Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neural mediators of changes of mind about perceptual decisions

Abstract

Changing one’s mind on the basis of new evidence is a hallmark of cognitive flexibility. To revise our confidence in a previous decision, we should use new evidence to update beliefs about choice accuracy. How this process unfolds in the human brain, however, remains unknown. Here we manipulated whether additional sensory evidence supports or negates a previous motion direction discrimination judgment while recording markers of neural activity in the human brain using fMRI. A signature of post-decision evidence (change in log-odds correct) was selectively observed in the activity of posterior medial frontal cortex. In contrast, distinct activity profiles in anterior prefrontal cortex mediated the impact of post-decision evidence on subjective confidence, independently of changes in decision value. Together our findings reveal candidate neural mediators of post-decisional changes of mind in the human brain and indicate possible targets for ameliorating deficits in cognitive flexibility.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Post-decision evidence task and computational framework.
Fig. 2: Behavioral results.
Fig. 3: Neural signatures of post-decision evidence.
Fig. 4: Neural signatures of final confidence in choice.
Fig. 5: Neural mediation of PDE on final confidence.

References

  1. Kiani, R., Cueva, C. J., Reppas, J. B. & Newsome, W. T. Dynamics of neural population responses in prefrontal cortex indicate changes of mind on single trials. Curr. Biol. 24, 1542–1547 (2014).

    CAS  Article  PubMed  Google Scholar 

  2. Resulaj, A., Kiani, R., Wolpert, D. M. & Shadlen, M. N. Changes of mind in decision-making. Nature 461, 263–266 (2009).

    CAS  Article  PubMed  Google Scholar 

  3. van den Berg, R. et al. A common mechanism underlies changes of mind about decisions and confidence. Elife 5, e12192 (2016).

    PubMed  Google Scholar 

  4. Pleskac, T. J. & Busemeyer, J. R. Two-stage dynamic signal detection: a theory of choice, decision time, and confidence. Psychol. Rev. 117, 864–901 (2010).

    Article  PubMed  Google Scholar 

  5. Pouget, A., Drugowitsch, J. & Kepecs, A. Confidence and certainty: distinct probabilistic quantities for different goals. Nat. Neurosci. 19, 366–374 (2016).

    CAS  Article  PubMed  Google Scholar 

  6. Bronfman, Z. Z. et al. Decisions reduce sensitivity to subsequent information. Proc. Biol. Sci. 282, 20150228 (2015).

    Article  PubMed  Google Scholar 

  7. Yu, S., Pleskac, T. J. & Zeigenfuse, M. D. Dynamics of postdecisional processing of confidence. J. Exp. Psychol. Gen. 144, 489–510 (2015).

    Article  PubMed  Google Scholar 

  8. Carter, C. S. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747–749 (1998).

    CAS  Article  PubMed  Google Scholar 

  9. Dehaene, S., Posner, M. I. & Tucker, D. M. Localization of a neural system for error detection and compensation. Psychol. Sci. 5, 303–305 (1994).

    Article  Google Scholar 

  10. Bonini, F. et al. Action monitoring and medial frontal cortex: leading role of supplementary motor area. Science 343, 888–891 (2014).

    CAS  Article  PubMed  Google Scholar 

  11. Fleming, S. M., Ryu, J., Golfinos, J. G. & Blackmon, K. E. Domain-specific impairment in metacognitive accuracy following anterior prefrontal lesions. Brain 137, 2811–2822 (2014).

    Article  PubMed  Google Scholar 

  12. Fleming, S. M., Huijgen, J. & Dolan, R. J. Prefrontal contributions to metacognition in perceptual decision making. J. Neurosci. 32, 6117–6125 (2012).

    CAS  Article  PubMed  Google Scholar 

  13. Shimamura, A. P. & Squire, L. R. Memory and metamemory: a study of the feeling-of-knowing phenomenon in amnesic patients. J. Exp. Psychol. Learn. Mem. Cogn. 12, 452–460 (1986).

    CAS  Article  PubMed  Google Scholar 

  14. Hilgenstock, R., Weiss, T. & Witte, O. W. You’d better think twice: post-decision perceptual confidence. Neuroimage 99, 323–331 (2014).

    Article  PubMed  Google Scholar 

  15. Fleming, S. M. & Lau, H. C. How to measure metacognition. Front. Hum. Neurosci. 8, 443 (2014).

    Article  PubMed  Google Scholar 

  16. Sanders, J. I., Hangya, B. & Kepecs, A. Signatures of a statistical computation in the human sense of confidence. Neuron 90, 499–506 (2016).

    CAS  Article  PubMed  Google Scholar 

  17. Rushworth, M. F. S. & Behrens, T. E. J. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    CAS  Article  PubMed  Google Scholar 

  18. De Martino, B., Fleming, S. M., Garrett, N. & Dolan, R. J. Confidence in value-based choice. Nat. Neurosci. 16, 105–110 (2013).

    Article  PubMed  Google Scholar 

  19. Lebreton, M., Abitbol, R., Daunizeau, J. & Pessiglione, M. Automatic integration of confidence in the brain valuation signal. Nat. Neurosci. 18, 1159–1167 (2015).

    CAS  Article  PubMed  Google Scholar 

  20. Baron, R. M. & Kenny, D. A. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 51, 1173–1182 (1986).

    CAS  Article  PubMed  Google Scholar 

  21. Atlas, L. Y., Lindquist, M. A., Bolger, N. & Wager, T. D. Brain mediators of the effects of noxious heat on pain. Pain 155, 1632–1648 (2014).

    Article  PubMed  Google Scholar 

  22. Zhang, H. & Maloney, L. T. Ubiquitous log odds: a common representation of probability and frequency distortion in perception, action, and cognition. Front. Neurosci. 6, 1 (2012).

    CAS  PubMed  Google Scholar 

  23. Kiani, R., Corthell, L. & Shadlen, M. N. Choice certainty is informed by both evidence and decision time. Neuron 84, 1329–1342 (2014).

    CAS  Article  PubMed  Google Scholar 

  24. Neubert, F.-X., Mars, R. B., Thomas, A. G., Sallet, J. & Rushworth, M. F. S. Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81, 700–713 (2014).

    CAS  Article  PubMed  Google Scholar 

  25. Fleming, S. M. & Daw, N. D. Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation. Psychol. Rev. 124, 91–114 (2017).

    Article  PubMed  Google Scholar 

  26. Insabato, A., Pannunzi, M., Rolls, E. T. & Deco, G. Confidence-related decision making. J. Neurophysiol. 104, 539–547 (2010).

    Article  PubMed  Google Scholar 

  27. Fleck, M. S., Daselaar, S. M., Dobbins, I. G. & Cabeza, R. Role of prefrontal and anterior cingulate regions in decision-making processes shared by memory and nonmemory tasks. Cereb. Cortex 16, 1623–1630 (2006).

    Article  PubMed  Google Scholar 

  28. Kenny, D. A., Korchmaros, J. D. & Bolger, N. Lower level mediation in multilevel models. Psychol. Methods 8, 115–128 (2003).

    Article  PubMed  Google Scholar 

  29. Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).

    CAS  Article  PubMed  Google Scholar 

  30. Lak, A. et al. Orbitofrontal cortex is required for optimal waiting based on decision confidence. Neuron 84, 190–201 (2014).

    CAS  Article  PubMed  Google Scholar 

  31. Wallis, J. D. Cross-species studies of orbitofrontal cortex and value-based decision-making. Nat. Neurosci. 15, 13–19 (2011).

    Article  PubMed  Google Scholar 

  32. Kolling, N., Behrens, T. E. J., Mars, R. B. & Rushworth, M. F. S. Neural mechanisms of foraging. Science 336, 95–98 (2012).

    CAS  Article  PubMed  Google Scholar 

  33. Neubert, F.-X., Mars, R. B., Sallet, J. & Rushworth, M. F. S. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proc. Natl Acad. Sci. USA 112, E2695–E2704 (2015).

    CAS  Article  PubMed  Google Scholar 

  34. Boldt, A. & Yeung, N. Shared neural markers of decision confidence and error detection. J. Neurosci. 35, 3478–3484 (2015).

    CAS  Article  PubMed  Google Scholar 

  35. Scheffers, M. K. & Coles, M. G. H. Performance monitoring in a confusing world: error-related brain activity, judgments of response accuracy, and types of errors. J. Exp. Psychol. Hum. Percept. Perform. 26, 141–151 (2000).

    CAS  Article  PubMed  Google Scholar 

  36. Yeung, N. & Summerfield, C. Metacognition in human decision-making: confidence and error monitoring. Phil. Trans. R. Soc. B 367, 1310–1321 (2012).

    Article  PubMed  Google Scholar 

  37. Murphy, P. R., Robertson, I. H., Harty, S. & O’Connell, R. G. Neural evidence accumulation persists after choice to inform metacognitive judgments. Elife 4, 3478 (2015).

    Article  Google Scholar 

  38. Atlas, L. Y., Bolger, N., Lindquist, M. A. & Wager, T. D. Brain mediators of predictive cue effects on perceived pain. J. Neurosci. 30, 12964–12977 (2010).

    CAS  Article  PubMed  Google Scholar 

  39. Liu, H. et al. Connectivity-based parcellation of the human frontal pole with diffusion tensor imaging. J. Neurosci. 33, 6782–6790 (2013).

    CAS  Article  PubMed  Google Scholar 

  40. Badre, D., Doll, B. B., Long, N. M. & Frank, M. J. Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration. Neuron 73, 595–607 (2012).

    CAS  Article  PubMed  Google Scholar 

  41. Purcell, B. A. & Kiani, R. Hierarchical decision processes that operate over distinct timescales underlie choice and changes in strategy. Proc. Natl Acad. Sci. USA 113, E4531–E4540 (2016).

    CAS  Article  PubMed  Google Scholar 

  42. Shea, N. et al. Supra-personal cognitive control and metacognition. Trends Cogn. Sci. 18, 186–193 (2014).

    Article  PubMed  Google Scholar 

  43. Cortese, A., Amano, K., Koizumi, A., Kawato, M. & Lau, H. Multivoxel neurofeedback selectively modulates confidence without changing perceptual performance. Nat. Commun. 7, 13669 (2016).

    CAS  Article  PubMed  Google Scholar 

  44. Kiani, R. & Shadlen, M. N. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324, 759–764 (2009).

    CAS  Article  PubMed  Google Scholar 

  45. Moritz, S. & Woodward, T. S. A generalized bias against disconfirmatory evidence in schizophrenia. Psychiatry Res. 142, 157–165 (2006).

    Article  PubMed  Google Scholar 

  46. Woodward, T. S., Buchy, L., Moritz, S. & Liotti, M. A bias against disconfirmatory evidence is associated with delusion proneness in a nonclinical sample. Schizophr. Bull. 33, 1023–1028 (2007).

    Article  PubMed  Google Scholar 

  47. Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    CAS  Article  PubMed  Google Scholar 

  48. Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    CAS  Article  PubMed  Google Scholar 

  49. Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    CAS  PubMed  Google Scholar 

  50. Staël von Holstein, C.-A. S. Measurement of subjective probability. Acta Psychol. (Amst.) 34, 146–159 (1970).

    Article  Google Scholar 

  51. Schotter, A. & Trevino, I. Belief elicitation in the laboratory. Annu. Rev. Econom 6, 103–128 (2014).

    Article  Google Scholar 

  52. Moore, D. A. & Healy, P. J. The trouble with overconfidence. Psychol. Rev. 115, 502–517 (2008).

    Article  PubMed  Google Scholar 

  53. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Preprint at https://arxiv.org/abs/1406.5823 (2014).

  54. Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, CA, USA, 2011).

  55. Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 20, 1–37 (2016).

  56. Andersson, J. L., Hutton, C., Ashburner, J., Turner, R. & Friston, K. Modeling geometric deformations in EPI time series. Neuroimage 13, 903–919 (2001).

    CAS  Article  PubMed  Google Scholar 

  57. Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851 (2005).

    Article  PubMed  Google Scholar 

  58. Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76, 412–427 (2013).

    Article  PubMed  Google Scholar 

  59. Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A. & Ochsner, K. N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).

    CAS  Article  PubMed  Google Scholar 

  60. Efron, B. & Tibshirani, R. An Introduction to the Bootstrap (CRC Press, Boca Raton, FL, USA, 1993).

  61. Woo, C.-W., Krishnan, A. & Wager, T. D. Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. Neuroimage 91, 412–419 (2014).

    Article  PubMed  Google Scholar 

  62. Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA 113, 7900–7905 (2016).

    CAS  Article  PubMed  Google Scholar 

  63. Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Statist. Sci. 7, 457–472 (1992).

Download references

Acknowledgements

We thank D. Bang and B. De Martino for comments on an earlier draft of this manuscript. Funded by a Sir Henry Wellcome Fellowship from the Wellcome Trust (WT096185) awarded to S.M.F. N.D.D is funded by the James S. McDonnell Foundation and the John Templeton Foundation. The Wellcome Centre for Human Neuroimaging is supported by core funding from the Wellcome Trust (203147/Z/16/Z).

Author information

Authors and Affiliations

Authors

Contributions

S.M.F. designed experiments, performed experiments, analyzed behavioral and neuroimaging data, developed computational models and wrote the paper; E.J.v.d.P. performed experiments and analyzed behavioral data; N.D.D. designed experiments, developed computational models and wrote the paper.

Corresponding author

Correspondence to Stephen M. Fleming.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1

Psychometric functions from calibration session for all participants.

Supplementary Figure 2 Group cross-correlation matrices.

Group cross-correlation matrices depicting mean correlation (r) across participants between pre-decision motion strength (PreCoh), post-decision motion strength (PostCoh), confidence, subjective value, decision response time and confidence response time. Behavioural session, N = 25 subjects; fMRI session, N = 22 subjects.

Supplementary Figure 3 Calibration curves relating objective performance to reported confidence in the main experiment.

For each subject performance (proportion correct) was calculated separately for each confidence bin [0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, 0.8–1.0]. Individual subjects are shown as separate data points; error bars indicate standard errors of the mean across subjects. Behavioural session, N = 25 subjects; fMRI session, N = 22 subjects.

Supplementary Figure 4 Model simulations and model comparison.

a) Illustration of effects of model parameters on relation between post-decision motion and confidence for temporal weighting, choice weighting and choice bias models. For illustration purposes w post and w incon were set to 2-w pre and 2-w post , respectively, but were free to vary independently in model fits. In all simulations pre- and post-decision coherence were crossed in a fully factorial design and drawn from the set 0%, 25% or 50% with k = 4 and m = 0. Blue lines indicate correct trials; orange lines indicate error trials. b) Mean cross-validated log-likelihood of each candidate model relative to a random-choice model.

Supplementary Figure 5 Observed and predicted confidence rating distributions.

Left panels: empirical probability distributions of confidence ratings aggregated across subjects for each of the 9 experimental conditions (3 pre-decision coherence levels × 3 post-decision coherence levels). Blue bars – correct trials; orange bars – error trials. Right panels: probability distributions of confidence ratings simulated from the best-fitting Bayesian+RT model parameters.

Supplementary Figure 6 aPFC ROI analyses.

Single-trial activity estimates as a function of post-decision motion strength and decision accuracy in aPFC regions of interest. Data are plotted as boxplots for each condition in which horizontal lines indicate median values, boxes indicate 25-75% interquartile range and whiskers indicate minimum and maximum values; data points outside of 1.5 × the interquartile range are shown separately as circles. Solid lines show the mean of subject-level linear fits. Blue bars/lines show correct trials; orange bars/lines show error trials. N = 22 subjects.

Supplementary Figure 7 Activity profiles in ventral striatum (top) and vmPFC (bottom) ROIs.

a) Single-trial activity estimates as a function of post-decision motion strength and choice accuracy. Data are plotted as boxplots for each condition in which horizontal lines indicate median values, boxes indicate 25-75% interquartile range and whiskers indicate minimum and maximum values; data points outside of 1.5 × the interquartile range are shown separately as circles. Solid lines show the mean of subject-level linear fits. Blue bars/lines show correct trials; orange bars/lines show error trials. b) Split-regression coefficients relating activity to confidence; error bars indicate standard errors of coefficient means. *** P < 0.001, * P < 0.05, two-tailed Type III Wald χ2 test; see Supplementary Table 7. c) Timecourse of regression coefficients for confidence and value. Points below timecourses indicate significant excursions of T-statistics assessed using two-tailed permutation tests. Error bars indicate standard errors of the coefficient mean. In all panels N = 22 subjects.

Supplementary Figure 8 Whole-brain multilevel mediation model analysis.

The model used in Fig. 5a was fit to each voxel independently to create a map of P-values for the mediation (a × b) effect. Thresholded at P < 0.05 FWE corrected at the cluster level using Monte Carlo simulation, cluster-defining threshold P < 0.001.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fleming, S.M., van der Putten, E.J. & Daw, N.D. Neural mediators of changes of mind about perceptual decisions. Nat Neurosci 21, 617–624 (2018). https://doi.org/10.1038/s41593-018-0104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-018-0104-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing