Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear

An Author Correction to this article was published on 09 July 2018

This article has been updated

Abstract

The medial prefrontal cortex (mPFC) has been implicated in the extinction of emotional memories, including conditioned fear. We found that ventral hippocampal (vHPC) projections to the infralimbic (IL) cortex recruited parvalbumin-expressing interneurons to counter the expression of extinguished fear and promote fear relapse. Whole-cell recordings ex vivo revealed that optogenetic activation of vHPC input to amygdala-projecting pyramidal neurons in the IL was dominated by feed-forward inhibition. Selectively silencing parvalbumin-expressing, but not somatostatin-expressing, interneurons in the IL eliminated vHPC-mediated inhibition. In behaving rats, pharmacogenetic activation of vHPC→IL projections impaired extinction recall, whereas silencing IL projectors diminished fear renewal. Intra-IL infusion of GABA receptor agonists or antagonists, respectively, reproduced these effects. Together, our findings describe a previously unknown circuit mechanism for the contextual control of fear, and indicate that vHPC-mediated inhibition of IL is an essential neural substrate for fear relapse.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: vHPC projection to the mPFC is dominated by strong local feed-forward inhibition mediated by FS interneurons in the IL.
Fig. 2: Selective optical activation of interneuronal subtypes in the IL evokes slow and fast inhibitory conductances onto pyramidal neurons.
Fig. 3: vHPC-driven feed-forward inhibition onto IL pyramidal neurons are specifically mediated by PV+ interneurons.
Fig. 4: vHPC-IL projections bidirectionally modulate fear relapse.
Fig. 5: Local GABA-mediated signaling in the IL gates fear renewal.

Change history

  • 09 July 2018

    In the version of this article initially published, the traces in Fig. 1j and in Fig. 1k, right, were duplicated from the corresponding traces in Fig. 1c, bottom, and Fig. 1d, bottom right. The error has been corrected in the HTML and PDF versions of the article.

References

  1. 1.

    Quirk, G. J. & Milad, M. R. Neuroscience: editing out fear. Nature 463, 36–37 (2010).

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Milad, M. R. & Quirk, G. J. Fear extinction as a model for translational neuroscience: ten years of progress. Annu. Rev. Psychol. 63, 129–151 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Goode, T. D. & Maren, S. Animal models of fear relapse. ILAR J. 55, 246–258 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. 4.

    Vervliet, B., Craske, M. G. & Hermans, D. Fear extinction and relapse: state of the art. Annu. Rev. Clin. Psychol. 9, 215–248 (2013).

    Article  PubMed  Google Scholar 

  5. 5.

    Bouton, M. E. Context and behavioral processes in extinction. Learn. Mem. 11, 485–494 (2004).

    Article  PubMed  Google Scholar 

  6. 6.

    Bouton, M. E. & Bolles, R. C. Contextual control of the extinction of conditioned fear. Learn. Motiv. 10, 445–466 (1979).

    Article  Google Scholar 

  7. 7.

    Laurent, V. & Westbrook, R. F. Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. Learn. Mem. 16, 520–529 (2009).

    Article  PubMed  Google Scholar 

  8. 8.

    Milad, M. R. & Quirk, G. J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420, 70–74 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Morgan, M. A., Romanski, L. M. & LeDoux, J. E. Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci. Lett. 163, 109–113 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Likhtik, E., Pelletier, J. G., Paz, R. & Paré, D. Prefrontal control of the amygdala. J. Neurosci. 25, 7429–7437 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Cho, J.-H., Deisseroth, K. & Bolshakov, V. Y. Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 80, 1491–1507 (2013).

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Knapska, E. & Maren, S. Reciprocal patterns of c-Fos expression in the medial prefrontal cortex and amygdala after extinction and renewal of conditioned fear. Learn. Mem. 16, 486–493 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Orsini, C. A., Kim, J. H., Knapska, E. & Maren, S. Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. J. Neurosci. 31, 17269–17277 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Maren, S., Phan, K. L. & Liberzon, I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 14, 417–428 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. 15.

    Corcoran, K. A. & Maren, S. Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. J. Neurosci. 21, 1720–1726 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Hobin, J. A., Ji, J. & Maren, S. Ventral hippocampal muscimol disrupts context-specific fear memory retrieval after extinction in rats. Hippocampus 16, 174–182 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Zelikowsky, M. et al. Prefrontal microcircuit underlies contextual learning after hippocampal loss. Proc. Natl. Acad. Sci. USA 110, 9938–9943 (2013).

    Article  PubMed  Google Scholar 

  18. 18.

    Jin, J. & Maren, S. Fear renewal preferentially activates ventral hippocampal neurons projecting to both amygdala and prefrontal cortex in rats. Sci. Rep. 5, 8388 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Herry, C. et al. Switching on and off fear by distinct neuronal circuits. Nature 454, 600–606 (2008).

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Knapska, E. et al. Functional anatomy of neural circuits regulating fear and extinction. Proc. Natl. Acad. Sci. USA 109, 17093–17098 (2012).

    Article  PubMed  Google Scholar 

  21. 21.

    Xu, C. et al. Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell 167, 961–972.e16 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Wang, Q., Jin, J. & Maren, S. Renewal of extinguished fear activates ventral hippocampal neurons projecting to the prelimbic and infralimbic cortices in rats. Neurobiol. Learn. Mem. 134, 38–43 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Parent, M. A., Wang, L., Su, J., Netoff, T. & Yuan, L.-L. Identification of the hippocampal input to medial prefrontal cortex in vitro. Cereb. Cortex 20, 393–403 (2010).

    Article  PubMed  Google Scholar 

  24. 24.

    Hoover, W. B. & Vertes, R. P. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct. Funct. 212, 149–179 (2007).

    Article  PubMed  Google Scholar 

  25. 25.

    Ascoli, G. A. et al. Petilla Interneuron Nomenclature Group et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Ferreira, A. N., Yousuf, H., Dalton, S. & Sheets, P. L. Highly differentiated cellular and circuit properties of infralimbic pyramidal neurons projecting to the periaqueductal gray and amygdala. Front. Cell. Neurosci. 9, 161 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Little, J. P. & Carter, A. G. Synaptic mechanisms underlying strong reciprocal connectivity between the medial prefrontal cortex and basolateral amygdala. J. Neurosci. 33, 15333–15342 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Kawaguchi, Y. & Kubota, Y. Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 85, 677–701 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Tamás, G., Lorincz, A., Simon, A. & Szabadics, J. Identified sources and targets of slow inhibition in the neocortex. Science 299, 1902–1905 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Wozny, C. & Williams, S. R. Specificity of synaptic connectivity between layer 1 inhibitory interneurons and layer 2/3 pyramidal neurons in the rat neocortex. Cereb. Cortex 21, 1818–1826 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kawaguchi, Y. & Kondo, S. Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J. Neurocytol. 31, 277–287 (2002).

    Article  PubMed  Google Scholar 

  32. 32.

    Bukalo, O. et al. Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci. Adv. 1, e1500251 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Duvarci, S. & Pare, D. Amygdala microcircuits controlling learned fear. Neuron 82, 966–980 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507 (2017).

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Do-Monte, F. H., Manzano-Nieves, G., Quiñones-Laracuente, K., Ramos-Medina, L. & Quirk, G. J. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J. Neurosci. 35, 3607–3615 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Ishikawa, A. & Nakamura, S. Convergence and interaction of hippocampal and amygdalar projections within the prefrontal cortex in the rat. J. Neurosci. 23, 9987–9995 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Tierney, P. L., Dégenètais, E., Thierry, A.-M., Glowinski, J. & Gioanni, Y. Influence of the hippocampus on interneurons of the rat prefrontal cortex. Eur. J. Neurosci. 20, 514–524 (2004).

    Article  PubMed  Google Scholar 

  38. 38.

    Sotres-Bayon, F., Sierra-Mercado, D., Pardilla-Delgado, E. & Quirk, G. J. Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron 76, 804–812 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Padilla-Coreano, N. et al. Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron 89, 857–866 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Jin, J. & Maren, S. Prefrontal-hippocampal interactions in memory and emotion. Front. Syst. Neurosci. 9, 170 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Shin, L. M., Rauch, S. L. & Pitman, R. K. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann. NY Acad. Sci. 1071, 67–79 (2006).

    Article  PubMed  Google Scholar 

  42. 42.

    Herry, C. et al. Neuronal circuits of fear extinction. Eur. J. Neurosci. 31, 599–612 (2010).

    Article  PubMed  Google Scholar 

  43. 43.

    Giustino, T. F. & Maren, S. The role of the medial prefrontal cortex in the conditioning and extinction of fear. Front. Behav. Neurosci. 9, 298 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Marek, R., Strobel, C., Bredy, T. W. & Sah, P. The amygdala and medial prefrontal cortex: partners in the fear circuit. J. Physiol. (Lond.) 591, 2381–2391 (2013).

    Article  CAS  Google Scholar 

  45. 45.

    Adhikari, A. et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527, 179–185 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. 46.

    Kim, H.-S., Cho, H.-Y., Augustine, G. J. & Han, J.-H. Selective control of fear expression by optogenetic manipulation of infralimbic cortex after extinction. Neuropsychopharmacology 41, 1261–1273 (2016).

    Article  PubMed  Google Scholar 

  47. 47.

    Maren, S. Fear of the unexpected: hippocampus mediates novelty-induced return of extinguished fear in rats. Neurobiol. Learn. Mem. 108, 88–95 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Knight, R. Contribution of human hippocampal region to novelty detection. Nature 383, 256–259 (1996).

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Eichenbaum, H. Prefrontal-hippocampal interactions in episodic memory. Nat. Rev. Neurosci. 18, 547–558 (2017).

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Adhikari, A., Topiwala, M. A. & Gordon, J. A. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65, 257–269 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. 51.

    Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104, 5163–5168 (2007).

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Lerchner, W. et al. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl- channel. Neuron 54, 35–49 (2007).

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Lynagh, T. & Lynch, J. W. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations. J. Biol. Chem. 285, 14890–14897 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. 54.

    Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. 55.

    Han, X. et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front. Syst. Neurosci. 5, 18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Strobel, C., Marek, R., Gooch, H.M., Sullivan, R.K.P. & Sah, P. Prefrontal and auditory input to intercalated neurons of the amygdala. Cell Reports https://doi.org/10.1016/j.celrep.2015.02.008 (2015).

  57. 57.

    Fitzgerald, P. J., Giustino, T. F., Seemann, J. R. & Maren, S. Noradrenergic blockade stabilizes prefrontal activity and enables fear extinction under stress. Proc. Natl. Acad. Sci. USA 112, E3729–E3737 (2015).

    Article  PubMed  CAS  Google Scholar 

  58. 58.

    Corcoran, K. A., Desmond, T. J., Frey, K. A. & Maren, S. Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. J. Neurosci. 25, 8978–8987 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. 59.

    Giustino, T. F. et al. β-adrenoceptor blockade in the basolateral amygdala, but not the medial prefrontal cortex, rescues the immediate extinction deficit. Neuropsychopharmacology 42, 2537–2544 (2017).

Download references

Acknowledgements

We thank A. Woodruff for comments on the manuscript. We thank L. Xu, University of North Carolina Vector Core, University of Pennsylvania Vector Core, and the Institute of Molecular Genetics of Montpellier for producing viruses. This work was supported by the US National Institutes of Health (R01MH065961 to S.M.; F31MH107113 to T.D.G.; F31MH112208 to T.F.G.), a McKnight Memory and Cognitive Disorders Award to S.M., and Australian Research Council (CE140100007) and National Health and Medical Research Grants to P.S.

Author information

Affiliations

Authors

Contributions

S.M. and P.S. supervised all of the experiments. S.M., P.S. and R.M. designed the experiments. R.M., J.J., T.D.G., T.F.G., Q.W., G.M.A. and P.J.F. collected the data. R.M., J.J., T.D.G., T.F.G., Q.W., G.M.A., P.J.F., S.M. and P.S. analyzed the data. R.H. and J.E.P. generated and provided AAVDJ/8 viral vectors. T.L. and J.W.L. generated and provided the ivermectin construct. R.M., J.J., T.D.G., S.M. and P.S. wrote the manuscript. All of the authors read and edited the manuscript.

Corresponding authors

Correspondence to Stephen Maren or Pankaj Sah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 HPC projections predominantly target IL neurons in the mPFC.

Comparison of hippocampal inputs onto principal neurons in the IL and PL reveal significantly larger EPSCs in IL neurons compared to caudal or rostral PL responses (rostral PL: n = 12; caudal PL: n = 5; IL: n = 21 from 7 animals; one-way ANOVA with Dunnett’s multiple comparison test, F2,35 = 6.62, *P = 0.037). Dots represent data from individual cells. Error bars indicate means ± s.e.m.

Supplementary Figure 2 Hippocampus-driven IL responses are monosynaptic, time-locked responses.

a, Example of a HPC-driven response in a pyramidal neuron, containing the initial excitatory response, followed by an inhibitory component. The 5-fold enlarged inset shows the time-locked onset of individual responses (grey) to the light stimulation (blue) without any response-failures. Averaged response shown in black. Analysis of EPSCs show very low response jitter (b) (individual jitter of neurons shown as grey dots; n = 19) and response latency (c) (n = 14), both typical parameters for monosynaptic responses. Error bars indicate means ± s.e.m.

Supplementary Figure 3 Quantification of vHPC-evoked inhibitory conductances in IL principal cells.

a, Schematic showing experimental setup. Optical terminal stimulation of ventral hippocampal inputs and whole-cell recording of pyramidal neurons in the IL. For the spiking suppression experiments (d), local electrical stimulation (battery symbol) was used. b, Current-clamp responses to hippocampal terminal release before (black trace) and after (red trace) the application of the GABAB-receptor antagonist CGP55845 (n = 3), revealing the fast (yellow) and slow IPSCs (green). c, Bar graphs with response patterns of IL principal neurons to optical hippocampal stimulation containing fast (top, yellow) and slow (bottom, green) inhibitory conductances (percentage of the total). d, Investigation of spiking suppression of IL principal neurons by the hippocampus. Electrical suprathreshold stimulation was used to evoke spiking (left) while presenting optical hippocampal stimulation 150 ms before the spiking event (n = 8). Blue bars represent optical stimulation.

Supplementary Figure 4 Feed-forward inhibition onto pyramidal neurons is mediated by local IL interneurons.

a, Schematic for electrical stimulation (battery symbol) of IL tissue ex vivo in the presence of AMPA- and NMDA-receptor antagonists NBQX and APV, respectively, to isolate GABAergic transmission. b, Voltage clamp (left) and current-clamp recordings (right) revealed inhibitory responses that contain both fast (yellow) and slow (green) inhibitory components. c, Application of the GABAB-receptor antagonist CGP55845 (red trace) isolated the fast, inhibitory conductance, which was blocked by the GABAA/C-receptor antagonist picrotoxin (green trace). Holding voltage: −60 mV.

Supplementary Figure 5 CNO- and virus-dependent silencing of IL neurons in freely moving rats.

a, Schematic design of experimental approach alongside a representative image depicting DREADD-expressing neurons of animals implanted with multichannel recording arrays into the IL (40 μm coronal section; white bar inset = 250 μm). b, Vehicle (VEH) injections did not cause a significant change in the spontaneous activity (20 s bins) of IL neurons (n = 15 for hM4Di; n = 27 for mCherry control) (left). When the hM4D(Gi)-expressing animal was injected with 1 mg/kg (middle) or 3 mg/kg (right) of CNO, IL neurons (n = 18 for 1 mg/kg; n = 16 for 3 mg/kg) exhibited a significant reduction in spontaneous firing relative to neurons of control virus-infected animals (n = 25 for 1 mg/kg; n = 23 for 3 mg/kg; repeated measures ANOVA, main effects of virus: F1,41 = 10.912, **P = 0.0020 for 1 mg/kg; F1,37 = 24.375, ***P < 0.0001 for 3 mg/kg).

Supplementary Figure 6 Pharmacological inactivation of the IL impedes retrieval of extinguished fear.

Test data show mean baseline freezing (3 min), mean freezing during nine 5-ITI blocks (30-sec ITIs) and a during a post-trial period (150 sec) following infusions of muscimol or vehicle into the IL (MUSC, n = 6; VEH, n = 10; repeated measures ANOVA, main effect of drug: F1,14 = 35.78, ***P < 0.0001). Corresponding conditioning and extinction data are shown in Fig. 4. Error bars indicate means ± s.e.m.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marek, R., Jin, J., Goode, T.D. et al. Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nat Neurosci 21, 384–392 (2018). https://doi.org/10.1038/s41593-018-0073-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing