Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Microglial immune checkpoint mechanisms

An Author Correction to this article was published on 25 June 2018

This article has been updated

Abstract

Microglia differentiate from progenitors that infiltrate the nascent CNS during early embryonic development. They then remain in this unique immune-privileged environment throughout life. Multiple immune mechanisms, which we collectively refer to as microglial checkpoints, ensure efficient and tightly regulated microglial responses to perturbations in the CNS milieu. Such mechanisms are essential for proper CNS development and optimal physiological function. However, in chronic disease or aging, when a robust immune response is required, such checkpoint mechanisms may limit the ability of microglia to protect the CNS. Here we survey microglial checkpoint mechanisms and their roles in controlling microglial function throughout life and in disease, and discuss how they may be targeted therapeutically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microglial checkpoint mechanisms.
Fig. 2: Homeostatic microglial functions are orchestrated by checkpoint mechanisms throughout life.
Fig. 3: Microglial activators in pathology.

Similar content being viewed by others

Change history

  • 25 June 2018

    In the version of this article initially published, the annotation accompanying ref. 47 ended with “though the modulation of microglia.” The first word of this phrase should have been “through.” The error has been corrected in the HTML and PDF versions of the article.

References

  1. Matzinger, P. & Kamala, T. Tissue-based class control: the other side of tolerance. Nat. Rev. Immunol. 11, 221–230 (2011).

    Article  PubMed  CAS  Google Scholar 

  2. Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol. 28, 12–18 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. V. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007). This study showed that blood-derived cells do not contribute to the microglial pool.

    Article  PubMed  CAS  Google Scholar 

  4. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010). This paper showed that microglia originate from the yolk sac-derived progenitors.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014). This study identified several microglia-specific genes.

    Article  PubMed  CAS  Google Scholar 

  6. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014). Refs. 6 and 7 independently showed the key role of environmental signals is shaping the epigenetic and transcriptomic signatures of various macrophage subtypes (including microglia).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005). This paper revealed that microglial processes constantly scan their environment.

    Article  PubMed  CAS  Google Scholar 

  9. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schafer, D. P. & Stevens, B. Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Curr. Opin. Neurobiol. 23, 1034–1040 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sierra, A. et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7, 483–495 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wolf, S. A., Boddeke, H. W. & Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol. 79, 619–643 (2017).

    Article  PubMed  CAS  Google Scholar 

  14. Olde Nordkamp, M. J., Koeleman, B. P. & Meyaard, L. Do inhibitory immune receptors play a role in the etiology of autoimmune disease? Clin. Immunol. 150, 31–42 (2014).

    Article  PubMed  CAS  Google Scholar 

  15. Harrison-Brown, M., Liu, G. J. & Banati, R. Checkpoints to the brain: directing myeloid cell migration to the central nervous system. Int. J. Mol. Sci. 17, 2030 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  16. Shechter, R., London, A. & Schwartz, M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat. Rev. Immunol. 13, 206–218 (2013). This reviews the immune environment of the borders of the CNS and other immune-privileged tissues.

    Article  PubMed  CAS  Google Scholar 

  17. Gadani, S. P., Smirnov, I., Smith, A. T., Overall, C. C. & Kipnis, J. Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J. Exp. Med. 214, 285–296 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Goldmann, T. & Prinz, M. Role of microglia in CNS autoimmunity. Clin. Dev. Immunol. 2013, 208093 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mracsko, E. & Veltkamp, R. Neuroinflammation after intracerebral hemorrhage. Front. Cell. Neurosci. 8, 388 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cohen, M. et al. Chronic exposure to TGFβ1 regulates myeloid cell inflammatory response in an IRF7-dependent manner. EMBO J. 33, 2906–2921 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brionne, T. C., Tesseur, I., Masliah, E. & Wyss-Coray, T. Loss of TGF-β 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40, 1133–1145 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. Zhao, X. et al. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J. Neurosci. 35, 11281–11291 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Shin, W. H. et al. Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia 46, 142–152 (2004).

    Article  PubMed  Google Scholar 

  25. Neumann, H., Misgeld, T., Matsumuro, K. & Wekerle, H. Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc. Natl Acad. Sci. USA 95, 5779–5784 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lee, M. Neurotransmitters and microglial-mediated neuroinflammation. Curr. Protein Pept. Sci. 14, 21–32 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. Taylor, D. L., Diemel, L. T., Cuzner, M. L. & Pocock, J. M. Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer’s disease. J. Neurochem. 82, 1179–1191 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. Taylor, D. L., Diemel, L. T. & Pocock, J. M. Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J. Neurosci. 23, 2150–2160 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. McCluskey, L. P. & Lampson, L. A. Local immune regulation in the central nervous system by substance P vs. glutamate. J. Neuroimmunol. 116, 136–146 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. Pocock, J. M. & Kettenmann, H. Neurotransmitter receptors on microglia. Trends Neurosci. 30, 527–535 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. Biber, K., Neumann, H., Inoue, K. & Boddeke, H. W. Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci. 30, 596–602 (2007).

    Article  PubMed  CAS  Google Scholar 

  32. Neumann, H., Boucraut, J., Hahnel, C., Misgeld, T. & Wekerle, H. Neuronal control of MHC class II inducibility in rat astrocytes and microglia. Eur. J. Neurosci. 8, 2582–2590 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. Harrison, J. K. et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl Acad. Sci. USA 95, 10896–10901 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Garton, K. J. et al. Tumor necrosis factor-α-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem. 276, 37993–38001 (2001).

    PubMed  CAS  Google Scholar 

  35. Maggi, L. et al. CX3CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment. Front. Cell. Neurosci. 5, 22 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hoshiko, M., Arnoux, I., Avignone, E., Yamamoto, N. & Audinat, E. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J. Neurosci. 32, 15106–15111 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Rogers, J. T. et al. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J. Neurosci. 31, 16241–16250 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Lee, S. et al. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am. J. Pathol. 177, 2549–2562 (2010). This paper was the first to propose CX3CR1 as a therapeutic target in Alzheimer disease.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liu, Z., Condello, C., Schain, A., Harb, R. & Grutzendler, J. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-β phagocytosis. J. Neurosci. 30, 17091–17101 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Walker, D. G. & Lue, L.-F. Understanding the neurobiology of CD200 and the CD200 receptor: a therapeutic target for controlling inflammation in human brains? Future Neurol. 8, 321–332 (2013).

    Article  CAS  Google Scholar 

  41. Barclay, A. N., Wright, G. J., Brooke, G. & Brown, M. H. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 23, 285–290 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. Cohen, M. et al. Newly-formed endothelial cells regulate myeloid cell activity following spinal cord injury via expression of CD200 ligand. J. Neurosci. 37, 972–985 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Mott, R. T. et al. Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia 46, 369–379 (2004).

    Article  PubMed  Google Scholar 

  44. Gitik, M., Liraz-Zaltsman, S., Oldenborg, P.-A., Reichert, F. & Rotshenker, S. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes. J. Neuroinflammation 8, 24 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Junker, A. et al. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132, 3342–3352 (2009).

    Article  PubMed  Google Scholar 

  46. Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016). This paper follows the transcriptional and epigenetic profile of microglia throughout development.

    Article  PubMed  CAS  Google Scholar 

  47. Deczkowska, A. et al. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat. Commun. 8, 717 (2017). This study showed that aging-induced secretory phenotype of the blood–cerebrospinal fluid barrier negatively affects cognitive ability through the modulation of microglia.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Cronk, J. C. et al. Methyl-CpG binding protein 2 regulates microglia and macrophage gene expression in response to inflammatory stimuli. Immunity 42, 679–691 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kelly, L. M., Englmeier, U., Lafon, I., Sieweke, M. H. & Graf, T. MafB is an inducer of monocytic differentiation. EMBO J. 19, 1987–1997 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Potthoff, M. J. & Olson, E. N. MEF2: a central regulator of diverse developmental programs. Development 134, 4131–4140 (2007).

    Article  PubMed  CAS  Google Scholar 

  51. Wakselman, S. et al. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J. Neurosci. 28, 8138–8143 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Reemst, K., Noctor, S. C., Lucassen, P. J. & Hol, E. M. The indispensable roles of microglia and astrocytes during brain development. Front. Hum. Neurosci. 10, 566 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Marín-Teva, J. L. et al. Microglia promote the death of developing Purkinje cells. Neuron 41, 535–547 (2004).

    Article  PubMed  Google Scholar 

  54. Aarum, J., Sandberg, K., Haeberlein, S. L. B. & Persson, M. A. A. Migration and differentiation of neural precursor cells can be directed by microglia. Proc. Natl Acad. Sci. USA 100, 15983–15988 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Estes, M. L. & McAllister, A. K. Maternal immune activation: implications for neuropsychiatric disorders. Science 353, 772–777 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Knuesel, I. et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 10, 643–660 (2014).

    Article  PubMed  CAS  Google Scholar 

  57. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  PubMed  CAS  Google Scholar 

  58. Zhan, Y. et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).

    Article  PubMed  CAS  Google Scholar 

  59. Bialas, A. R. & Stevens, B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat. Neurosci. 16, 1773–1782 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Toth, A. B. et al. Synapse maturation by activity-dependent ectodomain shedding of SIRPα. Nat. Neurosci. 16, 1417–1425 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Derecki, N. C. et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484, 105–109 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sellner, S. et al. Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1. Acta Neuropathol. Commun. 4, 102 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bachstetter, A. D. et al. Fractalkine and CX 3 CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol. Aging 32, 2030–2044 (2011).

    Article  PubMed  CAS  Google Scholar 

  66. Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zhang, Y. & Barres, B. A. Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr. Opin. Neurobiol. 20, 588–594 (2010).

    Article  PubMed  CAS  Google Scholar 

  70. Kim, K.-W. et al. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118, e156–e167 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Norden, D. M., Fenn, A. M., Dugan, A. & Godbout, J. P. TGFβ produced by IL-10 redirected astrocytes attenuates microglial activation. Glia 62, 881–895 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lyons, A. et al. CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J. Neurosci. 27, 8309–8313 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017). This study identified the transcriptional signature of microglia associated with Aβ plaques in a mouse model of Alzheimer’s disease.

    Article  PubMed  CAS  Google Scholar 

  74. Füger, P. et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat. Neurosci. 20, 1371–1376 (2017). This work revealed the extreme longevity of microglia in mice.

    Article  PubMed  CAS  Google Scholar 

  75. Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Morrison, J. H. & Baxter, M. G. The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat. Rev. Neurosci. 13, 240–250 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Safaiyan, S. et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat. Neurosci. 19, 995–998 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Cox, F. F., Carney, D., Miller, A.-M. & Lynch, M. A. CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Behav. Immun. 26, 789–796 (2012).

    Article  PubMed  CAS  Google Scholar 

  79. Pabon, M. M., Bachstetter, A. D., Hudson, C. E., Gemma, C. & Bickford, P. C. CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J. Neuroinflammation 8, 9 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Baruch, K. et al. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346, 89–93 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Liu, C. et al. Macrophages mediate the repair of brain vascular rupture through direct physical adhesion and mechanical traction. Immunity 44, 1162–1176 (2016). This study demonstrated that cerebrovascular ruptures could be directly repaired by microglia.

    Article  PubMed  CAS  Google Scholar 

  82. Koizumi, S. et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446, 1091–1095 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. London, A., Cohen, M. & Schwartz, M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front. Cell. Neurosci. 7, 34 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lai, A. Y. & McLaurin, J. Clearance of amyloid-β peptides by microglia and macrophages: the issue of what, when and where. Future Neurol 7, 165–176 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Bhaskar, K. et al. Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68, 19–31 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Jay, T. R. et al. Disease progression-dependent effects of TREM2 deficiency in a mouse model of Alzheimer’s disease. J. Neurosci. 37, 637–647 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sanjana, N. E. Genome-scale CRISPR pooled screens. Anal. Biochem. 532, 95–99 (2017).

    Article  PubMed  CAS  Google Scholar 

  88. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006).

    Article  PubMed  CAS  Google Scholar 

  90. Xanthos, D. N. & Sandkühler, J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat. Rev. Neurosci. 15, 43–53 (2014).

    Article  PubMed  CAS  Google Scholar 

  91. Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl Acad. Sci. USA 113, E1738–E1746 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Shechter, R. et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med. 6, e1000113 (2009). This paper showed distinct and nonredundant roles of microglia and infiltrating macrophages in CNS pathology.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, eaal3222 (2017). This work compared expression of orthologous genes in human and mouse microglia and demonstrated the effect of culture condition on microglial transcriptional profile.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Pandya, H. et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat. Neurosci. 20, 753–759 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Beutner, C., Roy, K., Linnartz, B., Napoli, I. & Neumann, H. Generation of microglial cells from mouse embryonic stem cells. Nat. Protoc. 5, 1481–1494 (2010).

    Article  PubMed  CAS  Google Scholar 

  96. Takata, K. et al. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity 47, 183–198.e186 (2017).

    Article  PubMed  CAS  Google Scholar 

  97. Galatro, T. F. et al. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat. Neurosci. 20, 1162–1171 (2017). This study revealed differences in the expression profile of human and murine microglia and showed that discrepancies between the two increase with aging.

    Article  PubMed  CAS  Google Scholar 

  98. Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278–293.e9 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Schwarzbaum for editing the manuscript and G. Brodsky for figure artwork. I.A. is supported by the Chan Zuckerberg Initiative (CZI), an HHMI International Scholar award, European Research Council Consolidator Grant (ERC-COG) 724471-HemTree2.0, an MRA Established Investigator Award (509044), the Israel Science Foundation (703/15), the Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, a Helen and Martin Kimmel award for innovative investigation, a Minerva Stiftung research grant, the Israeli Ministry of Science, Technology, and Space, the David and Fela Shapell Family Foundation, a NeuroMac DFG/Transregional Collaborative Research Center Grant, and the Abramson Family Center for Young Scientists. M.S. is supported by the Advanced European Research Council (ERC-2016-ADG 741744), the Israel Science Foundation-Legacy Heritage Biomedical Science Partnership-research (grant 1354/15), Israel Science Foundation (grant 991/16), Consolidated Anti-Aging Foundation Chicago (2016-2017) and Adelis Foundation (2018-2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Schwartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deczkowska, A., Amit, I. & Schwartz, M. Microglial immune checkpoint mechanisms. Nat Neurosci 21, 779–786 (2018). https://doi.org/10.1038/s41593-018-0145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-018-0145-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing