 1408–1412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nainar, S., Marshall, P. R., Tyler, C. R., Spitale, R. C. & Bredy, T. W. Evolving insights into RNA modifications and their functional diversity in the brain. Nat. Neurosci. 19, 1292–1298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Y. & Zhao, J. C. Update: mechanisms underlying N 6-methyladenosine modification of eukaryotic mRNA. Trends Genet. 32, 763–773 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, N. et al. N 6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoon, K. J. et al. Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell 171, 877–889.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, Y. et al. N 6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat. Neurosci. 21, 195–206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lence, T. et al. m6A modulates neuronal functions and sex determination in Drosophila. Nature 540, 242–247 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Fustin, J.-M. et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155, 793–806 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Hess, M. E. et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat. Neurosci. 16, 1042–1048 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Widagdo, J. et al. Experience-dependent accumulation of N 6-methyladenosine in the prefrontal cortex is associated with memory processes in mice. J. Neurosci. 36, 6771–6777 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walters, B. J. et al. The role of the RNA demethylase FTO (Fat Mass and Obesity-Associated) and mRNA methylation in hippocampal memory formation. Neuropsychopharmacology 42, 1502–1510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dominissini, D., Moshitch-Moshkovitz, S., Salmon-Divon, M., Amariglio, N. & Rechavi, G. Transcriptome-wide mapping of N 6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing. Nat. Protoc. 8, 176–189 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29, 2037–2053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schwartz, S. et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8, 284–296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, X. et al. N 6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiang, Y. et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature 543, 573–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meyer, K. D. et al. 5′ UTR m6A promotes cap-independent translation. Cell 163, 999–1010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou, J. et al. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526, 591–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choi, J. et al. N 6-Methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol. 23, 110–115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Du, H. et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, X. et al. N 6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    Article  PubMed  CAS  Google Scholar 

  43. Fu, Y., Dominissini, D., Rechavi, G. & He, C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet. 15, 293–306 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Shi, H. et al. YTHDF3 facilitates translation and decay of N 6-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, A. et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res. 27, 444–447 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mohn, J. L. et al. Adenomatous polyposis coli protein deletion leads to cognitive and autism-like disabilities. Mol. Psychiatry 19, 1133–1142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, X. et al. Genome-wide association study of autism spectrum disorder in the East Asian populations. Autism Res. 9, 340–349 (2016).

    Article  PubMed  Google Scholar 

  48. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hussain, S. & Bashir, Z. I. The epitranscriptome in modulating spatiotemporal RNA translation in neuronal post-synaptic function. Front. Cell. Neurosci. 9, 420 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Abbasi-Moheb, L. et al. Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am. J. Hum. Genet. 90, 847–855 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dunkley, P. R., Jarvie, P. E. & Robinson, P. J. A rapid Percoll gradient procedure for preparation of synaptosomes. Nat. Protoc. 3, 1718–1728 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Westmark, P. R., Westmark, C. J., Jeevananthan, A. & Malter, J. S. Preparation of synaptoneurosomes from mouse cortex using a discontinuous Percoll-sucrose density gradient. J. Vis. Exp. 55, 1–9 (2011).

    Google Scholar 

  53. Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).

    Article  CAS  Google Scholar 

  56. Leng, N. et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29, 1035–1043 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meng, J. et al. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods 69, 274–281 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cui, X. et al. Guitar: An R/Bioconductor package for gene annotation guided transcriptomic analysis of RNA-related genomic features. Biomed. Res. Int. 2016, 8367534 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Huang, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  61. Huang, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  62. Tripathi, S. et al. Meta- and orthogonal integration of influenza “omics” data defines a role for UBR4 in virus budding. Cell Host Microbe 18, 723–735 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44 (W1), W90–W97 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–W311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaech, S. & Banker, G. Culturing hippocampal neurons. Nat. Protoc. 1, 2406–2415 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48, 452–458 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Hayashi, N., Oohira, A. & Miyata, S. Synaptic localization of receptor-type protein tyrosine phosphatase ζ/β in the cerebral and hippocampal neurons of adult rats. Brain Res. 1050, 163–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Buxbaum, J. D. et al. Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene. Mol. Psychiatry 13, 162–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Takahashi, N. et al. Increased expression of receptor phosphotyrosine phosphatase-β/ζ is associated with molecular, cellular, behavioral and cognitive schizophrenia phenotypes. Transl. Psychiatry 1, e8 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Johnston, I. G., Paladino, T., Gurd, J. W. & Brown, I. R. Molecular cloning of SC1: a putative brain extracellular matrix glycoprotein showing partial similarity to osteonectin/BM40/SPARC. Neuron 4, 165–176 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Purcell, A. E., Jeon, O. H., Zimmerman, A. W., Blue, M. E. & Pevsner, J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 57, 1618–1628 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Zhurov, V. et al. Molecular pathway reconstruction and analysis of disturbed gene expression in depressed individuals who died by suicide. PLoS One 7, e47581 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Risher, W. C. et al. Astrocytes refine cortical connectivity at dendritic spines. Elife 3, 1–24 (2014).

    Article  Google Scholar 

  74. Singh, S. K. et al. Astrocytes assemble thalamocortical synapses by bridging NRX1α and NL1 via hevin. Cell 164, 183–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rothstein, J. D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Valtcheva, S. & Venance, L. Astrocytes gate Hebbian synaptic plasticity in the striatum. Nat. Commun. 7, 13845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Woolley, C. S. & McEwen, B. S. Estradiol regulates hippocampal dendritic spine density via an N-methyl-d-aspartate receptor-dependent mechanism. J. Neurosci. 14, 7680–7687 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brinton, R. D. et al. Progesterone receptors: form and function in brain. Front. Neuroendocrinol. 29, 313–339 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schumacher, M., Sitruk-Ware, R. & De Nicola, A. F. Progesterone and progestins: neuroprotection and myelin repair. Curr. Opin. Pharmacol. 8, 740–746 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Rosenberg, M. M. et al. Adenomatous polyposis coli plays a key role, in vivo, in coordinating assembly of the neuronal nicotinic postsynaptic complex. Mol. Cell. Neurosci. 38, 138–152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Preitner, N. et al. APC is an RNA-binding protein, and its interactome provides a link to neural development and microtubule assembly. Cell 158, 368–382 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Raedle, J. et al. A de novo deletion of chromosome 5q causing familial adenomatous polyposis, dysmorphic features, and mild mental retardation. Am. J. Gastroenterol. 96, 3016–3020 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Zhou, X.-L. et al. Association of adenomatous polyposis coli (APC) gene polymorphisms with autism spectrum disorder (ASD). Am. J. Med. Genet. B. Neuropsychiatr. Genet. 144B, 351–354 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Yamanaka, H. et al. Expression of Apc2 during mouse development. Brain Res. Gene Expr. Patterns 1, 107–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Shintani, T. et al. APC2 plays an essential role in axonal projections through the regulation of microtubule stability. J. Neurosci. 29, 11628–11640 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shintani, T., Takeuchi, Y., Fujikawa, A. & Noda, M. Directional neuronal migration is impaired in mice lacking adenomatous polyposis coli 2. J. Neurosci. 32, 6468–6484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Almuriekhi, M. et al. Loss-of-function mutation in APC2 causes Sotos syndrome features. Cell Rep. 10, 1585–1598 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Richter, K. et al. Presynaptic cytomatrix protein bassoon is localized at both excitatory and inhibitory synapses of rat brain. J. Comp. Neurol. 448, 437–448 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Garner, C. C., Kindler, S. & Gundelfinger, E. D. Molecular determinants of presynaptic active zones. Curr. Opin. Neurobiol. 10, 321–327 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Goldstein, A. Y., Wang, X. & Schwarz, T. L. Axonal transport and the delivery of pre-synaptic components. Curr. Opin. Neurobiol. 18, 495–503 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhai, R. G. et al. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29, 131–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Dick, O. et al. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37, 775–786 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Chun, J. et al. Neurobiology of receptor-mediated lysophospholipid signaling. From the first lysophospholipid receptor to roles in nervous system function and development. Ann. NY Acad. Sci. 905, 110–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Kimura, A. et al. Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells 25, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Gatchel, J. R. et al. The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7. Proc. Natl. Acad. Sci. USA 105, 1291–1296 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shcheglovitov, A. et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature 503, 267–271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Otowa, T. et al. Genome-wide and gene-based association studies of anxiety disorders in European and African American samples. PLoS One 9, e112559 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kang, B. et al. Evaluation of hepatic-metastasis risk of colorectal cancer upon the protein signature of PI3K/AKT pathway. J. Proteome Res. 7, 3507–3515 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Morrow, E. M. et al. Identifying autism loci and genes by tracing recent shared ancestry. Science 321, 218–223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hirano, S., Yan, Q. & Suzuki, S. T. Expression of a novel protocadherin, OL-protocadherin, in a subset of functional systems of the developing mouse brain. J. Neurosci. 19, 995–1005 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Uemura, M., Nakao, S., Suzuki, S. T., Takeichi, M. & Hirano, S. OL-Protocadherin is essential for growth of striatal axons and thalamocortical projections. Nat. Neurosci. 10, 1151–1159 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Tsai, N. P. et al. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 151, 1581–1594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pribiag, H., Peng, H., Shah, W. A., Stellwagen, D. & Carbonetto, S. Dystroglycan mediates homeostatic synaptic plasticity at GABAergic synapses. Proc. Natl. Acad. Sci. USA 111, 6810–6815 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Früh, S. et al. Neuronal dystroglycan is necessary for formation and maintenance of functional CCK-positive basket cell terminals on pyramidal cells. J. Neurosci. 36, 10296–10313 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mitsui, K., Nakajima, D., Ohara, O. & Nakayama, M. Mammalianfat3: a large protein that contains multiple cadherin and EGF-like motifs. Biochem. Biophys. Res. Commun. 290, 1260–1266 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Deans, M. R. et al. Control of neuronal morphology by the atypical cadherin Fat3. Neuron 71, 820–832 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nagae, S., Tanoue, T. & Takeichi, M. Temporal and spatial expression profiles of the Fat3 protein, a giant cadherin molecule, during mouse development. Dev. Dyn. 236, 534–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Chang, B. H., Mukherji, S. & Soderling, T. R. Calcium/calmodulin-dependent protein kinase II inhibitor protein: localization of isoforms in rat brain. Neuroscience 102, 767–777 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Feng, J. et al. Spinophilin regulates the formation and function of dendritic spines. Proc. Natl. Acad. Sci. USA 97, 9287–9292 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Law, A. J., Weickert, C. S., Hyde, T. M., Kleinman, J. E. & Harrison, P. J. Reduced spinophilin but not microtubule-associated protein 2 expression in the hippocampal formation in schizophrenia and mood disorders: molecular evidence for a pathology of dendritic spines. Am. J. Psychiatry 161, 1848–1855 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Hayashi for critical reading of this manuscript, CeMI imaging center at iCeMS, and the supporting facility at the medical school of Kyoto University for technical support. This work was supported by grants KAKENHI17H03546, KAKENHI26702038 and KAKENHI26115515, and grants from the Hirose Foundation and Astellas Foundation to D.O.W. I.O and B.J.G are supported by Japan Society for the Promotion of Science fellowships.

Author information

Authors and Affiliations

Authors

Contributions

D.O.W. conceived and designed the project. W.T.-H. purified synaptosomes and performed RNA extractions, m6A dot-blotting and data mining. D.O.W. and T.O. constructed libraries; D.M., K.I., B.J.G, H.Y. and M.P. performed bioinformatics analysis; T.O. performed immunostaining; I.O. constructed shRNA and performed KD, FISH and spine analysis in cultured hippocampal neurons. S.-y.K. performed electrophysiology. D.O.W and B.J.G. wrote the manuscript. K.C.M. and T.H. supervised parts of the project. All authors participated in data analysis and interpretation and made indispensable contributions.

Corresponding author

Correspondence to Dan Ohtan Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Cross-database comparison and experimental setup for preparation and characterization of m6A synaptic RNA in synaptosomes.

a. Summary of cross-database comparison of m6A mRNA and localized mRNA lists. b. Synaptosome purification from healthy adult mouse forebrains using percoll-sucrose discontinuous gradients. F3 and F4 fractions were pooled as synaptosomal fraction (SYN). Homogenate lysate without fractionation was used as control for comparison (HOM); c. Relative (de)enrichment of a panel of synaptic and somatic markers probed using western blot (n=3 independent experiments); d. Full scan of blots in c (n=3 independent experiments); e. Separation of RNA populations was confirmed by qRT-PCR examination of nuclear lncRNA Malat1, somatic RNA beta-3 tubulin and known synaptically localized transcript CaMKIIα (mean value ±s.e.m., n=3 independent experiments). f. Bioanalyzer analysis of RNA integrity in prepared fractions. HOM, homogenate; Cyto, cytoplasm, F3 and F4 (SYN), synaptosomes (n=3 independent experiments). g. A biological replicate of m6A dot-blot presented in Fig. 1b shows highly similar results (n=2 independent experiments).

Supplementary Figure 2 Validation of low-input m6A-seq and characterization of HOM and SYN peaks.

a. Sequencing summary in this study; b. Pairwise comparison of biological replicate sequencing libraries demonstrates strong, linear correlation between replicates (n=2 independent experiments); c. reads sorted and removed from further analysis; d. Mapping statistics for QC reads mapped with STAR to mm9 refseq.GTF. e. hypergeometric tests on peak overlapping to three previously published databases (n=2 independent experiments); f. Frequency plot of motif per 5nt per peak (y axis) against distance from peak summit (x axis) in HOM; g. Enriched human phenotypes among genes with START codon-associated and STOP codon-associated SYN peaks (ToppGene); h. Left, synapse-enriched peak in Ckap5 transcript; Right, synapse-depleted peak in Lysmd4. Red, IP tracks; blue, INPUT tracks; black, peak location track.

Supplementary Figure 3 Negative impact of methylation on synaptic mRNA stability and synaptic localization.

a. (left) Box plots depicting synaptic concentrations of genes in four groups with increasing methylation level. For each gene, methylation level (ML) was calculated as IP/INPUT reads ratios in each designated RNA region (full length, 5’UTR, CDS, and 3’UTR) and divided into four groups from the least methylated to the most methylated (a; ML < −2, b; −2 <= ML < 0, c; 0 <= ML < 2, d; 2 <= ML). S.TMP: transcripts per million at SYN. (right) Scatter plot and regression model labeled with slope, p-value testing the quality of model fitting, and Pearson’s correlation coefficient r; (n=2 independent experiments showing similar results). b. Analogous plots representing transcript enrichment at synapse compared to whole cell. Y-axis and X-axis represent relative expression values and relative methylation values averaged from two independent experiments. For box plots, genes were classified into one of the four groups as follows: e; rel. ML < −1, f; −1 <= rel. ML < 0, g; 0 <= rel. ML < 1, h; 1 <= rel. ML. Genes with TPM less than 1 were excluded from the analysis. number of data points included in this figure: (a) Total; a: 790, b: 5034, c: 4976, d: 1107, 5’UTR; a: 596, b: 2787, c: 4238, d: 1508, CDS; a: 1540, b: 5129, c: 3550, d: 1192, 3’UTR; a: 1062, b: 3590, c: 4011, d: 1808, (b) Total; e: 133, f: 7861, g: 3126, h: 29, 5’UTR; e: 730, f: 78 3367, g: 3306, h: 691, CDS; e: 216, f: 7311, g: 3193, h: 41. 3’UTR; e: 482, f: 5824, g: 3156, h: 256.

Supplementary Figure 4 m6A regulatory proteins in dendritic processes of dissociated hippocampal neuronal cultures and brain slices.

a. Confocal images of m6A regulatory proteins (magenta) and counter-stained with phalloidin (green) to label F actin-rich spines. Scale bar, 5 μm. b. m6A reader YTHDF1 in perfused mouse brain slices. Top, cortical cortex; Bottom, hippocampus and CA1 and CA3 regions of hippocampus. Scale bars, 100 μm and 50 μm. (n= 3 independent experiments).

Supplementary Figure 5 Knocking down METTL3 in dissociated hippocampal neuronal cultures causes cell death and knocking down YTHDF1 causes synapse malfunction.

a. Group quantification of METTL3 protein expression measured by immunofluorescence staining at Day2 after transfection; b. Immunofluorescence images of hippocampal neuronal cultures transfected with shMETTL3 vectors. DAPI (blue), GFP (green), METTL3 (red), (n=3 independent experiments); c. Confocal images of DIV19 dissociated hippocampal neurons expressing shScramble-GFP (left panel) or shYTHDF1-GFP (right panel). DAPI (blue), GFP (green), YTHDF1 (red). Arrowheads point to GFP(+) shScram or shYTHDF1 transfected neurons. Scale bar, 10 μm (n=3 independent experiments); d. Normalized YTHDF1 mRNA expression in shScramble, shYTHDF1-1, and shYTHDF1-2 cells (normalized to beta actin mRNA, n=3 independent experiments); e. Western-blots of YTHDF1 proteins in shScramble, YTHDF1-sh1, and shYTHDF1-2 cells lysates. β-actin was blotted on the same membrane as loading control (n=3 independent experiments). f. Confocal images of dendritic processes of DIV19 dissociated hippocampal neurons expressing shYTHDF1-2-GFP. Top, GFP labels morphology of dendritic shaft and spines; Bottom, PSD-95 staining in the same samples to label post-synaptic density (n=3 independent experiments). g. Group quantification of spine head width in DIV19 dissociated hippocampal neurons expressing shScramble-GFP or shYTHDF1-GFP (n=3 independent experiments). h. Group quantification of PSD-95 intensity in DIV19 dissociated hippocampal neurons expressing shScramble-GFP or shYTHDF1-GFP. i. GFP fluorescence images of control cells (expressing pCAG-EGFP and pX330) and YTHDF1-KD cells (expressing pCAG-EGFP and pX330-guide RNA sequences g1 or g2). Scale bar, 5 μm; j. Group quantifications of spine neck length showed similar phenotypes to YTHDF1-KD using shRNA vectors. k. Group quantification of spine head width showed similar phenotypes to YTHDF1-KD using shRNA vectors (n=2 independent experiments. ***p<1x10-3; Kruskal-Wallis’s multiple comparison test).

Supplementary Figure 6 Reducing YTHDF3 expression in hippocampal neurons causes excessive dendritic filopodia, in place of mature spines, and APC protein expression in YTHDF1-knockdown neurons is reduced.

a. Confocal images of DIV17 dissociated hippocampal neurons expressing shScram-GFP (top) or shYTHDF3-GFP (bottom). DAPI (blue), GFP (green), YTHDF3 (red). Arrowheads point to GFP(+) shScram or shYTHDF3 transfected neurons. Scale bar, 10 μm (n=3 independent experiments). b. Confocal images on dendritic shaft of GFP (green) and YTHDF3 (red). Scale bar, 10 μm (n=3 independent experiments); c. Quantification of YTHDF3 protein expression by immuno-staining in shScram and shYTHDF3 cells (Scram, sh1, and sh2). YTHDF3 protein in sh1 and sh2 samples decreased over a 4-day time course after transfection (n=3 independent experiments). d. Confocal images of dendritic shaft and spines of shScram and shYTHDF3-2 cells (n=3 independent experiments). Left, GFP labels morphology of dendritic shaft and spines; Right, PSD-95 staining in the same sample (magenta). Contour of affected dendrites was traced as the white lines through GFP expression. Fluorescence signals outside of the contour were masked to restrict quantification to the affected neurons. Scale bar, 5 μm (n=3 independent experiments). e. Confocal images of APC immunostaining using APC N-terminus antibody (top) or APC C-terminus antibody (bottom). GFP labels neurons expressing the shRNAs (shScram or shYTHDF1). Both antibodies consistently detected decreased APC protein expression in YTHDF1-KD neurons; Arrowheads point to GFP-positive neurons. DAPI (blue), GFP (green), APC protein (magenta). Scale bar, 10 μm (n=3 independent experiments).

Supplementary Figure 7 Mapping of synaptic cleft proteins and other synaptic proteins encoded by SYN-methylated mRNA and by mRNAs carrying the most abundant methylation sites in SME.

Proteins mapped to excitatory and inhibitory synapses. Dark brown: proteins encoded by top SME genes; light brown: synaptic cleft proteins encoded by synaptically methylated transcripts.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 7 and 8

Reporting Summary

Supplementary Table 1

Synaptic transcriptome

Supplementary Table 2

HOM peaks and SYN peaks

Supplementary Table 3

Genes associated with peaks around start or stop codon

Supplementary Table 4

GO analysis using expressed genes as background

Supplementary Table 5

Synaptic m6A epitranscriptome (SME)

Supplementary Table 6

qRT-PCR primers

Supplementary Table 9

GO analysis of synaptically hypo- and hypermethylated genes

Supplementary Table 10

Overlap with astrocytic perisynaptic and soma-enriched gene lists

Supplementary Table 11

Values associated with all box plots

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkurjev, D., Hong, WT., Iida, K. et al. Synaptic N6-methyladenosine (m6A) epitranscriptome reveals functional partitioning of localized transcripts. Nat Neurosci 21, 1004–1014 (2018). https://doi.org/10.1038/s41593-018-0173-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-018-0173-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing