Studying individual differences in human adolescent brain development

Abstract

Adolescence is a period of social, psychological and biological development. During adolescence, relationships with others become more complex, peer relationships are paramount and social cognition develops substantially. These psychosocial changes are paralleled by structural and functional changes in the brain. Existing research in adolescent neurocognitive development has focused largely on averages, but this obscures meaningful individual variation in development. In this Perspective, we propose that the field should now move toward studying individual differences. We start by discussing individual variation in structural and functional brain development. To illustrate the importance of considering individual differences in development, we consider three sources of variation that contribute to neurocognitive processing: socioeconomic status, culture and peer environment. To assess individual differences in neurodevelopmental trajectories, large-scale longitudinal datasets are required. Future developmental neuroimaging studies should attempt to characterize individual differences to move toward a more nuanced understanding of neurocognitive changes during adolescence.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Developmental trajectories for total gray matter volume: ages 7.0–23.3 years old.
Fig. 2: Developmental trajectories for global cortical measures for four different cohorts: Child Psychiatry Branch (pink), Pittsburgh (purple), Neurocognitive Development (blue) and Braintime (green).
Fig. 3: Average and individual trajectories of gray matter in three brain regions.
Fig. 4: SES-by-age interaction in left inferior frontal gyrus (IFG) and left superior temporal gyrus (STG) volume.
Fig. 5: Negative correlation between SES and brain activity during the viewing of angry faces in early adolescence.

References

  1. 1.

    Larson, R. & Richards, M. H. Daily companionship in late childhood and early adolescence: changing developmental contexts. Child. Dev. 62, 284–300 (1991).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    O’Brien, S. F. & Bierman, K. L. Conceptions and perceived influence of peer groups: interviews with preadolescents and adolescents. Child. Dev. 59, 1360–1365 (1988).

    Article  PubMed  Google Scholar 

  3. 3.

    Harrell, A. W., Mercer, S. H. & DeRoisier, M. E. Improving the social-behavioral adjustment of adolescents: The effectiveness of a social skills group intervention. J. Child. Fam. Stud. 18, 378–387 (2009).

    Article  Google Scholar 

  4. 4.

    Gorrese, A. & Ruggieri, R. Peer attachment and self-esteem: A meta-analytic review. Pers. Individ. Dif. 55, 559–568 (2013).

    Article  Google Scholar 

  5. 5.

    Oldehinkel, A. J., Rosmalen, J. G. M., Veenstra, R., Dijkstra, J. K. & Ormel, J. Being admired or being liked: classroom social status and depressive problems in early adolescent girls and boys. J. Abnorm. Child. Psychol. 35, 417–427 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Blakemore, S.-J. The social brain in adolescence. Nat. Rev. Neurosci. 9, 267–277 (2008).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Blakemore, S.-J. & Mills, K. L. Is adolescence a sensitive period for sociocultural processing? Annu. Rev. Psychol. 65, 187–207 (2014).

    Article  PubMed  Google Scholar 

  8. 8.

    Chein, J., Albert, D., O’Brien, L., Uckert, K. & Steinberg, L. Peers increase adolescent risk taking by enhancing activity in the brain’s reward circuitry. Dev. Sci. 14, F1–F10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Knoll, L. J., Magis-Weinberg, L., Speekenbrink, M. & Blakemore, S.-J. Social influence on risk perception during adolescence. Psychol. Sci. 26, 583–592 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Knoll, L. J., Leung, J. T., Foulkes, L. & Blakemore, S.-J. Age-related differences in social influence on risk perception depend on the direction of influence. J. Adolesc. 60, 53–63 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Wolf, L. K., Bazargani, N., Kilford, E. J., Dumontheil, I. & Blakemore, S.-J. The audience effect in adolescence depends on who’s looking over your shoulder. J. Adolesc. 43, 5–14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Masten, C. L. et al. Neural correlates of social exclusion during adolescence: understanding the distress of peer rejection. Soc. Cogn. Affect. Neurosci. 4, 143–157 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Sebastian, C., Viding, E., Williams, K. D. & Blakemore, S.-J. Social brain development and the affective consequences of ostracism in adolescence. Brain Cogn. 72, 134–145 (2010).

    Article  PubMed  Google Scholar 

  14. 14.

    Dumontheil, I., Apperly, I. A. & Blakemore, S.-J. Online usage of theory of mind continues to develop in late adolescence. Dev. Sci. 13, 331–338 (2010).

    Article  PubMed  Google Scholar 

  15. 15.

    Dubois, J. & Adolphs, R. Building a science of individual differences from fMRI. Trends Cogn. Sci. 20, 425–443 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Rohner, R. P. Toward a conception of culture for cross-cultural psychology. J. Cross Cult. Psychol. 15, 111–138 (1984).

    Article  Google Scholar 

  17. 17.

    Giedd, J. N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863 (1999).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Tamnes, C. K. et al. Development of the cerebral cortex across adolescence: A multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. J. Neurosci. 37, 3402–3412 (2017). This study analyzed longitudinal data from 388 individuals aged between 8 and 30 years from four large cohorts in three countries: the United States, the Netherlands and Norway (854 total scans). In all four groups, there were decreases in grey matter volume across the cortex throughout adolescence, with the largest decreases occurring in the prefrontal, parietal and temporal cortices.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Vijayakumar, N. et al. Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume. Hum. Brain Mapp. 37, 2027–2038 (2016).

    Article  PubMed  Google Scholar 

  20. 20.

    Mills, K. L. et al. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. Neuroimage 141, 273–281 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Gilmore, J. H. et al. Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb. Cortex 22, 2478–2485 (2012).

    Article  PubMed  Google Scholar 

  22. 22.

    Wierenga, L. et al. Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24. Neuroimage 96, 67–72 (2014).

    Article  PubMed  Google Scholar 

  23. 23.

    Tamnes, C. K., Bos, M. G. N., van de Kamp, F. C., Peters, S. & Crone, E. A. Longitudinal development of hippocampal subregions from childhood to adulthood. Preprint at bioRxiv https://doi.org/10.1101/186270 (2017). This paper assessed the structural development of subregions within the hippocampus. Data were from a large accelerated longitudinal study ( n = 270, 678 scans) of 8- to 28-year-olds. The study found heterogeneity of trajectories across region, with some showing early volume increases and others showing nonlinear decreases in volume.

  24. 24.

    Mills, K. L., Goddings, A.-L., Clasen, L. S., Giedd, J. N. & Blakemore, S.-J. The developmental mismatch in structural brain maturation during adolescence. Dev. Neurosci. 36, 147–160 (2014).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Somerville, L. H. Searching for signatures of brain maturity: What are we searching for? Neuron 92, 1164–1167 (2016).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Crone, E. A., van Duijvenvoorde, A. C. K. & Peper, J. S. Annual Research Review: Neural contributions to risk-taking in adolescence–developmental changes and individual differences. J. Child. Psychol. Psychiatry 57, 353–368 (2016).

    Article  PubMed  Google Scholar 

  27. 27.

    Simmonds, D. J., Hallquist, M. N. & Luna, B. Protracted development of executive and mnemonic brain systems underlying working memory in adolescence: A longitudinal fMRI study. Neuroimage 157, 695–704 (2017).

    Article  PubMed  Google Scholar 

  28. 28.

    Crone, E. A. & Elzinga, B. M. Changing brains: how longitudinal functional magnetic resonance imaging studies can inform us about cognitive and social-affective growth trajectories. Wiley Interdiscip. Rev. Cogn. Sci. 6, 53–63 (2015).

    Article  PubMed  Google Scholar 

  29. 29.

    Herting, M. M., Gautam, P., Chen, Z., Mezher, A. & Vetter, N. C. Test-retest reliability of longitudinal task-based fMRI: Implications for developmental studies. Dev. Cogn. Neurosci. https://doi.org/10.1016/j.dcn.2017.07.001 (2017).

  30. 30.

    King, K.M. et al. Longitudinal modeling in developmental neuroimaging research: Common challenges, and solutions from developmental psychology. Dev. Cogn. Neurosci. https://doi.org/10.1016/j.dcn.2017.11.009 (2017). This provides an overview of issues involved in conducting longitudinal structural and functional studies to measure brain development across age. Suggested analytical approaches are demonstrated on simulated data, and the underlying code is available for other researchers to access.

  31. 31.

    Sherman, L., Steinberg, L. & Chein, J. Connecting brain responsivity and real-world risk taking: Strengths and limitations of current methodological approaches. Dev. Cogn. Neurosci. https://doi.org/10.1016/j.dcn.2017.05.007 (2017).

  32. 32.

    Ordaz, S. J., Foran, W., Velanova, K. & Luna, B. Longitudinal growth curves of brain function underlying inhibitory control through adolescence. J. Neurosci. 33, 18109–18124 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Hackman, D. A. & Farah, M. J. Socioeconomic status and the developing brain. Trends Cogn. Sci. 13, 65–73 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Farah, M. J. The neuroscience of socioeconomic status: Correlates, causes, and consequences. Neuron 96, 56–71 (2017).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Noble, K. G. et al. Family income, parental education and brain structure in children and adolescents. Nat. Neurosci. 18, 773–778 (2015). This cross-sectional study shows an association between SES and cortical surface area across age. Data were from a cohort of 1,099 individuals aged 3 to 20 years old. There was a significant interaction between SES, age and surface area, highlighting the importance of including SES in studies investigating the development of brain structure.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Noble, K. G., Houston, S. M., Kan, E. & Sowell, E. R. Neural correlates of socioeconomic status in the developing human brain. Dev. Sci. 15, 516–527 (2012).

    Article  PubMed  Google Scholar 

  37. 37.

    Muscatell, K. A. et al. Social status modulates neural activity in the mentalizing network. Neuroimage 60, 1771–1777 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Tompkins, V., Logan, J. A. R., Blosser, D. F. & Duffy, K. Child language and parent discipline mediate the relation between family income and false belief understanding. J. Exp. Child. Psychol. 158, 1–18 (2017).

    Article  PubMed  Google Scholar 

  39. 39.

    Symeonidou, I., Dumontheil, I., Chow, W.-Y. & Breheny, R. Development of online use of theory of mind during adolescence: An eye-tracking study. J. Exp. Child. Psychol. 149, 81–97 (2016).

    Article  PubMed  Google Scholar 

  40. 40.

    Mills, K. L., Dumontheil, I., Speekenbrink, M. & Blakemore, S.-J. Multitasking during social interactions in adolescence and early adulthood. R. Soc. Open. Sci. 2, 150117 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Abrams, D., Weick, M., Thomas, D., Colbe, H. & Franklin, K. M. On-line ostracism affects children differently from adolescents and adults. Br. J. Dev. Psychol. 29, 110–123 (2011).

    Article  PubMed  Google Scholar 

  42. 42.

    Sebastian, C. L. et al. Developmental influences on the neural bases of responses to social rejection: implications of social neuroscience for education. Neuroimage 57, 686–694 (2011).

    Article  PubMed  Google Scholar 

  43. 43.

    Vijayakumar, N., Cheng, T. W. & Pfeifer, J. H. Neural correlates of social exclusion across ages: A coordinate-based meta-analysis of functional MRI studies. Neuroimage 153, 359–368 (2017).

    Article  PubMed  Google Scholar 

  44. 44.

    Cascio, C. N., O’Donnell, M. B., Simons-Morton, B. G., Bingham, C. R. & Falk, E. B. Cultural context moderates neural pathways to social influence. Cult. Brain 5, 50–70 (2017).

    Article  Google Scholar 

  45. 45.

    Choudhury, S. Culturing the adolescent brain: what can neuroscience learn from anthropology? Soc. Cogn. Affect. Neurosci. 5, 159–167 (2010).

    Article  PubMed  Google Scholar 

  46. 46.

    Steinberg, L. et al. Around the world, adolescence is a time of heightened sensation seeking and immature self-regulation. Dev. Sci. https://doi.org/10.1111/desc.12532 (2017).

  47. 47.

    Duell, N. et al. Age patterns in risk taking across the world. J. Youth Adolesc. https://doi.org/10.1007/s10964-017-0752-y (2017).

  48. 48.

    Miller, J. G. & Kinsbourne, M. Culture and neuroscience in developmental psychology: Contributions and challenges. Child. Dev. Perspect. 6, 35–41 (2012).

    Article  Google Scholar 

  49. 49.

    Telzer, E. H., Masten, C. L., Berkman, E. T., Lieberman, M. D. & Fuligni, A. J. Gaining while giving: an fMRI study of the rewards of family assistance among white and Latino youth. Soc. Neurosci. 5, 508–518 (2010). This is one of the few fMRI studies to compare neural activity in adolescents of different cultures, in this case White and Latino Americans. When winning money for their families, Latino participants showed more activation in brain regions that have been implicated in reward processing. The paper demonstrates that individual differences in culture can be associated with different patterns of neural activity.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Telzer, E. H. & Fuligni, A. J. Daily family assistance and the psychological well-being of adolescents from Latin American, Asian, and European backgrounds. Dev. Psychol. 45, 1177–1189 (2009).

    Article  PubMed  Google Scholar 

  51. 51.

    Fuligni, A. J., Tseng, V. & Lam, M. Attitudes toward family obligations among American adolescents with Asian, Latin American, and European backgrounds. Child. Dev. 70, 1030–1044 (1999).

    Article  Google Scholar 

  52. 52.

    Telzer, E. H., Fuligni, A. J., Lieberman, M. D. & Galván, A. Meaningful family relationships: neurocognitive buffers of adolescent risk taking. J. Cogn. Neurosci. 25, 374–387 (2013).

    Article  PubMed  Google Scholar 

  53. 53.

    Steinberg, L. & Monahan, K. C. Age differences in resistance to peer influence. Dev. Psychol. 43, 1531–1543 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Loke, A. Y. & Mak, Y. W. Family process and peer influences on substance use by adolescents. Int. J. Environ. Res. Public Health 10, 3868–3885 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    D’Amico, E. J. & McCarthy, D. M. Escalation and initiation of younger adolescents’ substance use: the impact of perceived peer use. J. Adolesc. Health 39, 481–487 (2006).

    Article  PubMed  Google Scholar 

  56. 56.

    Unger, J. B. et al. Peer influences and access to cigarettes as correlates of adolescent smoking: a cross-cultural comparison of Wuhan, China, and California. Prev. Med. 34, 476–484 (2002).

    Article  PubMed  Google Scholar 

  57. 57.

    Headen, S. W., Bauman, K. E., Deane, G. D. & Koch, G. G. Are the correlates of cigarette smoking initiation different for black and white adolescents? Am. J. Public Health 81, 854–858 (1991).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Landrine, H., Richardson, J. L., Klonoff, E. A. & Flay, B. Cultural diversity in the predictors of adolescent cigarette smoking: the relative influence of peers. J. Behav. Med. 17, 331–346 (1994).

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Unger, J. B. et al. Ethnic variation in peer influences on adolescent smoking. Nicotine Tob. Res. 3, 167–176 (2001).

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Welborn, B. L. et al. Neural mechanisms of social influence in adolescence. Soc. Cogn. Affect. Neurosci. 11, 100–109 (2016).

    Article  PubMed  Google Scholar 

  61. 61.

    Lamblin, M., Murawski, C., Whittle, S. & Fornito, A. Social connectedness, mental health and the adolescent brain. Neurosci. Biobehav. Rev. 80, 57–68 (2017).

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Arseneault, L., Bowes, L. & Shakoor, S. Bullying victimization in youths and mental health problems: ‘much ado about nothing’? Psychol. Med. 40, 717–729 (2010).

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Copeland, W. E., Wolke, D., Angold, A. & Costello, E. J. Adult psychiatric outcomes of bullying and being bullied by peers in childhood and adolescence. JAMA Psychiatry 70, 419–426 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Takizawa, R., Maughan, B. & Arseneault, L. Adult health outcomes of childhood bullying victimization: evidence from a five-decade longitudinal British birth cohort. Am. J. Psychiatry 171, 777–784 (2014).

    Article  PubMed  Google Scholar 

  65. 65.

    Singham, T. et al. Concurrent and longitudinal contribution of exposure to bullying in childhood to mental health: The role of vulnerability and resilience. JAMA Psychiatry 74, 1112–1119 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    van Harmelen, A.-L. et al. Adolescent friendships predict later resilient functioning across psychosocial domains in a healthy community cohort. Psychol. Med. 47, 2312–2322 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Will, G.-J., van Lier, P. A. C., Crone, E. A. & Güroğlu, B. Chronic childhood peer rejection is associated with heightened neural responses to social exclusion during adolescence. J. Abnorm. Child. Psychol. 44, 43–55 (2016).

    Article  PubMed  Google Scholar 

  68. 68.

    Telzer, E. H., Miernicki, M. E. & Rudolph, K. D. Chronic peer victimization heightens neural sensitivity to risk taking. Dev. Psychopathol. 10, 1–14 (2017). This fMRI study compared adolescents with a history of chronic peer victimization to those with no history of being victimized. The participants with a history of victimization took more risks in a risk-taking task and also showed heightened activation in a number of regions during the task, showing how individual differences in peer environment are associated with behavioral and neural differences.

    Google Scholar 

  69. 69.

    Falk, E. B. et al. Neural responses to exclusion predict susceptibility to social influence. J. Adolesc. Health 54(Suppl), S22–S31 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Peake, S. J., Dishion, T. J., Stormshak, E. A., Moore, W. E. & Pfeifer, J. H. Risk-taking and social exclusion in adolescence: neural mechanisms underlying peer influences on decision-making. Neuroimage 82, 23–34 (2013).

    Article  PubMed  Google Scholar 

  71. 71.

    Rudolph, K. D., Miernicki, M. E., Troop-Gordon, W., Davis, M. M. & Telzer, E. H. Adding insult to injury: neural sensitivity to social exclusion is associated with internalizing symptoms in chronically peer-victimized girls. Soc. Cogn. Affect. Neurosci. 11, 829–842 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Lansford, J. E., Criss, M. M., Pettit, G. S., Dodge, K. A. & Bates, J. E. Friendship quality, peer group affiliation, and peer antisocial behavior as moderators of the link between negative parenting and adolescent externalizing behavior. J. Res. Adolesc. 13, 161–184 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Telzer, E. H., Fuligni, A. J., Lieberman, M. D., Miernicki, M. E. & Galván, A. The quality of adolescents’ peer relationships modulates neural sensitivity to risk taking. Soc. Cogn. Affect. Neurosci. 10, 389–398 (2015).

    Article  PubMed  Google Scholar 

  74. 74.

    Schriber, R. A. & Guyer, A. E. Adolescent neurobiological susceptibility to social context. Dev. Cogn. Neurosci. 19, 1–18 (2016).

    Article  PubMed  Google Scholar 

  75. 75.

    Caouette, J. D. & Guyer, A. E. Gaining insight into adolescent vulnerability for social anxiety from developmental cognitive neuroscience. Dev. Cogn. Neurosci. 8, 65–76 (2014).

    Article  PubMed  Google Scholar 

  76. 76.

    Darling, N. & Steinberg, L. Parenting style as context: An integrative model. Psychol. Bull. 113, 487–496 (1993).

    Article  Google Scholar 

  77. 77.

    Kerr, M., Stattin, H. & Özdemir, M. Perceived parenting style and adolescent adjustment: revisiting directions of effects and the role of parental knowledge. Dev. Psychol. 48, 1540–1553 (2012).

    Article  PubMed  Google Scholar 

  78. 78.

    Kim-Spoon, J., Maciejewski, D., Lee, J., Deater-Deckard, K. & King-Casas, B. Longitudinal associations among family environment, neural cognitive control, and social competence among adolescents. Dev. Cogn. Neurosci. 26, 69–76 (2017).

    Article  PubMed  Google Scholar 

  79. 79.

    Harper, J. M., Padilla-Walker, L. M. & Jensen, A. C. Do siblings matter independent of both parents and friends? Sympathy as a mediator between sibling relationship quality and adolescent outcomes. J. Res. Adolesc. 26, 101–114 (2016).

    Article  Google Scholar 

  80. 80.

    Bonell, C. et al. Initiating change locally in bullying and aggression through the school environment (INCLUSIVE): a pilot randomised controlled trial. Health Technol. Assess. 19, 1–109, vii–viii (2015).

    Article  Google Scholar 

  81. 81.

    Luengo Kanacri, B. P. et al. Longitudinal relations among positivity, perceived positive school climate, and prosocial behavior in Colombian adolescents. Child. Dev. 88, 1100–1114 (2017).

    Article  PubMed  Google Scholar 

  82. 82.

    Goddings, A.-L. et al. The influence of puberty on subcortical brain development. Neuroimage 88, 242–251 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Herting, M. M. & Sowell, E. R. Puberty and structural brain development in humans. Front. Neuroendocrinol. 44, 122–137 (2017).

    Article  PubMed  Google Scholar 

  84. 84.

    Motta-Mena, N. V. & Scherf, K. S. Pubertal development shapes perception of complex facial expressions. Dev. Sci. 20, e12451 (2017).

    Article  Google Scholar 

  85. 85.

    Craig, W. et al. A cross-national profile of bullying and victimization among adolescents in 40 countries. Int. J. Public Health 54(Suppl 2), 216–224 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Tippett, N. & Wolke, D. Socioeconomic status and bullying: a meta-analysis. Am. J. Public Health 104, e48–e59 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Williams, D. R., Priest, N. & Anderson, N. B. Understanding associations among race, socioeconomic status, and health: Patterns and prospects. Health Psychol. 35, 407–411 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Shanahan, M. J. & Hofer, S. M. Social context in gene-environment interactions: retrospect and prospect. J. Gerontol. B Psychol. Sci. Soc. Sci. 60, 65–76 (2005).

    Article  PubMed  Google Scholar 

  89. 89.

    Byrd, A. L. & Manuck, S. B. MAOA, childhood maltreatment, and antisocial behavior: meta-analysis of a gene-environment interaction. Biol. Psychiatry 75, 9–17 (2014).

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    McCrory, E., De Brito, S. A. & Viding, E. Research review: the neurobiology and genetics of maltreatment and adversity. J. Child. Psychol. Psychiatry 51, 1079–1095 (2010).

    Article  PubMed  Google Scholar 

  91. 91.

    Knafo, A. & Jaffee, S. R. Gene-environment correlation in developmental psychopathology. Dev. Psychopathol. 25, 1–6 (2013).

    Article  PubMed  Google Scholar 

  92. 92.

    Kaufmann, T. et al. Delayed stabilization and individualization in connectome development are related to psychiatric disorders. Nat. Neurosci. 20, 513–515 (2017).

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Rosenberg, M. D. et al. A neuromarker of sustained attention from whole-brain functional connectivity. Nat. Neurosci. 19, 165–171 (2016).

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Volkow, N. D. et al. The conception of the ABCD study: From substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. https://doi.org/10.1016/j.dcn.2017.10.002 (2017).

  96. 96.

    Madhyastha, T. et al. Current methods and limitations for longitudinal fMRI analysis across development. Dev. Cogn. Neurosci. https://doi.org/10.1016/j.dcn.2017.11.006 (2017).

  97. 97.

    Mills, K. L. & Tamnes, C. K. Methods and considerations for longitudinal structural brain imaging analysis across development. Dev. Cogn. Neurosci. 9, 172–190 (2014).

    Article  PubMed  Google Scholar 

  98. 98.

    Kievit, R.A. et al. Developmental cognitive neuroscience using Latent Change Score models: A tutorial and applications. Dev. Cogn. Neurosci. https://doi.org/10.1016/j.dcn.2017.11.007 (2017).

  99. 99.

    Wierenga, L.M., Sexton, J.A., Laake, P., Giedd, J.N. & Tamnes, C.K. A key characteristic of sex differences in the developing brain: Greater variability in brain structure of boys than girls. Cereb. Cortex https://doi.org/10.1093/cercor/bhx154 (2017).

Download references

Acknowledgements

We thank C. Tamnes and K. Mills for comments on an earlier draft of the manuscript. The authors are funded by the Wellcome Trust (grant to S.J.B.: 104908/Z/14/Z) and the Klaus J. Jacobs Prize from the Jacobs Foundation.

Author information

Affiliations

Authors

Contributions

L.F. and S.J.B. contributed equally to the writing of this Perspective.

Corresponding author

Correspondence to Sarah-Jayne Blakemore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Foulkes, L., Blakemore, S. Studying individual differences in human adolescent brain development. Nat Neurosci 21, 315–323 (2018). https://doi.org/10.1038/s41593-018-0078-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing