Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Social transmission and buffering of synaptic changes after stress

Abstract

Stress can trigger enduring changes in neural circuits and synapses. The behavioral and hormonal consequences of stress can also be transmitted to others, but whether this transmitted stress has similar effects on synapses is not known. We found that authentic stress and transmitted stress in mice primed paraventricular nucleus of the hypothalamus (PVN) corticotropin-releasing hormone (CRH) neurons, enabling the induction of metaplasticity at glutamate synapses. In female mice that were subjected to authentic stress, this metaplasticity was diminished following interactions with a naive partner. Transmission from the stressed subject to the naive partner required the activation of PVN CRH neurons in both subject and partner to drive and detect the release of a putative alarm pheromone from the stressed mouse. Finally, metaplasticity could be transmitted sequentially from the stressed subject to multiple partners. Our findings demonstrate that transmitted stress has the same lasting effects on glutamate synapses as authentic stress and reveal an unexpected role for PVN CRH neurons in transmitting distress signals among individuals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STP at glutamate synapses onto PVN CRH neurons following footshock.
Fig. 2: Sex-dependent modulation and transfer of STP to a partner.
Fig. 3: Directionally biased investigative behavior is required for STP in partner.
Fig. 4: CRHR1 antagonist blocks STP and prevents transmission form subject to partner.
Fig. 5: Photoinhibition of PVN CRH neurons decreases STP in subject and partner.
Fig. 6: Photoactivation of PVN CRH neurons induces STP in subject and partner.
Fig. 7: STP in multiple group members following interaction with stressed individual or proxy.

Similar content being viewed by others

References

  1. Denver, R. J. Structural and functional evolution of vertebrate neuroendocrine stress systems. Ann. NY Acad. Sci. 1163, 1–16 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Senst, L., Baimoukhametova, D., Sterley, T.-L. & Bains, J. S. Sexually dimorphic neuronal responses to social isolation. eLife 5, 5904 (2016).

    Article  Google Scholar 

  3. Bains, J. S., Wamsteeker Cusulin, J. I. & Inoue, W. Stress-related synaptic plasticity in the hypothalamus. Nat. Rev. Neurosci. 16, 377–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Wamsteeker Cusulin, J. I., Füzesi, T., Inoue, W. & Bains, J. S. Glucocorticoid feedback uncovers retrograde opioid signaling at hypothalamic synapses. Nat. Neurosci. 16, 596–604 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Inoue, W. et al. Noradrenaline is a stress-associated metaplastic signal at GABA synapses. Nat. Neurosci. 16, 605–612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuzmiski, J. B., Marty, V., Baimoukhametova, D. V. & Bains, J. S. Stress-induced priming of glutamate synapses unmasks associative short-term plasticity. Nat. Neurosci. 13, 1257–1264 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Zahn-Waxler, C., Radke-Yarrow, M., Wagner, E. & Chapman, M. Development of concern for others. Dev. Psychol. 28, 126–136 (1992).

    Article  Google Scholar 

  8. Clay, Z. & de Waal, F. B. M. Bonobos respond to distress in others: consolation across the age spectrum. PLoS One 8, e55206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Langford, D. J. et al. Social modulation of pain as evidence for empathy in mice. Science 312, 1967–1970 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Ben-Ami Bartal, I., Decety, J. & Mason, P. Empathy and pro-social behavior in rats. Science 334, 1427–1430 (2011).

    Article  PubMed  Google Scholar 

  11. Burkett, J. P. et al. Oxytocin-dependent consolation behavior in rodents. Science 351, 375–378 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martin, L. J. et al. Reducing social stress elicits emotional contagion of pain in mouse and human strangers. Curr. Biol. 25, 326–332 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Bruchey, A. K., Jones, C. E. & Monfils, M.-H. Fear conditioning by-proxy: social transmission of fear during memory retrieval. Behav. Brain Res. 214, 80–84 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Swanson, L. W. et al. An immunohistochemical study of the organization of catecholaminergic cells and terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus. J. Comp. Neurol. 196, 271–285 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Khan, A. M. et al. MAP kinases couple hindbrain-derived catecholamine signals to hypothalamic adrenocortical control mechanisms during glycemia-related challenges. J. Neurosci. 31, 18479–18491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boudaba, C., Schrader, L. A. & Tasker, J. G. Physiological evidence for local excitatory synaptic circuits in the rat hypothalamus. J. Neurophysiol. 77, 3396–3400 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Wamsteeker Cusulin, J. I., Füzesi, T., Watts, A. G. & Bains, J. S. Characterization of corticotropin-releasing hormone neurons in the paraventricular nucleus of the hypothalamus of Crh-IRES-Cre mutant mice. PLoS One 8, e64943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hennessy, M. B., Kaiser, S. & Sachser, N. Social buffering of the stress response: diversity, mechanisms, and functions. Front. Neuroendocrinol. 30, 470–482 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Knapska, E. et al. Between-subject transfer of emotional information evokes specific pattern of amygdala activation. Proc. Natl. Acad. Sci. USA 103, 3858–3862 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Knapska, E., Mikosz, M., Werka, T. & Maren, S. Social modulation of learning in rats. Learn. Mem. 17, 35–42 (2009).

    Article  PubMed  Google Scholar 

  21. Inagaki, H. et al. The volatility of an alarm pheromone in male rats. Physiol. Behav. 96, 749–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Kiyokawa, Y., Kikusui, T., Takeuchi, Y. & Mori, Y. Alarm pheromones with different functions are released from different regions of the body surface of male rats. Chem. Senses 29, 35–40 (2004).

    Article  PubMed  Google Scholar 

  23. Kiyokawa, Y., Kikusui, T., Takeuchi, Y. & Mori, Y. Mapping the neural circuit activated by alarm pheromone perception by c-Fos immunohistochemistry. Brain Res. 1043, 145–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Brechbühl, J. et al. Mouse alarm pheromone shares structural similarity with predator scents. Proc. Natl. Acad. Sci. USA 110, 4762–4767 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kondoh, K. et al. A specific area of olfactory cortex involved in stress hormone responses to predator odours. Nature 532, 103–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Füzesi, T., Daviu, N., Wamsteeker Cusulin, J. I., Bonin, R. P. & Bains, J. S. Hypothalamic CRH neurons orchestrate complex behaviours after stress. Nat. Commun. 7, 11937 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sternson, S. M. Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron 77, 810–824 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Risbrough, V. B. & Stein, M. B. Role of corticotropin releasing factor in anxiety disorders: a translational research perspective. Horm. Behav. 50, 550–561 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, R. et al. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice. Mol. Psychiatry 22, 733–744 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Valentino, R. J., Van Bockstaele, E. & Bangasser, D. Sex-specific cell signaling: the corticotropin-releasing factor receptor model. Trends Pharmacol. Sci. 34, 437–444 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buchanan, T. W., Bagley, S. L., Stansfield, R. B. & Preston, S. D. The empathic, physiological resonance of stress. Soc. Neurosci. 7, 191–201 (2012).

    Article  PubMed  Google Scholar 

  32. Taylor, S. E. et al. Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychol. Rev. 107, 411–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Andari, E. et al. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc. Natl. Acad. Sci. USA 107, 4389–4394 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Insel, T. R. & Young, L. J. The neurobiology of attachment. Nat. Rev. Neurosci. 2, 129–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Jamieson, B.B., Nair, B.B. & Iremonger, K.J. Regulation of hypothalamic CRH neuron excitability by oxytocin. J. Neuroendocrinol. 29, e12532 (2017).

  36. Zalaquett, C. & Thiessen, D. The effects of odors from stressed mice on conspecific behavior. Physiol. Behav. 50, 221–227 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Kiyokawa, Y., Shimozuru, M., Kikusui, T., Takeuchi, Y. & Mori, Y. Alarm pheromone increases defensive and risk assessment behaviors in male rats. Physiol. Behav. 87, 383–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Grimsley, J. M. S. et al. Contextual modulation of vocal behavior in mouse: newly identified 12 kHz “mid-frequency” vocalization emitted during restraint. Front. Behav. Neurosci. 10, 38 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mun, H.-S., Lipina, T. V. & Roder, J. C. Ultrasonic vocalizations in mice during exploratory behavior are context-dependent. Front. Behav. Neurosci. 9, 316 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Papes, F., Logan, D. W. & Stowers, L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141, 692–703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chamero, P., Leinders-Zufall, T. & Zufall, F. From genes to social communication: molecular sensing by the vomeronasal organ. Trends Neurosci. 35, 597–606 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Brechbühl, J., Klaey, M. & Broillet, M.-C. Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 321, 1092–1095 (2008).

    Article  PubMed  Google Scholar 

  43. Sosulski, D. L., Bloom, M. L., Cutforth, T., Axel, R. & Datta, S. R. Distinct representations of olfactory information in different cortical centres. Nature 472, 213–216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pérez-Gómez, A. et al. Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Curr. Biol. 25, 1340–1346 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Berger, J., Heinrichs, M., von Dawans, B., Way, B. M. & Chen, F. S. Cortisol modulates men’s affiliative responses to acute social stress. Psychoneuroendocrinology 63, 1–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (2013).

Download references

Acknowledgements

We thank C. Breiteneder, M. Tsutsui and R. Barasi for technical assistance with tissue processing, injections and mouse colony maintenance. We thank K. Gorzo for assisting with behavioral analysis and R.P. Bonin (University of Toronto) for providing us with the original macro for analyzing behaviors. We thank K. Deisseroth (Stanford University) for kindly providing the viral constructs used for optical silencing of CRH neurons. We are grateful for the support of the Hotchkiss Brain Institute in creating the HBI Advance Light and Optogenetics core facility. This research was funded by operating grants to J.S.B. from the Canadian Institutes for Health Research (CIHR 86501) and Brain Canada Multi-Investigator Research Initiative and the Brain Canada Neurophotonics Platform. T.-L.S. and N.D. are supported by Fellowships from Alberta Innovates-Health Solutions (AIHS) and the UCalgary Eyes High Program. A.Z. is a CIHR Banting Fellow with additional support from AIHS.

Author information

Authors and Affiliations

Authors

Contributions

T.-L.S. designed and conducted experiments, analyzed the data, and prepared the manuscript. D.B. designed and conducted experiments and assisted with data analyses. T.F. organized viral injections for optogenetic experiments and formatted figures. A.Z., N.D. and N.P. all contributed to electrophysiology data collection. D.R. assisted with organization of optogenetic experiments. J.B. designed experiments, prepared the manuscript, created figures and supervised the project. All of the authors contributed to intellectual discussion and direction of the project.

Corresponding author

Correspondence to Jaideep S. Bains.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterley, TL., Baimoukhametova, D., Füzesi, T. et al. Social transmission and buffering of synaptic changes after stress. Nat Neurosci 21, 393–403 (2018). https://doi.org/10.1038/s41593-017-0044-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-017-0044-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing