What does dopamine mean?

Abstract

Dopamine is a critical modulator of both learning and motivation. This presents a problem: how can target cells know whether increased dopamine is a signal to learn or to move? It is often presumed that motivation involves slow (‘tonic’) dopamine changes, while fast (‘phasic’) dopamine fluctuations convey reward prediction errors for learning. Yet recent studies have shown that dopamine conveys motivational value and promotes movement even on subsecond timescales. Here I describe an alternative account of how dopamine regulates ongoing behavior. Dopamine release related to motivation is rapidly and locally sculpted by receptors on dopamine terminals, independently from dopamine cell firing. Target neurons abruptly switch between learning and performance modes, with striatal cholinergic interneurons providing one candidate switch mechanism. The behavioral impact of dopamine varies by subregion, but in each case dopamine provides a dynamic estimate of whether it is worth expending a limited internal resource, such as energy, attention, or time.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Dopamine: updating the past, invigorating the present.
Fig. 2: Fast dopamine fluctuations signal dynamically evolving reward expectations.

References

  1. 1.

    Ungerstedt, U. Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. Suppl. 367, 95–122 (1971).

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Sacks, O. Awakenings. (Duckworth, London, 1973).

    Google Scholar 

  3. 3.

    Marshall, J. F., Levitan, D. & Stricker, E. M. Activation-induced restoration of sensorimotor functions in rats with dopamine-depleting brain lesions. J. Comp. Physiol. Psychol. 90, 536–546 (1976).

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Berridge, K. C., Venier, I. L. & Robinson, T. E. Taste reactivity analysis of 6-hydroxydopamine-induced aphagia: implications for arousal and anhedonia hypotheses of dopamine function. Behav. Neurosci. 103, 36–45 (1989).

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Salamone, J. D. & Correa, M. The mysterious motivational functions of mesolimbic dopamine. Neuron 76, 470–485 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Mazzoni, P., Hristova, A. & Krakauer, J. W. Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J. Neurosci. 27, 7105–7116 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Schultz, W. Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. J. Neurophysiol. 56, 1439–1461 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Schultz, W. & Romo, R. Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. J. Neurophysiol. 63, 607–624 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Schultz, W., Apicella, P. & Ljungberg, T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13, 900–913 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Sutton, R. S. & Barto, A. G. Reinforcement Learning: an Introduction. (MIT Press: Cambridge, Massachusetts, 1998).

    Google Scholar 

  12. 12.

    Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Eshel, N., Tian, J., Bukwich, M. & Uchida, N. Dopamine neurons share common response function for reward prediction error. Nat. Neurosci. 19, 479–486 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Steinberg, E. E. et al. A causal link between prediction errors, dopamine neurons and learning. Nat. Neurosci. 16, 966–973 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. 15.

    Hamid, A. A. et al. Mesolimbic dopamine signals the value of work. Nat. Neurosci. 19, 117–126 (2016).

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Yagishita, S. et al. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 1616–1620 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Berke, J. D. & Hyman, S. E. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25, 515–532 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Beeler, J. A. A role for dopamine-mediated learning in the pathophysiology and treatment of Parkinsonas disease. Cell Rep. 2, 1747–1761 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Leventhal, D. K. et al. Dissociable effects of dopamine on learning and performance within sensorimotor striatum. Basal Ganglia 4, 43–54 (2014).

    Article  PubMed  Google Scholar 

  21. 21.

    Wyvell, C. L. & Berridge, K. C. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J. Neurosci. 20, 8122–8130 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Cagniard, B. et al. Dopamine scales performance in the absence of new learning. Neuron 51, 541–547 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Shiner, T. et al. Dopamine and performance in a reinforcement learning task: evidence from Parkinson’s disease. Brain 135, 1871–1883 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    McClure, S. M., Daw, N. D. & Montague, P.R. A computational substrate for incentive salience. Trends Neurosci. 26, 423–428 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. 26.

    Gonon, F. et al. Geometry and kinetics of dopaminergic transmission in the rat striatum and in mice lacking the dopamine transporter. Prog. Brain Res. 125, 291–302 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Aragona, B. J. et al. Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J. Neurosci. 28, 8821–8831 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Owesson-White, C. A. et al. Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens. J. Neurochem. 121, 252–262 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Yapo, C. et al. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons. J. Physiol. (Lond.) 595, 7451–7475 (2017).

    Article  CAS  Google Scholar 

  30. 30.

    Freed, C. R. & Yamamoto, B. K. Regional brain dopamine metabolism: a marker for the speed, direction, and posture of moving animals. Science 229, 62–65 (1985).

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berl.) 191, 507–520 (2007).

    Article  CAS  Google Scholar 

  32. 32.

    Strecker, R. E., Steinfels, G. F. & Jacobs, B. L. Dopaminergic unit activity in freely moving cats: lack of relationship to feeding, satiety, and glucose injections. Brain Res. 260, 317–321 (1983).

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Cohen, J.Y., Amoroso, M.W. & Uchida, N. Serotonergic neurons signal reward and punishment on multiple timescales. eLife 4, e06346 (2015).

  34. 34.

    Floresco, S. B., West, A. R., Ash, B., Moore, H. & Grace, A. A. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 6, 968–973 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Grace, A. A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 17, 524–532 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Phillips, P. E., Stuber, G. D., Heien, M. L., Wightman, R. M. & Carelli, R. M. Subsecond dopamine release promotes cocaine seeking. Nature 422, 614–618 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Wassum, K. M., Ostlund, S. B. & Maidment, N. T. Phasic mesolimbic dopamine signaling precedes and predicts performance of a self-initiated action sequence task. Biol. Psychiatry 71, 846–854 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. 38.

    Howe, M. W., Tierney, P. L., Sandberg, S. G., Phillips, P. E. & Graybiel, A. M. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500, 575–579 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Satoh, T., Nakai, S., Sato, T. & Kimura, M. Correlated coding of motivation and outcome of decision by dopamine neurons. J. Neurosci. 23, 9913–9923 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535, 505–510 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. 41.

    da Silva, J. A., Tecuapetla, F., Paixão, V. & Costa, R. M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554, 244–248 (2018).

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    du Hoffmann, J. & Nicola, S. M. Dopamine invigorates reward seeking by promoting cue-evoked excitation in the nucleus accumbens. J. Neurosci. 34, 14349–14364 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. 43.

    Hart, A. S., Rutledge, R. B., Glimcher, P. W. & Phillips, P. E. Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term. J. Neurosci. 34, 698–704 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. 44.

    Soares, S., Atallah, B. V. & Paton, J. J. Midbrain dopamine neurons control judgment of time. Science 354, 1273–1277 (2016).

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Ikemoto, S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res. Rev. 56, 27–78 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. 46.

    Syed, E. C. et al. Action initiation shapes mesolimbic dopamine encoding of future rewards. Nat. Neurosci. 19, 34–36 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Floresco, S. B., Yang, C. R., Phillips, A. G. & Blaha, C. D. Basolateral amygdala stimulation evokes glutamate receptor-dependent dopamine efflux in the nucleus accumbens of the anaesthetized rat. Eur. J. Neurosci. 10, 1241–1251 (1998).

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Jones, J. L. et al. Basolateral amygdala modulates terminal dopamine release in the nucleus accumbens and conditioned responding. Biol. Psychiatry 67, 737–744 (2010).

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Cachope, R. Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep. 2(1), 33–41 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. 50.

    Threlfell, S. et al. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75, 58–64 (2012).

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Grace, A. A. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41, 1–24 (1991).

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Moyer, J. T., Wolf, J. A. & Finkel, L. H. Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. J. Neurophysiol. 98, 3731–3748 (2007).

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Jędrzejewska-Szmek, J., Damodaran, S., Dorman, D. B. & Blackwell, K. T. Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons. Eur. J. Neurosci. 45, 1044–1056 (2017).

    Article  PubMed  Google Scholar 

  54. 54.

    Morris, G., Arkadir, D., Nevet, A., Vaadia, E. & Bergman, H. Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43, 133–143 (2004).

    Article  PubMed  CAS  Google Scholar 

  55. 55.

    Brown, M. T. et al. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492, 452–456 (2012).

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Yamanaka, K. et al. Roles of centromedian parafascicular nuclei of thalamus and cholinergic interneurons in the dorsal striatum in associative learning of environmental events. J. Neural Transm. (Vienna) 125, 501–513 (2018).

    Article  Google Scholar 

  57. 57.

    Shen, W. et al. M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of L-DOPA-induced dyskinesia. Neuron 88, 762–773 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. 58.

    Nair, A. G., Gutierrez-Arenas, O., Eriksson, O., Vincent, P. & Hellgren Kotaleski, J. Sensing positive versus negative reward signals through adenylyl cyclase-coupled GPCRs in direct and indirect pathway striatal medium spiny neurons. J. Neurosci. 35, 14017–14030 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. 59.

    Stocco, A. Acetylcholine-based entropy in response selection: a model of how striatal interneurons modulate exploration, exploitation, and response variability in decision-making. Front. Neurosci. 6, 18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Franklin, N. T. & Frank, M. J. A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning. eLife 4, e12029 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Nougaret, S. & Ravel, S. Modulation of tonically active neurons of the monkey striatum by events carrying different force and reward information. J. Neurosci. 35, 15214–15226 (2015).

    Article  PubMed  CAS  Google Scholar 

  62. 62.

    Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    Article  PubMed  CAS  Google Scholar 

  63. 63.

    Lammel, S. et al. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57, 760–773 (2008).

    Article  PubMed  CAS  Google Scholar 

  64. 64.

    Poulin, J. F. et al. Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep. 9, 930–943 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. 65.

    Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85 (2017).

    Article  PubMed  CAS  Google Scholar 

  66. 66.

    Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. 67.

    Pasquereau, B. & Turner, R. S. Dopamine neurons encode errors in predicting movement trigger occurrence. J. Neurophysiol. 113, 1110–1123 (2015).

    Article  PubMed  Google Scholar 

  68. 68.

    Redgrave, P., Prescott, T. J. & Gurney, K. Is the short-latency dopamine response too short to signal reward error? Trends Neurosci. 22, 146–151 (1999).

    Article  PubMed  CAS  Google Scholar 

  69. 69.

    Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. 70.

    Dodson, P. D. et al. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in Parkinsonism. Proc. Natl. Acad. Sci. USA 113, E2180–E2188 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. 71.

    Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. 72.

    Parker, N. F. et al. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. Nat. Neurosci. 19, 845–854 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. 73.

    Kim, C. K. et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13, 325–328 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. 74.

    Menegas, W., Babayan, B. M., Uchida, N. & Watabe-Uchida, M. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. eLife 6, e21886 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Brown, H. D., McCutcheon, J. E., Cone, J. J., Ragozzino, M. E. & Roitman, M. F. Primary food reward and reward-predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum. Eur. J. Neurosci. 34, 1997–2006 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Knutson, B., & Greer, S. M. Anticipatory affect: neural correlates and consequences for choice. Phil. Trans. R. Soc. Lond. B 363, 3771–3786 (2008).

    Article  Google Scholar 

  77. 77.

    Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76, 412–427 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Ferenczi, E. A. et al. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science 351, aac9698 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. 79.

    Bertran-Gonzalez, J. et al. Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J. Neurosci. 28, 5671–5685 (2008).

    Article  PubMed  CAS  Google Scholar 

  80. 80.

    Redgrave, P., Prescott, T. J. & Gurney, K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999).

    Article  PubMed  CAS  Google Scholar 

  81. 81.

    Beeler, J. A., Frazier, C. R., & Zhuang, X. Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources. Front. Integr. Neurosci. 6, 49 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Anderson, B. A. et al. The Role of dopamine in value-based attentional orienting. Curr. Biol. 26, 550–555 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. 83.

    Chatham, C. H., Frank, M. J. & Badre, D. Corticostriatal output gating during selection from working memory. Neuron 81, 930–942 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. 84.

    Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. 85.

    Aarts, E. et al. Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging. Neuropsychopharmacology 35, 1943–1951 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. 86.

    Westbrook, A. & Braver, T. S. Dopamine does double duty in motivating cognitive effort. Neuron 89, 695–710 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. 87.

    Manohar, S. G. et al. Reward pays the cost of noise reduction in motor and cognitive control. Curr. Biol. 25, 1707–1716 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. 88.

    Wunderlich, K., Smittenaar, P. & Dolan, R. J. Dopamine enhances model-based over model-free choice behavior. Neuron 75, 418–424 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. 89.

    Nicola, S. M. The flexible approach hypothesis: unification of effort and cue-responding hypotheses for the role of nucleus accumbens dopamine in the activation of reward-seeking behavior. J. Neurosci. 30, 16585–16600 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. 90.

    Eban-Rothschild, A., Rothschild, G., Giardino, W. J., Jones, J. R. & de Lecea, L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat. Neurosci. 19, 1356–1366 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. 91.

    Haber, S. N., Fudge, J. L. & McFarland, N. R. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382 (2000).

    Article  PubMed  CAS  Google Scholar 

  92. 92.

    Reddi, B. A. J. & Carpenter, R. H. S. The influence of urgency on decision time. Nat. Neurosci. 3, 827–830 (2000).

    Article  PubMed  CAS  Google Scholar 

  93. 93.

    Thura, D. & Cisek, P. The basal ganglia do not select reach targets but control the urgency of commitment. Neuron 95, 1160–1170.e5 (2017).

    Article  PubMed  CAS  Google Scholar 

  94. 94.

    Turner, R. S. & Desmurget, M. Basal ganglia contributions to motor control: a vigorous tutor. Curr. Opin. Neurobiol. 20, 704–716 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. 95.

    Hikosaka, O., Nakamura, K. & Nakahara, H. Basal ganglia orient eyes to reward. J. Neurophysiol. 95, 567–584 (2006).

    Article  PubMed  Google Scholar 

  96. 96.

    Kelly, P. H. & Moore, K. E. Mesolimbic dopaminergic neurones in the rotational model of nigrostriatal function. Nature 263, 695–696 (1976).

    Article  PubMed  CAS  Google Scholar 

  97. 97.

    Cousins, M. S., Atherton, A., Turner, L. & Salamone, J. D. Nucleus accumbens dopamine depletions alter relative response allocation in a T-maze cost/benefit task. Behav. Brain Res. 74, 189–197 (1996).

    Article  PubMed  CAS  Google Scholar 

  98. 98.

    Redish, A. D. Vicarious trial and error. Nat. Rev. Neurosci. 17, 147–159 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. 99.

    Rabinovich, M. I., Huerta, R., Varona, P. & Afraimovich, V. S. Transient cognitive dynamics, metastability, and decision making. PLOS Comput. Biol. 4, e1000072 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. 100.

    Merchant, H., Harrington, D. L. & Meck, W. H. Neural basis of the perception and estimation of time. Annu. Rev. Neurosci. 36, 313–336 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank the many colleagues who provided insightful comments on earlier text drafts, including K. Berridge, P. Dayan, B. Knutson, J. Beeler, P. Redgrave, J. Lisman, and J. Goldberg. I regret that space limitations precluded discussion of many important prior studies. Essential support was provided by the National Institute on Neurological Disorders and Stroke, the National Institute of Mental Health, and the National Institute on Drug Abuse.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joshua D. Berke.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berke, J.D. What does dopamine mean?. Nat Neurosci 21, 787–793 (2018). https://doi.org/10.1038/s41593-018-0152-y

Download citation

Further reading