Precise multimodal optical control of neural ensemble activity

Abstract

Understanding brain function requires technologies that can control the activity of large populations of neurons with high fidelity in space and time. We developed a multiphoton holographic approach to activate or suppress the activity of ensembles of cortical neurons with cellular resolution and sub-millisecond precision. Since existing opsins were inadequate, we engineered new soma-targeted (ST) optogenetic tools, ST-ChroME and IRES-ST-eGtACR1, optimized for multiphoton activation and suppression. Employing a three-dimensional all-optical read–write interface, we demonstrate the ability to simultaneously photostimulate up to 50 neurons distributed in three dimensions in a 550 × 550 × 100-µm3 volume of brain tissue. This approach allows the synthesis and editing of complex neural activity patterns needed to gain insight into the principles of neural codes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: ST-ChroME allows precise high-fidelity 2P activation.
Fig. 2: Fast, potent holographic suppression of neural activity.
Fig. 3: Creating and editing spatiotemporal neural activity in vivo.
Fig. 4: Spatiotemporal activation of cortical inhibition.
Fig. 5: All-optical read–write with high spatiotemporal fidelity.
Fig. 6: All optical suppression.
Fig. 7: Manipulating neural ensembles with high temporal and spatial precision.
Fig. 8: Altering population correlational structure with 2P ensemble stimulation.

References

  1. 1.

    London, M., Roth, A., Beeren, L., Häusser, M. & Latham, P. E. Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature 466, 123–127 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. 2.

    Gollisch, T. & Meister, M. Rapid neural coding in the retina with relative spike latencies. Science 319, 1108–1111 (2008).

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Histed, M. H. & Maunsell, J. H. R. Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony. Proc. Natl Acad. Sci. USA 111, E178–E187 (2014).

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Bruno, R. M. & Sakmann, B. Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312, 1622–1627 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Harris, K. D. & Mrsic-Flogel, T. D. Cortical connectivity and sensory coding. Nature 503, 51–58 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Panzeri, S., Harvey, C. D., Piasini, E., Latham, P. E. & Fellin, T. Cracking the neural code for sensory perception by combining statistics, intervention, and behavior. Neuron 93, 491–507 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Jepson, L. H. et al. High-fidelity reproduction of spatiotemporal visual signals for retinal prosthesis. Neuron 83, 87–92 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. 8.

    Clancy, K. B., Schnepel, P., Rao, A. T. & Feldman, D. E. Structure of a single whisker representation in layer 2 of mouse somatosensory cortex. J. Neurosci. 35, 3946–3958 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P. & Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Rickgauer, J. P. & Tank, D. W. Two-photon excitation of channelrhodopsin-2 at saturation. Proc. Natl Acad. Sci. USA 106, 15025–15030 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Vaziri, A. & Emiliani, V. Reshaping the optical dimension in optogenetics. Curr. Opin. Neurobiol. 22, 128–137 (2012).

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Packer, A. M. et al. Two-photon optogenetics of dendritic spines and neural circuits. Nat. Methods 9, 1202–1205 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171–1179 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Packer, A. M., Russell, L. E., Dalgleish, H. W. P. & Häusser, M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140–146 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Rickgauer, J. P., Deisseroth, K. & Tank, D. W. Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17, 1816–1824 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Carrillo-Reid, L., Yang, W., Bando, Y., Peterka, D. S. & Yuste, R. Imprinting and recalling cortical ensembles. Science 353, 691–694 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Emiliani, V., Cohen, A. E., Deisseroth, K. & Häusser, M. All-optical interrogation of neural circuits. J. Neurosci. 35, 13917–13926 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Dal Maschio, M., Donovan, J. C., Helmbrecht, T. O. & Baier, H. Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging. Neuron 94, 774–789.e5 (2017).

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Papagiakoumou, E. et al. Scanless two-photon excitation of channelrhodopsin-2. Nat. Methods 7, 848–854 (2010).

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Forli, A. et al. Two-photon bidirectional control and imaging of neuronal excitability with high spatial resolution in vivo. Cell Rep. 22, 3087–3098 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Nikolenko, V. et al. SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front. Neural Circuits 2, 5 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Papagiakoumou, E., de Sars, V., Oron, D. & Emiliani, V. Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. Opt. Express 16, 22039–22047 (2008).

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Emiliani, V. et al. Wave front engineering for microscopy of living cells. Opt. Express 13, 1395–1405 (2005).

    Article  PubMed  Google Scholar 

  24. 24.

    Ronzitti, E. et al. Submillisecond optogenetic control of neuronal firing by two-photon holographic photoactivation of Chronos. J. Neurosci. 37, 10679–10689 (2017).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  25. 25.

    Shemesh, O. A. et al. Temporally precise single-cell-resolution optogenetics. Nat. Neurosci. 20, 1796–1806 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Hernandez, O. et al. Three-dimensional spatiotemporal focusing of holographic patterns. Nat. Commun. 7, 11928 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Pégard, N. C. et al. Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT). Nat. Commun. 8, 1228 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349, 647–650 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Ahmadian, Y., Packer, A. M., Yuste, R. & Paninski, L. Designing optimal stimuli to control neuronal spike timing. J. Neurophysiol. 106, 1038–1053 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Baker, C. A., Elyada, Y. M., Parra, A. & Bolton, M. M. L. Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin. eLife 5, 1–15 (2016).

    Article  CAS  Google Scholar 

  32. 32.

    Wu, C., Ivanova, E., Zhang, Y. & Pan, Z. H. rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo. PLoS One 8, e66332 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Podgorski, K. & Ranganathan, G. Brain heating induced by near-infrared lasers during multiphoton microscopy. J. Neurophysiol. 116, 1012–1023 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Kato, H. E. et al. Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482, 369–374 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. 37.

    Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. 38.

    Govorunova, E. G., Sineshchekov, O. A. & Spudich, J. L. Proteomonas sulcata ACR1: a fast anion channelrhodopsin. Photochem. Photobiol. 92, 257–263 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Berndt, A. et al. Structural foundations of optogenetics: determinants of channelrhodopsin ion selectivity. Proc. Natl Acad. Sci. USA 113, 822–829 (2016).

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. 42.

    Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. 43.

    Wekselblatt, J. B., Flister, E. D., Piscopo, D. M. & Niell, C. M. Large-scale imaging of cortical dynamics during sensory perception and behavior. J. Neurophysiol. 115, 2852–2866 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. 44.

    Grewe, B. F., Voigt, F. F., van ’t Hoff, M. & Helmchen, F. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Opt. Express 2, 2035–2046 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. 45.

    Yang, W., Carrillo-Reid, L., Bando, Y., Peterka, D. S. & Yuste, R. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. eLife 7, e32671 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Adesnik, H. & Scanziani, M. Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464, 1155–1160 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Harris, K. D. & Thiele, A. Cortical state and attention. Nat. Rev. Neurosci. 12, 509–523 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. 48.

    Churchland, A. K. et al. Variance as a signature of neural computations during decision making. Neuron 69, 818–831 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. 49.

    Andrasfalvy, B. K., Zemelman, B. V., Tang, J. & Vaziri, A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl Acad. Sci. USA 107, 11981–11986 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 61–64 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. 51.

    Lim, S. T., Antonucci, D. E., Scannevin, R. H. & Trimmer, J. S. A novel targeting signal for proximal clustering of the Kv2.1 K+ channel in hippocampal neurons. Neuron 25, 385–397 (2000).

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik (Stuttg.) 35, 237–246 (1972).

    Google Scholar 

  53. 53.

    Zhang, J., Pégard, N., Zhong, J. & Waller, L. 3D computer generated holograms by nonconvex optimization. Optica 4, 1306–1313 (2017).

    Article  Google Scholar 

  54. 54.

    Pluta, S. et al. A direct translaminar inhibitory circuit tunes cortical output. Nat. Neurosci. 18, 1631–1640 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. 55.

    Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/061507 (2016).

Download references

Acknowledgements

We thank M. Feller, A. Naka, and J. Brown for critical feedback on the manuscript and discussions. We thank C. Baker and M. Bolton for soma-targeted ChR2 AAVs. We thank M. Li and the UC Berkeley Vision Science Core, Gene Delivery Module, for preparation of AAVs (supported by NIH Core Grant P30 EY003176). We deeply appreciate the efforts of D. Chu, C. Douglas, and R. Hakim for important technical assistance. We thank D. Taylor for help with mouse work and histology. H.A. is a New York Stem Cell Foundation-Robertson Investigator. This work was supported by The New York Stem Cell Foundation and by grants from the Arnold and Mabel Beckman Foundation, NINDS grant DP2NS087725-01, the McKnight Foundation, NINDS award F32NS095690-01 to A.R.M., the Simon’s Foundation Collaboration for the Global Brain award 415569 to I.A.O., and a fellowship from the David and Lucille Packard Foundation to L.W. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA), Contract No. N660011-17-C-4015.

Author information

Affiliations

Authors

Contributions

A.R.M., I.A.O., N.C.P. and H.A conceived the project and built the system. A.R.M. designed and performed all experiments involving excitatory opsins. I.A.O. designed and performed all experiments involving inhibitory opsins. N.C.P. designed and assembled the light paths and wrote custom holography software. S.S. performed cloning, mutagenesis, cell culture, and one-photon recordings in CHO cells. A.R.M., I.A.O., N.C.P., and E.H.L. wrote code and developed software for experimental control. K.C. performed histology. S.G.B. performed modeling of the Chronos pore region. L.W. contributed expertise on holographic design. A.R,M., I.A.O., N.C.P., and H.A. wrote the manuscript.

Corresponding author

Correspondence to Hillel Adesnik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–23

Reporting Summary

Supplementary Table 1 – Optical Setup References

This table provides details on each optical stimulation path used in this study and provides a quick reference to determine which experiments were performed using each setup

Supplementary Table 2 – 3D-SHOT 2.0

This table provides technical details and a calculation tool to allow readers to set up a 3D-SHOT stimulation path

Supplementary Video 1 – SLM performance limitations for high speed 3D-SHOT

This video demonstrates high speed switching of holograms at 300 Hz

Supplementary Video 2 – All-Optical Ensemble Stimulation in 3D

Average dF/F movies of ensembles stimulation data at 30 Hz as in Fig7-8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mardinly, A.R., Oldenburg, I.A., Pégard, N.C. et al. Precise multimodal optical control of neural ensemble activity. Nat Neurosci 21, 881–893 (2018). https://doi.org/10.1038/s41593-018-0139-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing