A three-dimensional single-cell-resolution mammalian brain atlas will accelerate systems-level identification and analysis of cellular circuits underlying various brain functions. However, its construction requires efficient subcellular-resolution imaging throughout the entire brain. To address this challenge, we developed a fluorescent-protein-compatible, whole-organ clearing and homogeneous expansion protocol based on an aqueous chemical solution (CUBIC-X). The expanded, well-cleared brain enabled us to construct a point-based mouse brain atlas with single-cell annotation (CUBIC-Atlas). CUBIC-Atlas reflects inhomogeneous whole-brain development, revealing a significant decrease in the cerebral visual and somatosensory cortical areas during postnatal development. Probabilistic activity mapping of pharmacologically stimulated Arc-dVenus reporter mouse brains onto CUBIC-Atlas revealed the existence of distinct functional structures in the hippocampal dentate gyrus. CUBIC-Atlas is shareable by an open-source web-based viewer, providing a new platform for whole-brain cell profiling.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

  2. 2.

    Mikula, S., Trotts, I., Stone, J. M. & Jones, E. G. Internet-enabled high-resolution brain mapping and virtual microscopy. Neuroimage 35, 9–15 (2007).

  3. 3.

    Amunts, K. et al. BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013).

  4. 4.

    Calabrese, E. et al. A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. Neuroimage 117, 408–416 (2015).

  5. 5.

    Rohlfing, T. et al. The INIA19 template and NeuroMaps Atlas for primate brain image parcellation and spatial normalization. Front. Neuroinform. 6, 27 (2012).

  6. 6.

    Johnson, G. A. et al. Waxholm space: an image-based reference for coordinating mouse brain research. Neuroimage 53, 365–372 (2010).

  7. 7.

    Papp, E. A., Leergaard, T. B., Calabrese, E., Johnson, G. A. & Bjaalie, J. G. Waxholm Space atlas of the Sprague Dawley rat brain. Neuroimage 97, 374–386 (2014).

  8. 8.

    Dong, H. W. Allen Reference Atlas. A Digital Color Brain Atlas of the C57BL/6J Male Mouse (Wiley, Hoboken, NJ, USA, 2008).

  9. 9.

    Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

  10. 10.

    Kasukawa, T. et al. Quantitative expression profile of distinct functional regions in the adult mouse brain. PLoS One 6, e23228 (2011).

  11. 11.

    Okamura-Oho, Y. et al. Transcriptome tomography for brain analysis in the web-accessible anatomical space. PLoS One 7, e45373 (2012).

  12. 12.

    Kim, Y. et al. Mapping social behavior-induced brain activation at cellular resolution in the mouse. Cell Rep. 10, 292–305 (2015).

  13. 13.

    Vousden, D. A. et al. Whole-brain mapping of behaviourally induced neural activation in mice. Brain Struct. Funct. 220, 2043–2057 (2015).

  14. 14.

    Tatsuki, F. et al. Involvement of Ca(2+)-dependent hyperpolarization in sleep duration in mammals. Neuron 90, 70–85 (2016).

  15. 15.

    Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

  16. 16.

    Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4, e10032 (2015).

  17. 17.

    Vélez-Fort, M. et al. The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing. Neuron 83, 1431–1443 (2014).

  18. 18.

    Dodt, H. U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007).

  19. 19.

    Ertürk, A. et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7, 1983–1995 (2012).

  20. 20.

    Pan, C. et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods 13, 859–867 (2016).

  21. 21.

    Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

  22. 22.

    Yang, B. et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945–958 (2014).

  23. 23.

    Susaki, E. A. et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157, 726–739 (2014).

  24. 24.

    Susaki, E. A. & Ueda, H. R. Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem. Biol. 23, 137–157 (2016).

  25. 25.

    Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015).

  26. 26.

    Treweek, J. B. et al. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat. Protoc. 10, 1860–1896 (2015).

  27. 27.

    Ku, T. et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat. Biotechnol. 34, 973–981 (2016).

  28. 28.

    Chang, J. B. et al. Iterative expansion microscopy. Nat. Methods 14, 593–599 (2017).

  29. 29.

    Tillberg, P. W. et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987–992 (2016).

  30. 30.

    Hama, H. et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14, 1481–1488 (2011).

  31. 31.

    Tainaka, K., Kuno, A., Kubota, S. I., Murakami, T. & Ueda, H. R. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu. Rev. Cell Dev. Biol. 32, 713–741 (2016).

  32. 32.

    Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008).

  33. 33.

    Shimada, T., Kato, K., Kamikouchi, A. & Ito, K. Analysis of the distribution of the brain cells of the fruit fly by an automatic cell counting algorithm. Physica A 350, 144–149 (2005).

  34. 34.

    Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

  35. 35.

    Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

  36. 36.

    Chechik, G., Meilijson, I. & Ruppin, E. Synaptic pruning in development: a computational account. Neural Comput. 10, 1759–1777 (1998).

  37. 37.

    Fanselow, M. S. & Dong, H. W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7–19 (2010).

  38. 38.

    Herculano-Houzel, S. et al. Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs). Brain Behav. Evol. 78, 302–314 (2011).

  39. 39.

    von Bartheld, C. S., Bahney, J. & Herculano-Houzel, S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J. Comp. Neurol. 524, 3865–3895 (2016).

  40. 40.

    Herculano-Houzel, S., Mota, B. & Lent, R. Cellular scaling rules for rodent brains. Proc. Natl. Acad. Sci. USA 103, 12138–12143 (2006).

  41. 41.

    Herculano-Houzel, S., Messeder, D. J., Fonseca-Azevedo, K. & Pantoja, N. A. When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals. Front. Neuroanat. 9, 64 (2015).

  42. 42.

    Williams, R. W. Mapping genes that modulate brain development: a quantitative genetic approach. in: Mouse Brain Development. Results and Problems in Cell Differentiation (eds. A. M. Goffinet & P. Rakic) 21–49. Springer Verlag, Berlin, 2000).

  43. 43.

    Seiriki, K. et al. High-Speed and scalable whole-brain imaging in rodents and primates. Neuron 94, 1085–1100.e6 (2017).

  44. 44.

    Dauer, W. & Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron 39, 889–909 (2003).

  45. 45.

    Sahay, A. & Hen, R. Adult hippocampal neurogenesis in depression. Nat. Neurosci. 10, 1110–1115 (2007).

  46. 46.

    Cowan, W. M., Fawcett, J. W., O’Leary, D. D. & Stanfield, B. B. Regressive events in neurogenesis. Science 225, 1258–1265 (1984).

  47. 47.

    Vanderhaeghen, P. & Cheng, H. J. Guidance molecules in axon pruning and cell death. Cold Spring Harb. Perspect. Biol. 2, a001859 (2010).

  48. 48.

    Rice, D. & Barone, S. Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect. 108, 511–533 (2000). Suppl 3.

  49. 49.

    Rusu, R.B. & Cousins, S. 3D is here: Point Cloud Library (PCL). IEEE Int. Conf. Robot https://doi.org/10.1109/ICRA.2011.5980567 (2011).

  50. 50.

    Saalfeld, S., Cardona, A., Hartenstein, V. & Tomancak, P. CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics 25, 1984–1986 (2009).

  51. 51.

    Inamura, N. et al. Gene induction in mature oligodendrocytes with a PLP-tTA mouse line. Genesis 50, 424–428 (2012).

  52. 52.

    Tanaka, K. F. et al. Flexible Accelerated STOP Tetracycline Operator-knockin (FAST): a versatile and efficient new gene modulating system. Biol. Psychiatry 67, 770–773 (2010).

  53. 53.

    Kanemaru, K. et al. In vivo visualization of subtle, transient, and local activity of astrocytes using an ultrasensitive Ca(2+) indicator. Cell Rep. 8, 311–318 (2014).

  54. 54.

    Abe, T. et al. Establishment of conditional reporter mouse lines at ROSA26 locus for live cell imaging. Genesis 49, 579–590 (2011).

  55. 55.

    Hale, G. M. & Querry, M. R. Optical constants of water in the 200-nm to 200-microm wavelength region. Appl. Opt. 12, 555–563 (1973).

  56. 56.

    Cope, M., Delpy, D. T., Wray, S., Wyatt, J. S. & Reynolds, E. O. A CCD spectrophotometer to quantitate the concentration of chromophores in living tissue utilising the absorption peak of water at 975 nm. Adv. Exp. Med. Biol. 248, 33–40 (1989).

  57. 57.

    Wray, S., Cope, M., Delpy, D. T., Wyatt, J. S. & Reynolds, E. O. Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim. Biophys. Acta 933, 184–192 (1988).

  58. 58.

    Ke, M. T. et al. Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Rep. 14, 2718–2732 (2016).

  59. 59.

    Aoyagi, Y., Kawakami, R., Osanai, H., Hibi, T. & Nemoto, T. A rapid optical clearing protocol using 2,2′-thiodiethanol for microscopic observation of fixed mouse brain. PLoS One 10, e0116280 (2015).

  60. 60.

    Costantini, I. et al. A versatile clearing agent for multi-modal brain imaging. Sci. Rep. 5, 9808 (2015).

  61. 61.

    Schwarz, M. K. et al. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains. PLoS One 10, e0124650 (2015).

  62. 62.

    Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011).

  63. 63.

    Murphy, K. et al. Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. IEEE Trans. Med. Imaging 30, 1901–1920 (2011).

  64. 64.

    Frangi, A. F., Niessen, W. J., Vincken, K. L. & Viergever, M. A. Multiscale vessel enhancement filtering. Lect. Notes Comput. Sci. 1496, 130–137 (1998).

  65. 65.

    Bria, A. & Iannello, G. TeraStitcher - a tool for fast automatic 3D-stitching of teravoxel-sized microscopy images. BMC Bioinformatics 13, 316 (2012).

  66. 66.

    Hagberg, A.A., Schult, D.A. & Swart, P.J. in Proceedings of the 7th Python in Science Conference (SciPy2008) (eds. Varoquaux, G., Vaught, T., Millman, J.) 11–15 (2008).

  67. 67.

    Bastian, M., Heymann, S. & Jacomy, M. in International AAAI Conference on Weblogs and Social Media https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154 (2009).

  68. 68.

    Warnes, G.R. et al. gplots: various R programming tools for plotting data. R package version 2 https://cran.r-project.org/web/packages/gplots/index.html (2009).

Download references


We thank all lab members at The University of Tokyo and RIKEN QBiC, in particular: A. Millius and W. Kylius for editing, E.A. Susaki and A. Kuno for discovering the tissue-swelling phenomenon, S. Shoi for helping with statistical analysis, K. Yoshida for helping with the decomposing transformation matrix, and C. Shimizu for supporting swelling experiments. We also thank H. Hayakawa and S. Jiang for supporting the preparation of a C57BL/6 J mouse brain, D. Perrin and H. Yukinaga for informatics instruction, J. Kaneshiro, T. Watanabe and Olympus Engineering for helping design the microscope, T. Mitani and K. Matsumoto for reproducibility confirmation, S. Takano, S. Yamazoe and T. Tsukuda for the measurements of zeta potentials and Bitplane for instruction of Imaris 8.1.2. This work was supported by a grant from AMED-CREST (AMED/MEXT, grant number JP17gm0610006, to H.R.U.), CREST (JST/MEXT, to H.R.U.), Brain/MINDS (AMED/MEXT, grant number JP17dm0207049, to H.R.U. and H. M.), Basic Science and Platform Technology Program for Innovative Biological Medicine (AMED/MEXT, grant number JP17am0301025, to H.R.U.), Translational Research Network Program from Japan Agency for Medical Research and development (AMED, to H.M.), World Premier International Research Center Initiative (MEXT, to H.R.U), a Grant-in-Aid for Scientific Research (JSPS KAKENHI, grant number 16 J05041, to T.C.M.), a Grant-in-Aid for Scientific Research (S) (JSPS KAKENHI, grant number 25221004, to H.R.U.), Grant-in-Aid for Challenging Exploratory Research (JSPS KAKENHI, grant number 16K15124, to K.T.), a Grant-in-Aid for Scientific Research on Innovative Areas (JSPS KAKENHI, grant number 23115006, to H.R.U., 15H01558, to H.M., 17H05688, to K.T.), and a Grant-in-Aid from the Naito Foundation (to K.T.).

Author information


  1. Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

    • Tatsuya C. Murakami
    • , Tomoyuki Mano
    • , Daichi Shigeta
    • , Kazuki Tainaka
    •  & Hiroki R. Ueda
  2. International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan

    • Tomoyuki Mano
    •  & Hiroki R. Ueda
  3. Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan

    • Shu Saikawa
  4. Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Osaka, Japan

    • Shuhei A. Horiguchi
    •  & Hiroki R. Ueda
  5. Department of Systems Science, School of Engineering Science, Osaka University, Osaka, Japan

    • Shuhei A. Horiguchi
  6. Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan

    • Kousuke Baba
    •  & Hideki Mochizuki
  7. Department of Kampo Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan

    • Kousuke Baba
  8. Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

    • Hiroshi Sekiya
    •  & Masamitsu Iino
  9. Laboratory for Cell-Free Protein Synthesis, RIKEN Quantitative Biology Center, Osaka, Japan

    • Yoshihiro Shimizu
  10. Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan

    • Kenji F. Tanaka
  11. Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan

    • Hiroshi Kiyonari
  12. Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan

    • Masamitsu Iino
  13. Brain Research Institute, Niigata University, Niigata, Japan

    • Kazuki Tainaka


  1. Search for Tatsuya C. Murakami in:

  2. Search for Tomoyuki Mano in:

  3. Search for Shu Saikawa in:

  4. Search for Shuhei A. Horiguchi in:

  5. Search for Daichi Shigeta in:

  6. Search for Kousuke Baba in:

  7. Search for Hiroshi Sekiya in:

  8. Search for Yoshihiro Shimizu in:

  9. Search for Kenji F. Tanaka in:

  10. Search for Hiroshi Kiyonari in:

  11. Search for Masamitsu Iino in:

  12. Search for Hideki Mochizuki in:

  13. Search for Kazuki Tainaka in:

  14. Search for Hiroki R. Ueda in:


H.R.U., T.C.M., T.M. and K.T. designed the study. T.C.M., T.M. and S.S. performed most of the experiments. S.A.H. contributed to CATMAID data sharing. D.S. designed CAD. K.B. and H.M. prepared C57BL/6 mouse brains. H.S., M.I. and K.F.T. produced PLP-YFP and Mlc1-YFP mice. Y.S. produced recombinant fluorescent proteins. H.K. produced R26-H2B-EGFP mice. H.R.U., T.C.M., T.M. and K.T. wrote the manuscript. All authors discussed the results and commented on the manuscript text.

Competing interests

T.C.M., K.T. and H.R.U. have filed patent application for the CUBIC-X technique. Part of this study was done in collaboration with Olympus Corporation.

Corresponding author

Correspondence to Hiroki R. Ueda.

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1–22

  2. Life Sciences Reporting Summary

  3. Supplementary Table 1

    The list of 11 chemicals with high swelling ability. Eleven chemicals with high swelling ability selected in Fig. 1d are described. Chemical number, chemical name, CAS number, supplier, catalog number and cost are shown.

  4. Supplementary Table 2

    Parts list of the customized LSFM. The parts of customized LSFM are categorized into 10 modules: optical table, laser, illumination rail systems, illumination relay systems, illumination sheet generative systems, sample chamber systems, sample positioning systems, detection systems, microscope control unit, and image processing servers.

  5. Supplementary Table 3

    Total cell numbers for 8-week-old C57BL/6N male mice in each brain area. We list graph order in Fig. 4l, Allen Brain Atlas (ABA) ID, name of the area, acronym, RGB color value and cell numbers for three independent brains from 8-week-old C57BL/6N male mice. We referred to the ABA website for the name and acronym. RGB colors originally allocated in ABA were slightly modified to avoid duplication among the different brain areas.

  6. Supplementary Video 1

    CAD movie showing the imaging sequences of the customized LSFM.

  7. Supplementary Video 2

    Comprehensive cell detection with PI-stained CUBIC-X brain around the third ventricle.

  8. Supplementary Video 3

    3D rendering of CUBICAtlas with representative anatomical annotation.

  9. Supplementary Video 4

    3D rendering of CUBICAtlas at single-cell resolution.

  10. Supplementary Software

About this article

Publication history