Article

Stress-induced unfolded protein response contributes to Zika virus–associated microcephaly

Received:
Accepted:
Published online:

Abstract

Accumulating evidence support a causal link between Zika virus (ZIKV) infection during gestation and congenital microcephaly. However, the mechanism of ZIKV-associated microcephaly remains unclear. We combined analyses of ZIKV-infected human fetuses, cultured human neural stem cells and mouse embryos to understand how ZIKV induces microcephaly. We show that ZIKV triggers endoplasmic reticulum stress and unfolded protein response in the cerebral cortex of infected postmortem human fetuses as well as in cultured human neural stem cells. After intracerebral and intraplacental inoculation of ZIKV in mouse embryos, we show that it triggers endoplasmic reticulum stress in embryonic brains in vivo. This perturbs a physiological unfolded protein response within cortical progenitors that controls neurogenesis. Thus, ZIKV-infected progenitors generate fewer projection neurons that eventually settle in the cerebral cortex, whereupon sustained endoplasmic reticulum stress leads to apoptosis. Furthermore, we demonstrate that administration of pharmacological inhibitors of unfolded protein response counteracts these pathophysiological mechanisms and prevents microcephaly in ZIKV-infected mouse embryos. Such defects are specific to ZIKV, as they are not observed upon intraplacental injection of other related flaviviruses in mice.

  • Subscribe to Nature Neuroscience for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Gupta, A., Tsai, L. H. & Wynshaw-Boris, A. Life is a journey: a genetic look at neocortical development. Nat. Rev. Genet. 3, 342–355 (2002).

  2. 2.

    Rash, B. G. & Grove, E. A. Area and layer patterning in the developing cerebral cortex. Curr. Opin. Neurobiol. 16, 25–34 (2006).

  3. 3.

    Laguesse, S., Peyre, E. & Nguyen, L. Progenitor genealogy in the developing cerebral cortex. Cell Tissue Res. 359, 17–32 (2015).

  4. 4.

    Sarnat, H. B. & Flores-Sarnat, L. A new classification of malformations of the nervous system: an integration of morphological and molecular genetic criteria as patterns of genetic expression. Eur. J. Paediatr. Neurol. 5, 57–64 (2001).

  5. 5.

    Sarnat, H. B. & Flores-Sarnat, L. Neuroembryology and brain malformations: an overview. Handb. Clin. Neurol. 111, 117–128 (2013).

  6. 6.

    Woods, C. G. & Parker, A. Investigating microcephaly. Arch. Dis. Child. 98, 707–713 (2013).

  7. 7.

    Cauchemez, S. et al. Association between Zika virus and microcephaly in French Polynesia, 2013-15: a retrospective study. Lancet 387, 2125–2132 (2016).

  8. 8.

    Driggers, R. W. et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 374, 2142–2151 (2016).

  9. 9.

    Mlakar, J. et al. Zika virus associated with microcephaly. N. Engl. J. Med. 374, 951–958 (2016).

  10. 10.

    Cugola, F. R. et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534, 267–271 (2016).

  11. 11.

    Miner, J. J. et al. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165, 1081–1091 (2016).

  12. 12.

    Li, C. et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19, 120–126 (2016).

  13. 13.

    Onorati, M. et al. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep. 16, 2576–2592 (2016).

  14. 14.

    Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).

  15. 15.

    Tang, H. et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18, 587–590 (2016).

  16. 16.

    Wu, K. Y. et al. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell Res. 26, 645–654 (2016).

  17. 17.

    Laguesse, S. et al. A dynamic unfolded protein response contributes to the control of cortical neurogenesis. Dev. Cell 35, 553–567 (2015).

  18. 18.

    Chavali, P. L. et al. Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science 357, 83–88 (2017).

  19. 19.

    Bell, T. M., Field, E. J. & Narang, H. K. Zika virus infection of the central nervous system of mice. Arch. Gesamte. Virusforsch. 35, 183–193 (1971).

  20. 20.

    Hamel, R. et al. Biology of Zika virus infection in human skin cells. J. Virol. 89, 8880–8896 (2015).

  21. 21.

    Monel, B. et al. Zika virus induces massive cytoplasmic vacuolization and paraptosis-like death in infected cells. EMBO. J. 36, 1653–1668 (2017).

  22. 22.

    Paul, D. & Bartenschlager, R. Flaviviridae replication organelles: oh, what a tangled web we weave. Annu. Rev. Virol. 2, 289–310 (2015).

  23. 23.

    Pillai, P. S. et al. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science 352, 463–466 (2016).

  24. 24.

    Staeheli, P., Haller, O., Boll, W., Lindenmann, J. & Weissmann, C. Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell 44, 147–158 (1986).

  25. 25.

    Borgs, L. et al. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects. Sci. Rep. 6, 33377 (2016).

  26. 26.

    Bernard-Marissal, N. et al. Reduced calreticulin levels link endoplasmic reticulum stress and Fas-triggered cell death in motoneurons vulnerable to ALS. J. Neurosci. 32, 4901–4912 (2012).

  27. 27.

    Olgar, Y., Ozdemir, S. & Turan, B. Induction of endoplasmic reticulum stress and changes in expression levels of Zn(2 + )-transporters in hypertrophic rat heart. Mol. Cell. Biochem. https://doi.org/10.1007/s11010-017-3168-9 (2017).

  28. 28.

    Sessa, A. et al. Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling amplification of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons. Genes Dev. 24, 1816–1826 (2010).

  29. 29.

    Axten, J. M. et al. Discovery of GSK2656157: an optimized PERK inhibitor selected for preclinical development. ACS Med. Chem. Lett. 4, 964–968 (2013).

  30. 30.

    Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

  31. 31.

    Gupta, A. et al. NCOA3 coactivator is a transcriptional target of XBP1 and regulates PERK-eIF2α-ATF4 signalling in breast cancer. Oncogene 35, 5860–5871 (2016).

  32. 32.

    Tsuru, A., Imai, Y., Saito, M. & Kohno, K. Novel mechanism of enhancing IRE1α-XBP1 signalling via the PERK-ATF4 pathway. Sci. Rep. 6, 24217 (2016).

  33. 33.

    Bonnin, A. et al. A transient placental source of serotonin for the fetal forebrain. Nature 472, 347–350 (2011).

  34. 34.

    Ghouzzi, V. E. et al. ZIKA virus elicits P53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly and p53. Cell Death Dis. 7, e2440 (2016).

  35. 35.

    Yoon, K. J. et al. Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins. Cell Stem Cell 21, 349–358.e6 (2017).

  36. 36.

    Brault, J. B. et al. Comparative analysis between flaviviruses reveals specific neural stem cell tropism for Zika virus in the mouse developing neocortex. EBioMedicine 10, 71–76 (2016).

  37. 37.

    Lambert, N. et al. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution. PLoS One 6, e17753 (2011).

  38. 38.

    Cau, E., Gradwohl, G., Fode, C. & Guillemot, F. Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124, 1611–1621 (1997).

  39. 39.

    Gladwyn-Ng, I. E. et al. Bacurd2 is a novel interacting partner to Rnd2 which controls radial migration within the developing mammalian cerebral cortex. Neural Dev. 10, 9 (2015).

  40. 40.

    Gladwyn-Ng, I. et al. Bacurd1/Kctd13 and Bacurd2/Tnfaip1 are interacting partners to Rnd proteins which influence the long-term positioning and dendritic maturation of cerebral cortical neurons. Neural Dev. 11, 7 (2016).

  41. 41.

    Lanciotti, R. S. et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 14, 1232–1239 (2008).

  42. 42.

    Tielens, S. et al. Elongator controls cortical interneuron migration by regulating actomyosin dynamics. Cell Res. 26, 1131–1148 (2016).

Download references

Acknowledgements

The authors are thankful for technical help from the GIGA-Imaging Platform of ULg; M. Leruez-Ville for human sample collection; P.V. Drion, E.D. Valentin and C. Grignet for the flaviviral facility; C. d’Alessandro, M. Sambon and M. Lavina for technical assistance; E. Simon-Loriere for sharing ZIKV quantification protocol; and E. Peyre for graphical assistance. L.N., I.G.-N. and C.C. receive financial support from F.R.S.-F.N.R.S. This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under ZIKAlliance Grant Agreement N° 734548 (to L.N. and M.L.) and by the European Virus Archives goes Global (EVAg) project under grant agreement N° 653316. M.L. is also funded by Institut Pasteur, Inserm and LabEx IBEID. L.N. and P.V. are funded by F.R.S.-F.N.R.S., the Fonds Léon Fredericq, the Fondation Médicale Reine Elisabeth, the Fondation Simone et Pierre Clerdent and the Belgian Science Policy (IAP-VII network P7/20). L.N. is funded by ARC (ARC11/16-01) and the ERANET Neuron STEM-MCD; P.V. is funded by the WELBIO Program of the Walloon Region, the AXA Research Fund, the Fondation ULB, ERANET Neuron Microkin, ERANET E-rare Euromicro and ERC-2013 ERC-2013-AG-340020.

Author information

Author notes

  1. Ivan Gladwyn-Ng, Lluis Cordon Barris, Christian Alfano, Catherine Creppe and Thérèse Couderc contributed equally to this work.

Affiliations

  1. GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium

    • Ivan Gladwyn-Ng
    • , Lluís Cordón-Barris
    • , Christian Alfano
    • , Catherine Creppe
    • , Giovanni Morelli
    • , Nicolas Thelen
    • , Michelle America
    • , Marc Thiry
    •  & Laurent Nguyen
  2. Institut Pasteur, Biology of Infection Unit, Paris, France

    • Thérèse Couderc
    •  & Marc Lecuit
  3. Inserm U1117, Paris, France

    • Thérèse Couderc
    •  & Marc Lecuit
  4. BIOMED - Hasselt University, Hasselt, Belgium

    • Giovanni Morelli
  5. Département d’Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfant Malades, Paris, France

    • Bettina Bessières
    • , Férechté Encha-Razavi
    •  & Maryse Bonnière
  6. Inserm U 1163 Institut Imagine, Paris, France

    • Bettina Bessières
  7. Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research in Human Biology (IRIBHM), and ULB Institute of Neuroscience (UNI), Brussels, Belgium

    • Ikuo K. Suzuki
    •  & Pierre Vanderhaeghen
  8. Institut Pasteur, Structural Virology Unit, Paris, France

    • Marie Flamand
  9. WELBIO, Université Libre de Bruxelles, Brussels, Belgium

    • Pierre Vanderhaeghen
  10. Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Institut Imagine, Paris, France

    • Marc Lecuit

Authors

  1. Search for Ivan Gladwyn-Ng in:

  2. Search for Lluís Cordón-Barris in:

  3. Search for Christian Alfano in:

  4. Search for Catherine Creppe in:

  5. Search for Thérèse Couderc in:

  6. Search for Giovanni Morelli in:

  7. Search for Nicolas Thelen in:

  8. Search for Michelle America in:

  9. Search for Bettina Bessières in:

  10. Search for Férechté Encha-Razavi in:

  11. Search for Maryse Bonnière in:

  12. Search for Ikuo K. Suzuki in:

  13. Search for Marie Flamand in:

  14. Search for Pierre Vanderhaeghen in:

  15. Search for Marc Thiry in:

  16. Search for Marc Lecuit in:

  17. Search for Laurent Nguyen in:

Contributions

I.G.-N., L.C.B., C.A., C.C., T.C., M.L. and L.N. designed the study. I.G.-N. set up animal models for ZIKV infection and, together with T.C., generated and analyzed in vivo data with help of G.M., L.C.B., M.A., C.A. and C.C. N.T. and M.T. performed and interpreted TEM analyses. L.C.B. generated data with hNSCs and performed analyses with help of C.A., I.G.-N. and C.C. C.A. and M.A. analyzed human brain samples provided by B.B., F.E.-R., M.B., I.S. and P.V. M.F. shared antibodies. L.N. contributed to data interpretation and wrote the manuscript with help from M.L. and input from all coauthors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Marc Lecuit or Laurent Nguyen.

Integrated Supplementary Information

Supplementary information