Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus

Abstract

Hippocampal network operations supporting spatial navigation and declarative memory are traditionally interpreted in a framework where each hippocampal area, such as the dentate gyrus, CA3, and CA1, consists of homogeneous populations of functionally equivalent principal neurons. However, heterogeneity within hippocampal principal cell populations, in particular within pyramidal cells at the main CA1 output node, is increasingly recognized and includes developmental, molecular, anatomical, and functional differences. Here we review recent progress in the delineation of hippocampal principal cell subpopulations by focusing on radially defined subpopulations of CA1 pyramidal cells, and we consider how functional segregation of information streams, in parallel channels with nonuniform properties, could represent a general organizational principle of the hippocampus supporting diverse behaviors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Hypothetical nature of parallel channels.
Fig. 2: Developmental, genetic, morphological, and intrinsic electrophysiological differences between radially defined CA1PC sublayers.
Fig. 3: Biased microcircuits and afferent–efferent connectivity of superficial and deep CA1PCs.
Fig. 4: Differential behavioral functions of radially defined CA1PCs subpopulations.

References

  1. 1.

    O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  PubMed  Google Scholar 

  2. 2.

    Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Hasselmo, M. E. How We Remember: Brain Mechanisms of Episodic Memory (MIT Press, Cambridge, MA, USA, 2011).

    Book  Google Scholar 

  4. 4.

    Eichenbaum, H. A cortical-hippocampal system for declarative memory. Nat. Rev. Neurosci. 1, 41–50 (2000).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, UK, 1978).

    Google Scholar 

  6. 6.

    Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Hartley, T., Lever, C., Burgess, N. & O’Keefe, J. Space in the brain: how the hippocampal formation supports spatial cognition. Phil. Trans. R. Soc. Lond. B 369, 20120510 (2013).

    Article  Google Scholar 

  8. 8.

    Buzsáki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130–138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Sosa, M., Gillespie, A. K. & Frank, L. M. Neural activity patterns underlying spatial coding in the hippocampus. Curr. Top. Behav. Neurosci. https://doi.org/10.1007/7854_2016_462 (2016)..

  10. 10.

    Oliva, A., Fernández-Ruiz, A., Buzsáki, G. & Berényi, A. Spatial coding and physiological properties of hippocampal neurons in the cornu ammonis subregions. Hippocampus 26, 1593–1607 (2016).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Hopfield, J. J. & Tank, D. W. Computing with neural circuits: a model. Science 233, 625–633 (1986).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Josselyn, S. A., Köhler, S. & Frankland, P. W. Finding the engram. Nat. Rev. Neurosci. 16, 521–534 (2015).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B 262, 23–81 (1971).

    CAS  Article  Google Scholar 

  15. 15.

    Morris, R. G. D. O. D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949. Brain Res. Bull. 50, 437 (1999).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Poo, M. M. et al. What is memory? The present state of the engram. BMC Biol. 14, 40 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Tonegawa, S., Liu, X., Ramirez, S. & Redondo, R. Memory engram cells have come of age. Neuron 87, 918–931 (2015).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Treves, A. & Rolls, E. T. Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391 (1994).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Holtmaat, A. & Caroni, P. Functional and structural underpinnings of neuronal assembly formation in learning. Nat. Neurosci. 19, 1553–1562 (2016).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Neves, G., Cooke, S. F. & Bliss, T. V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 9, 65–75 (2008).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Bliss, T. V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    CAS  Article  Google Scholar 

  22. 22.

    Kesner, R. P. & Rolls, E. T. A computational theory of hippocampal function, and tests of the theory: new developments. Neurosci. Biobehav. Rev. 48, 92–147 (2015).

    Article  PubMed  Google Scholar 

  23. 23.

    McClelland, J. L. & Goddard, N. H. Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus 6, 654–665 (1996).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Fanselow, M. S. & Poulos, A. M. The neuroscience of mammalian associative learning. Annu. Rev. Psychol. 56, 207–234 (2005).

    Article  PubMed  Google Scholar 

  27. 27.

    Morris, R. G., Garrud, P., Rawlins, J. N. & O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Maren, S., Phan, K. L. & Liberzon, I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 14, 417–428 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kim, J. J. & Fanselow, M. S. Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Squire, L. R. Memory systems of the brain: a brief history and current perspective. Neurobiol. Learn. Mem. 82, 171–177 (2004).

    Article  PubMed  Google Scholar 

  31. 31.

    Knierim, J. J., Lee, I. & Hargreaves, E. L. Hippocampal place cells: parallel input streams, subregional processing, and implications for episodic memory. Hippocampus 16, 755–764 (2006).

    Article  PubMed  Google Scholar 

  32. 32.

    Knierim, J. J., Neunuebel, J. P. & Deshmukh, S. S. Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames. Phil. Trans. R. Soc. Lond. B 369, 20130369 (2013).

    Article  Google Scholar 

  33. 33.

    Neunuebel, J. P., Yoganarasimha, D., Rao, G. & Knierim, J. J. Conflicts between local and global spatial frameworks dissociate neural representations of the lateral and medial entorhinal cortex. J. Neurosci. 33, 9246–9258 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Anderson, P., Morris, R., Amaral, D. G., Bliss, T. & O’Keefe, J. The Hippocampus Book (Oxford, UK, 2007)..

  35. 35.

    Cenquizca, L. A. & Swanson, L. W. Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res. Rev. 56, 1–26 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kaifosh, P. & Losonczy, A. Mnemonic functions for nonlinear dendritic integration in hippocampal pyramidal circuits. Neuron 90, 622–634 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Hasselmo, M. E., Fransen, E., Dickson, C. & Alonso, A. A. Computational modeling of entorhinal cortex. Ann. NY Acad. Sci. 911, 418–446 (2000).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Lisman, J. E. & Otmakhova, N. A. Storage, recall, and novelty detection of sequences by the hippocampus: elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus 11, 551–568 (2001).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Lorente De Nó, R. Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J. Psychol. Neurol. 46, 113–177 (1934).

    Google Scholar 

  40. 40.

    Slomianka, L., Amrein, I., Knuesel, I., Sørensen, J. C. & Wolfer, D. P. Hippocampal pyramidal cells: the reemergence of cortical lamination. Brain Struct. Funct. 216, 301–317 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Cembrowski, M. S. et al. Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron 89, 351–368 (2016). A study on gene expression of mouse CA1 pyramidal cells using next-generation RNA sequencing demonstrates the prominent heterogeneity of these cells along all main anatomical axes of the hippocampus.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Jarsky, T., Mady, R., Kennedy, B. & Spruston, N. Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus. J. Comp. Neurol. 506, 535–547 (2008).

    Article  PubMed  Google Scholar 

  43. 43.

    Lee, S. H. et al. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82, 1129–1144 (2014). In this study, the authors provide evidence for biased excitatory–inhibitory microcircuits in the mouse hippocampus. Deep CA1 pyramidal cells were found to receive stronger inhibition from parvalbumin-expressing basket cells, while superficial pyramidal cells were found to provide stronger excitatory inputs to basket cells. In addition, parvalbumin-expressing basket cells further segregated among deep pyramidal cells with different target projections.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Bannister, N. J. & Larkman, A. U. Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns. J. Comp. Neurol. 360, 150–160 (1995).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Maroso, M. et al. Cannabinoid control of learning and memory through HCN channels. Neuron 89, 1059–1073 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655–669 (2014).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Igarashi, K. M., Ito, H. T., Moser, E. I. & Moser, M. B. Functional diversity along the transverse axis of hippocampal area CA1. FEBS Lett. 588, 2470–2476 (2014).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Packer, A. M. & Yuste, R. Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J. Neurosci. 31, 13260–13271 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Fino, E. & Yuste, R. Dense inhibitory connectivity in neocortex. Neuron 69, 1188–1203 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Bodor, A. L. et al. Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J. Neurosci. 25, 6845–6856 (2005).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Fariñas, I. & DeFelipe, J. Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. I. The cell body. J. Comp. Neurol. 304, 53–69 (1991).

    Article  PubMed  Google Scholar 

  52. 52.

    Gittis, A. H., Nelson, A. B., Thwin, M. T., Palop, J. J. & Kreitzer, A. C. Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J. Neurosci. 30, 2223–2234 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Krook-Magnuson, E., Varga, C., Lee, S. H. & Soltesz, I. New dimensions of interneuronal specialization unmasked by principal cell heterogeneity. Trends Neurosci. 35, 175–184 (2012).

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Otsuka, T. & Kawaguchi, Y. Cortical inhibitory cell types differentially form intralaminar and interlaminar subnetworks with excitatory neurons. J. Neurosci. 29, 10533–10540 (2009).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Varga, C., Lee, S. Y. & Soltesz, I. Target-selective GABAergic control of entorhinal cortex output. Nat. Neurosci. 13, 822–824 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Yoshimura, Y. & Callaway, E. M. Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat. Neurosci. 8, 1552–1559 (2005).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Caroni, P. Inhibitory microcircuit modules in hippocampal learning. Curr. Opin. Neurobiol. 35, 66–73 (2015).

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Bezaire, M. J. & Soltesz, I. Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 23, 751–785 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Somogyi, P., Katona, L., Klausberger, T., Lasztóczi, B. & Viney, T. J. Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus. Phil. Trans. R. Soc. Lond. B 369, 20120518 (2013).

    Article  Google Scholar 

  62. 62.

    Katona, L. et al. Sleep and movement differentiates actions of two types of somatostatin-expressing GABAergic interneuron in rat hippocampus. Neuron 82, 872–886 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Klausberger, T. GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur. J. Neurosci. 30, 947–957 (2009).

    Article  PubMed  Google Scholar 

  64. 64.

    Varga, C., Golshani, P. & Soltesz, I. Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. Proc. Natl. Acad. Sci. USA 109, E2726–E2734 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Lapray, D. et al. Behavior-dependent specialization of identified hippocampal interneurons. Nat. Neurosci. 15, 1265–1271 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Viney, T. J. et al. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo. Nat. Neurosci. 16, 1802–1811 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Somogyi, P., Tamás, G., Lujan, R. & Buhl, E. H. Salient features of synaptic organisation in the cerebral cortex. Brain Res. Brain Res. Rev. 26, 113–135 (1998).

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Varga, C. et al. Functional fission of parvalbumin interneuron classes during fast network events. eLife https://doi.org/10.7554/eLife.04006 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Fariñas, I. & DeFelipe, J. Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. II. The axon initial segment. J. Comp. Neurol. 304, 70–77 (1991).

    Article  PubMed  Google Scholar 

  71. 71.

    Kjelstrup, K. G. et al. Reduced fear expression after lesions of the ventral hippocampus. Proc. Natl. Acad. Sci. USA 99, 10825–10830 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Moser, E., Moser, M. B. & Andersen, P. Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J. Neurosci. 13, 3916–3925 (1993).

    CAS  PubMed  Google Scholar 

  73. 73.

    Fanselow, M. S. & Dong, H.-W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7–19 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Moser, M. B. & Moser, E. I. Functional differentiation in the hippocampus. Hippocampus 8, 608–619 (1998).

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Burke, S. N. et al. The influence of objects on place field expression and size in distal hippocampal CA1. Hippocampus 21, 783–801 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Hartzell, A. L. et al. Transcription of the immediate-early gene Arc in CA1 of the hippocampus reveals activity differences along the proximodistal axis that are attenuated by advanced age. J. Neurosci. 33, 3424–3433 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Nakazawa, Y., Pevzner, A., Tanaka, K. Z. & Wiltgen, B. J. Memory retrieval along the proximodistal axis of CA1. Hippocampus 26, 1140–1148 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Ito, H. T. & Schuman, E. M. Functional division of hippocampal area CA1 via modulatory gating of entorhinal cortical inputs. Hippocampus 22, 372–387 (2012).

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Sauvage, M. M., Nakamura, N. H. & Beer, Z. Mapping memory function in the medial temporal lobe with the immediate-early gene Arc. Behav. Brain Res. 254, 22–33 (2013).

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Nakamura, N. H., Flasbeck, V., Maingret, N., Kitsukawa, T. & Sauvage, M. M. Proximodistal segregation of nonspatial information in CA3: preferential recruitment of a proximal CA3-distal CA1 network in nonspatial recognition memory. J. Neurosci. 33, 11506–11514 (2013).

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Mizuseki, K., Diba, K., Pastalkova, E. & Buzsáki, G. Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nat. Neurosci. 14, 1174–1181 (2011). In this work, the authors used multielectrode recordings to compare in vivo physiological properties of superficial and deep CA1 pyramidal cells in rats. Deep pyramidal cells fired at higher rates, burst more frequently, were more likely to have place fields, and were more strongly modulated by slow oscillations during sleep.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Valero, M. et al. Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples. Nat. Neurosci. 18, 1281–1290 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Stark, E. et al. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron 83, 467–480 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Valero, M. et al. Mechanisms for selective single-cell reactivation during offline sharp-wave ripples and their distortion by fast ripples. Neuron 94, 1234–1247.e7 (2017).

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Danielson, N. B. et al. Sublayer-specific coding dynamics during spatial navigation and learning in hippocampal area CA1. Neuron 91, 652–665 (2016). Here the authors used two-photon calcium imaging of CA1 radial sublayers in the mouse hippocampus during head-fixed behaviors. Findings in this study demonstrate that superficial CA1 pyramidal cells provide a more stable map of an environment, while the deep sublayer provides a more flexible representation that is shaped by learning about salient environmental features (reward).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Dupret, D., O’Neill, J. & Csicsvari, J. Dynamic reconfiguration of hippocampal interneuron circuits during spatial learning. Neuron 78, 166–180 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Hok, V. et al. Goal-related activity in hippocampal place cells. J. Neurosci. 27, 472–482 (2007).

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Hollup, S. A., Molden, S., Donnett, J. G., Moser, M. B. & Moser, E. I. Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J. Neurosci. 21, 1635–1644 (2001).

    CAS  PubMed  Google Scholar 

  89. 89.

    Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D. & Kandel, E. R. Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42, 283–295 (2004).

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Geiller, T., Fattahi, M., Choi, J. S. & Royer, S. Place cells are more strongly tied to landmarks in deep than in superficial CA1. Nat. Commun. 8, 14531 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Henriksen, E. J. et al. Spatial representation along the proximodistal axis of CA1. Neuron 68, 127–137 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M. B. & Moser, E. I. Coordination of entorhinal-hippocampal ensemble activity during associative learning. Nature 510, 143–147 (2014).

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Masurkar, A. V. et al. Medial and lateral entorhinal cortex differentially excite deep versus superficial CA1 pyramidal neurons. Cell Rep. 18, 148–160 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Li, Y. et al. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat. Neurosci. 20, 559–570 (2017).This study demonstrates that a calbindin-expressing subpopulation of CA1 pyramidal cells in the mouse hippocampus receives stronger excitation from the lateral entorhinal cortex and supports olfactory associative learning.

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Kohara, K. et al. Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat. Neurosci. 17, 269–279 (2014).

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Ciocchi, S., Passecker, J., Malagon-Vina, H., Mikus, N. & Klausberger, T. Brain computation. Selective information routing by ventral hippocampal CA1 projection neurons. Science 348, 560–563 (2015).

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    Okuyama, T., Kitamura, T., Roy, D. S., Itohara, S. & Tonegawa, S. Ventral CA1 neurons store social memory. Science 353, 1536–1541 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Xu, C. et al. Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell 167, 961–972.e16 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Arszovszki, A., Borhegyi, Z. & Klausberger, T. Three axonal projection routes of individual pyramidal cells in the ventral CA1 hippocampus. Front. Neuroanat. 8, 53 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Deguchi, Y., Donato, F., Galimberti, I., Cabuy, E. & Caroni, P. Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus. Nat. Neurosci. 14, 495–504 (2011). This seminal work was the first to demonstrate that developmentally related subpopulations of principal cells are selectively interconnected across the mouse hippocampus, demonstrating the presence of parallel connectivity channels assembled from distinct principal cell subpopulations in the hippocampus.

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Moser, E. I. The multi-laned hippocampus. Nat. Neurosci. 14, 407–408 (2011).

    CAS  Article  PubMed  Google Scholar 

  102. 102.

    Yu, Y.-C., Bultje, R. S., Wang, X. & Shi, S.-H. Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature 458, 501–504 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Yu, Y.-C. et al. Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly. Nature 486, 113–117 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Li, Y. et al. Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature 486, 118–121 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Ohtsuki, G. et al. Similarity of visual selectivity among clonally related neurons in visual cortex. Neuron 75, 65–72 (2012).

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Schultz, S. R. & Rolls, E. T. Analysis of information transmission in the Schaffer collaterals. Hippocampus 9, 582–598 (1999).

    CAS  Article  PubMed  Google Scholar 

  107. 107.

    van Dijk, R. M., Huang, S. H., Slomianka, L. & Amrein, I. Taxonomic separation of hippocampal networks: principal cell populations and adult neurogenesis. Front. Neuroanat. 10, 22 (2016).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Treves, A. Quantitative estimate of the information relayed by the Schaffer collaterals. J. Comput. Neurosci. 2, 259–272 (1995).

    CAS  Article  PubMed  Google Scholar 

  109. 109.

    Xu, H. T. et al. Distinct lineage-dependent structural and functional organization of the hippocampus. Cell 157, 1552–1564 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Marissal, T. et al. Pioneer glutamatergic cells develop into a morpho-functionally distinct population in the juvenile CA3 hippocampus. Nat. Commun. 3, 1316 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Donato, F., Chowdhury, A., Lahr, M. & Caroni, P. Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning. Neuron 85, 770–786 (2015).

    CAS  Article  PubMed  Google Scholar 

  112. 112.

    Donato, F., Rompani, S. B. & Caroni, P. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504, 272–276 (2013).

    CAS  Article  PubMed  Google Scholar 

  113. 113.

    Bloodgood, B. L., Sharma, N., Browne, H. A., Trepman, A. Z. & Greenberg, M. E. The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition. Nature 503, 121–125 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Spiegel, I. et al. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs. Cell 157, 1216–1229 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Ahmed, O. J. & Mehta, M. R. The hippocampal rate code: anatomy, physiology and theory. Trends Neurosci. 32, 329–338 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Witharana, W. K. et al. Nonuniform allocation of hippocampal neurons to place fields across all hippocampal subfields. Hippocampus 26, 1328–1344 (2016).

    CAS  Article  PubMed  Google Scholar 

  117. 117.

    Leutgeb, S. et al. Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309, 619–623 (2005).

    CAS  Article  PubMed  Google Scholar 

  118. 118.

    Rich, P. D., Liaw, H. P. & Lee, A. K. Place cells. Large environments reveal the statistical structure governing hippocampal representations. Science 345, 814–817 (2014).

    CAS  Article  PubMed  Google Scholar 

  119. 119.

    Colgin, L. L., Moser, E. I. & Moser, M.-B. Understanding memory through hippocampal remapping. Trends Neurosci. 31, 469–477 (2008).

    CAS  Article  PubMed  Google Scholar 

  120. 120.

    Buzsáki, G. & Mizuseki, K. The log-dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci. 15, 264–278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469, 397–401 (2011).

    CAS  Article  PubMed  Google Scholar 

  122. 122.

    Dragoi, G. & Tonegawa, S. Selection of preconfigured cell assemblies for representation of novel spatial experiences. Phil. Trans. R. Soc. Lond. B 369, 20120522 (2013).

    Article  Google Scholar 

  123. 123.

    Grosmark, A. D. & Buzsáki, G. Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences. Science 351, 1440–1443 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Druckmann, S. et al. Structured synaptic connectivity between hippocampal regions. Neuron 81, 629–640 (2014).

    CAS  Article  PubMed  Google Scholar 

  125. 125.

    Graves, A. R., Moore, S. J., Spruston, N., Tryba, A. K. & Kaczorowski, C. C. Brain-derived neurotrophic factor differentially modulates excitability of two classes of hippocampal output neurons. J. Neurophysiol. 116, 466–471 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Oliva, A., Fernández-Ruiz, A., Buzsáki, G. & Berényi, A. Role of hippocampal CA2 region in triggering sharp-wave ripples. Neuron 91, 1342–1355 (2016).

    CAS  Article  PubMed  Google Scholar 

  127. 127.

    Thompson, C. L. et al. Genomic anatomy of the hippocampus. Neuron 60, 1010–1021 (2008).

    CAS  Article  PubMed  Google Scholar 

  128. 128.

    Kowalski, J., Gan, J., Jonas, P. & Pernía-Andrade, A. J. Intrinsic membrane properties determine hippocampal differential firing pattern in vivo in anesthetized rats. Hippocampus 26, 668–682 (2016).

    Article  PubMed  Google Scholar 

  129. 129.

    Sun, Q. et al. Proximodistal heterogeneity of hippocampal CA3 pyramidal neuron intrinsic properties, connectivity, and reactivation during memory recall. Neuron 95, 656–672.e3 (2017).

    CAS  Article  PubMed  Google Scholar 

  130. 130.

    Hunt, D.L. & Spruston, N. Cell-type specific participation in sharp-wave dynamics in the CA3 region of the hippocampus. Society for Neuroscience 2016 Abstract 303.03, http://www.abstractsonline.com/pp8/index.html#!/4071/presentation/24080 (2016).

  131. 131.

    Kempermann, G., Song, H. & Gage, F. H. Neurogenesis in the adult hippocampus. Cold Spring Harb. Perspect. Biol. 7, a018812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Molinari, S. et al. Deficits in memory and hippocampal long-term potentiation in mice with reduced calbindin D28K expression. Proc. Natl. Acad. Sci. USA 93, 8028–8033 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Nielsen, J. V., Nielsen, F. H., Ismail, R., Noraberg, J. & Jensen, N. A. Hippocampus-like corticoneurogenesis induced by two isoforms of the BTB-zinc finger gene Zbtb20 in mice. Development 134, 1133–1140 (2007).

    CAS  Article  PubMed  Google Scholar 

  134. 134.

    Ren, A. et al. Regulation of hippocampus-dependent memory by the zinc finger protein Zbtb20 in mature CA1 neurons. J. Physiol. (Lond.) 590, 4917–4932 (2012).

    CAS  Article  Google Scholar 

  135. 135.

    Nielsen, J. V., Blom, J. B., Noraberg, J. & Jensen, N. A. Zbtb20-induced CA1 pyramidal neuron development and area enlargement in the cerebral midline cortex of mice. Cereb. Cortex 20, 1904–1914 (2010).

    Article  PubMed  Google Scholar 

  136. 136.

    Sotres-Bayon, F., Sierra-Mercado, D., Pardilla-Delgado, E. & Quirk, G. J. Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron 76, 804–812 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Hayashi, K., Kubo, K., Kitazawa, A. & Nakajima, K. Cellular dynamics of neuronal migration in the hippocampus. Front. Neurosci. 9, 135 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Bayer, S. A. Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J. Comp. Neurol. 190, 87–114 (1980).

    CAS  Article  PubMed  Google Scholar 

  139. 139.

    Rakic, P. & Nowakowski, R. S. The time of origin of neurons in the hippocampal region of the rhesus monkey. J. Comp. Neurol. 196, 99–128 (1981).

    CAS  Article  PubMed  Google Scholar 

  140. 140.

    Altman, J. & Bayer, S. A. Prolonged sojourn of developing pyramidal cells in the intermediate zone of the hippocampus and their settling in the stratum pyramidale. J. Comp. Neurol. 301, 343–364 (1990).

    CAS  Article  PubMed  Google Scholar 

  141. 141.

    Kitazawa, A. et al. Hippocampal pyramidal neurons switch from a multipolar migration mode to a novel “climbing” migration mode during development. J. Neurosci. 34, 1115–1126 (2014).

    CAS  Article  PubMed  Google Scholar 

  142. 142.

    O’Rourke, N. A., Chenn, A. & McConnell, S. K. Postmitotic neurons migrate tangentially in the cortical ventricular zone. Development 124, 997–1005 (1997).

    PubMed  Google Scholar 

  143. 143.

    Cembrowski, M. S., Wang, L., Sugino, K., Shields, B. C. & Spruston, N. Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. eLife 5, e14997 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Dong, H. W., Swanson, L. W., Chen, L., Fanselow, M. S. & Toga, A. W. Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1. Proc. Natl. Acad. Sci. USA 106, 11794–11799 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    CAS  Article  PubMed  Google Scholar 

  146. 146.

    Leonardo, E. D., Richardson-Jones, J. W., Sibille, E., Kottman, A. & Hen, R. Molecular heterogeneity along the dorsal-ventral axis of the murine hippocampal CA1 field: a microarray analysis of gene expression. Neuroscience 137, 177–186 (2006).

    CAS  Article  PubMed  Google Scholar 

  147. 147.

    Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Cembrowski, M. S. & Spruston, N. Integrating results across methodologies is essential for producing robust neuronal taxonomies. Neuron 94, 747–751.e1 (2017).

    CAS  Article  PubMed  Google Scholar 

  149. 149.

    Shah, S., Lubeck, E., Zhou, W. & Cai, L. seqFISH accurately detects transcripts in single cells and reveals robust spatial organization in the hippocampus. Neuron 94, 752–758.e1 (2017).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank T. Klausberger for initial discussions and G. Fishell for advice. The work was supported by US National Institutes of Health grants NS94668 and NS104590 (to I.S. and A.L.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Attila Losonczy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soltesz, I., Losonczy, A. CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus. Nat Neurosci 21, 484–493 (2018). https://doi.org/10.1038/s41593-018-0118-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing