Perspective | Published:

Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability


The modification of synaptic strength produced by long-term potentiation (LTP) is widely thought to underlie memory storage. Indeed, given that hippocampal pyramidal neurons have >10,000 independently modifiable synapses, the potential for information storage by synaptic modification is enormous. However, recent work suggests that CREB-mediated global changes in neuronal excitability also play a critical role in memory formation. Because these global changes have a modest capacity for information storage compared with that of synaptic plasticity, their importance for memory function has been unclear. Here we review the newly emerging evidence for CREB-dependent control of excitability and discuss two possible mechanisms. First, the CREB-dependent transient change in neuronal excitability performs a memory-allocation function ensuring that memory is stored in ways that facilitate effective linking of events with temporal proximity (hours). Second, these changes may promote cell-assembly formation during the memory-consolidation phase. It has been unclear whether such global excitability changes and local synaptic mechanisms are complementary. Here we argue that the two mechanisms can work together to promote useful memory function.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley, New York, 1949).

  2. 2.

    Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

  3. 3.

    Bliss, T. V. P. & Collingridge, G. L. Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol. Brain 6, 5 (2013).

  4. 4.

    Nakazawa, K., McHugh, T. J., Wilson, M. A. & Tonegawa, S. NMDA receptors, place cells and hippocampal spatial memory. Nat. Rev. Neurosci. 5, 361–372 (2004).

  5. 5.

    Giese, K. P., Fedorov, N. B., Filipkowski, R. K. & Silva, A. J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

  6. 6.

    Rossetti, T. et al. Memory erasure experiments indicate a critical role of CAMKII in memory storage. Neuron 96, 207–216 (2017).

  7. 7.

    Lee, Y.-S. & Silva, A. J. The molecular and cellular biology of enhanced cognition. Nat. Rev. Neurosci. 10, 126–140 (2009).

  8. 8.

    Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014).

  9. 9.

    Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

  10. 10.

    Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984).

  11. 11.

    Morris, R. G. M. et al. Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 773–786 (2003).

  12. 12.

    Castellucci, V. & Kandel, E. R. Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia. Science 194, 1176–1178 (1976).

  13. 13.

    Siegelbaum, S. A., Camardo, J. S. & Kandel, E. R. Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature 299, 413–417 (1982).

  14. 14.

    Alkon, D. L. Changes of membrane currents during learning. J. Exp. Biol. 112, 95–112 (1984).

  15. 15.

    Disterhoft, J. F., Coulter, D. A. & Alkon, D. L. Conditioning-specific membrane changes of rabbit hippocampal neurons measured in vitro. Proc. Natl. Acad. Sci. USA 83, 2733–2737 (1986).

  16. 16.

    Josselyn, S. A., Köhler, S. & Frankland, P. W. Finding the engram. Nat. Rev. Neurosci. 16, 521–534 (2015).

  17. 17.

    Yu, X.-W., Oh, M. M. & Disterhoft, J. F. CREB, cellular excitability, and cognition: implications for aging. Behav. Brain Res. 322, 206–211 (2017).

  18. 18.

    Kim, J.-I., Cho, H.-Y., Han, J.-H. & Kaang, B.-K. Which neurons will be the engram-activated neurons and/or more excitable neurons? Exp. Neurobiol. 25, 55–63 (2016).

  19. 19.

    Oh, M. M. & Disterhoft, J. F. Increased excitability of both principal neurons and interneurons during associative learning. Neuroscientist 21, 372–384 (2015).

  20. 20.

    Kandel, E. R. Genes, nerve cells, and the remembrance of things past. J. Neuropsychiatry Clin. Neurosci. 1, 103–125 (1989).

  21. 21.

    Impey, S. et al. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973–982 (1996).

  22. 22.

    Bernabeu, R. et al. Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc. Natl. Acad. Sci. USA 94, 7041–7046 (1997).

  23. 23.

    Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

  24. 24.

    Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu. Rev. Neurosci. 21, 127–148 (1998).

  25. 25.

    Yin, J. C. & Tully, T. CREB and the formation of long-term memory. Curr. Opin. Neurobiol. 6, 264–268 (1996).

  26. 26.

    Guzowski, J. F. & McGaugh, J. L. Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl. Acad. Sci. USA 94, 2693–2698 (1997).

  27. 27.

    Peters, M. et al. RNA interference in hippocampus demonstrates opposing roles for CREB and PP1α in contextual and temporal long-term memory. Genes Brain Behav. 8, 320–329 (2009).

  28. 28.

    Yin, J. C., Del Vecchio, M., Zhou, H. & Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115 (1995).

  29. 29.

    Josselyn, S. A. et al. Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J. Neurosci. 21, 2404–2412 (2001).

  30. 30.

    Guzowski, J. F. & Worley, P. F. Cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH). Curr. Protoc. Neurosci. 15, 1.8.1–1.8.16 (2001).

  31. 31.

    Han, J.-H. et al. Neuronal competition and selection during memory formation. Science 316, 457–460 (2007).

  32. 32.

    Yiu, A. P. et al. Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83, 722–735 (2014).

  33. 33.

    Rogerson, T. et al. Synaptic tagging during memory allocation. Nat. Rev. Neurosci. 15, 157–169 (2014).

  34. 34.

    Zhou, Y. et al. CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat. Neurosci. 12, 1438–1443 (2009).

  35. 35.

    Park, S. et al. Neuronal allocation to a hippocampal engram. Neuropsychopharmacology 41, 2987–2993 (2016).

  36. 36.

    Lopez de Armentia, M. et al. cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. J. Neurosci. 27, 13909–13918 (2007).

  37. 37.

    Dong, Y. et al. CREB modulates excitability of nucleus accumbens neurons. Nat. Neurosci. 9, 475–477 (2006).

  38. 38.

    Storm, J. F. Potassium currents in hippocampal pyramidal cells. Prog. Brain Res. 83, 161–187 (1990).

  39. 39.

    Gross, C., Yao, X., Pong, D. L., Jeromin, A. & Bassell, G. J. Fragile X mental retardation protein regulates protein expression and mRNA translation of the potassium channel Kv4.2. J. Neurosci. 31, 5693–5698 (2011).

  40. 40.

    Rogerson, T. et al. Molecular and cellular mechanisms for trapping and activating emotional memories. PLoS One 11, e0161655 (2016).

  41. 41.

    Alberini, C. M. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 89, 121–145 (2009).

  42. 42.

    Kim, J., Kwon, J.-T., Kim, H.-S. & Han, J.-H. CREB and neuronal selection for memory trace. Front. Neural Circuits 7, 44 (2013).

  43. 43.

    Turrigiano, G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34, 89–103 (2011).

  44. 44.

    Silva, A. J., Zhou, Y., Rogerson, T., Shobe, J. & Balaji, J. Molecular and cellular approaches to memory allocation in neural circuits. Science 326, 391–395 (2009).

  45. 45.

    Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016).

  46. 46.

    Rashid, A. J. et al. Competition between engrams influences fear memory formation and recall. Science 353, 383–387 (2016).

  47. 47.

    Yokose, J. et al. Overlapping memory trace indispensable for linking, but not recalling, individual memories. Science 355, 398–403 (2017).

  48. 48.

    O’Connor, D. H., Wittenberg, G. M. & Wang, S. S.-H. Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc. Natl. Acad. Sci. USA 102, 9679–9684 (2005).

  49. 49.

    Debanne, D., Gähwiler, B. H. & Thompson, S. M. Heterogeneity of synaptic plasticity at unitary CA3-CA1 and CA3-CA3 connections in rat hippocampal slice cultures. J. Neurosci. 19, 10664–10671 (1999).

  50. 50.

    Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

  51. 51.

    Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J. & Buzsáki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507 (1999).

  52. 52.

    Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

  53. 53.

    Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

  54. 54.

    Ego-Stengel, V. & Wilson, M. A. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20, 1–10 (2010).

  55. 55.

    Jadhav, S. P., Kemere, C., German, P. W. & Frank, L. M. Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458 (2012).

  56. 56.

    Atherton, L. A., Dupret, D. & Mellor, J. R. Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends Neurosci. 38, 560–570 (2015).

  57. 57.

    Brandalise, F., Carta, S., Helmchen, F., Lisman, J. & Gerber, U. Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells. Nat. Commun. 7, 13480 (2016).

  58. 58.

    Golding, N. L., Staff, N. P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

  59. 59.

    Ma, H. et al. γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 159, 281–294 (2014).

  60. 60.

    Dudek, S. M. & Fields, R. D. Somatic action potentials are sufficient for late-phase LTP-related cell signaling. Proc. Natl. Acad. Sci. USA 99, 3962–3967 (2002).

  61. 61.

    Zhai, S., Ark, E. D., Parra-Bueno, P. & Yasuda, R. Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342, 1107–1111 (2013).

  62. 62.

    Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A. & Tonegawa, S. Memory. Engram cells retain memory under retrograde amnesia. Science 348, 1007–1013 (2015).

  63. 63.

    Chen, S., Cai, D., Pearce, K., Sun, P. Y.-W., Roberts, A. C. & Glanzman, D. L. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. eLife 3, e03896 (2014).

  64. 64.

    Zovkic, I. B., Guzman-Karlsson, M. C. & Sweatt, J. D. Epigenetic regulation of memory formation and maintenance. Learn. Mem. 20, 61–74 (2013).

  65. 65.

    Meadows, J. P. et al. Dynamic DNA methylation regulates neuronal intrinsic membrane excitability. Sci. Signal. 9, ra83 (2016).

  66. 66.

    Titley, H. K., Brunel, N. & Hansel, C. Toward a neurocentric view of learning. Neuron 95, 19–32 (2017).

  67. 67.

    Lisman, J., Yasuda, R. & Raghavachari, S. Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 13, 169–182 (2012).

  68. 68.

    Araki, Y., Zeng, M., Zhang, M. & Huganir, R. L. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85, 173–189 (2015).

  69. 69.

    Melgarejo da Rosa, M., Yuanxiang, P., Brambilla, R., Kreutz, M. R. & Karpova, A. Synaptic GluN2B/CaMKII-α signaling induces synapto-nuclear transport of ERK and Jacob. Front. Mol. Neurosci. 9, 66 (2016).

  70. 70.

    El Gaamouch, F. et al. Interaction between αCaMKII and GluN2B controls ERK-dependent plasticity. J. Neurosci. 32, 10767–10779 (2012).

  71. 71.

    Tang, S. & Yasuda, R. Imaging ERK and PKA activation in single dendritic spines during structural plasticity. Neuron 93, 1315–1324 (2017).

Download references


This work was supported by the NIH (grants U01NS090583, R56NS096710, R01DA043195, R01NS103168, U19NS104590, and NSF IOS-1526941 to J.L.; grants 2RF1AG013622-21 and R01MH113071 to A.J.S.) and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (to A.J.S.).

Author information

Competing interests

The authors declare no competing financial interests.

Correspondence to Alcino J. Silva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: CREB increases neuronal excitability.
Fig. 2: Allocate-to-link hypothesis.
Fig. 3: CREB-dependent enhancement of excitability is controlled both by dendritic LTP events and by somatic spiking, an enhancement that facilitates ensemble formation.