Article

The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning

Received:
Accepted:
Published online:

Abstract

Long-term potentiation (LTP) and depression (LTD) at glutamatergic synapses are intensively investigated processes for understanding the synaptic basis for learning and memory, but the underlying molecular mechanisms remain poorly understood. We have made three mouse lines where the C-terminal domains (CTDs) of endogenous AMPA receptors (AMPARs), the principal mediators of fast excitatory synaptic transmission, are specifically exchanged. These mice display profound deficits in synaptic plasticity without any effects on basal synaptic transmission. Our study reveals that the CTDs of GluA1 and GluA2, the key subunits of AMPARs, are necessary and sufficient to drive NMDA receptor–dependent LTP and LTD, respectively. In addition, these domains exert differential effects on spatial and contextual learning and memory. These results establish dominant roles of AMPARs in governing bidirectional synaptic and behavioral plasticity in the CNS.

  • Subscribe to Nature Neuroscience for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

  2. 2.

    Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

  3. 3.

    Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).

  4. 4.

    Henley, J. M. & Wilkinson, K. A. Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci. 17, 337–350 (2016).

  5. 5.

    Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

  6. 6.

    Collingridge, G. L., Isaac, J. T. & Wang, Y. T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962 (2004).

  7. 7.

    Kessels, H. W. & Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 61, 340–350 (2009).

  8. 8.

    Huganir, R. L. & Nicoll, R. A. AMPARs and synaptic plasticity: the last 25 years. Neuron 80, 704–717 (2013).

  9. 9.

    Lu, W. et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62, 254–268 (2009).

  10. 10.

    Granger, A. J., Shi, Y., Lu, W., Cerpas, M. & Nicoll, R. A. LTP requires a reserve pool of glutamate receptors independent of subunit type. Nature 493, 495–500 (2013).

  11. 11.

    Granger, A. J. & Nicoll, R. A. LTD expression is independent of glutamate receptor subtype. Front. Synaptic Neurosci. 6, 15 (2014).

  12. 12.

    Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

  13. 13.

    Shi, S., Hayashi, Y., Esteban, J. A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

  14. 14.

    Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 (1998).

  15. 15.

    Lüthi, A. et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. Neuron 24, 389–399 (1999).

  16. 16.

    Lüscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

  17. 17.

    Lee, S. H., Liu, L., Wang, Y. T. & Sheng, M. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36, 661–674 (2002).

  18. 18.

    Ahmadian, G. et al. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J. 23, 1040–1050 (2004).

  19. 19.

    Jia, Z. et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17, 945–956 (1996).

  20. 20.

    Zamanillo, D. et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805–1811 (1999).

  21. 21.

    Meng, Y., Zhang, Y. & Jia, Z. Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3. Neuron 39, 163–176 (2003).

  22. 22.

    Greger, I. H., Ziff, E. B. & Penn, A. C. Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci. 30, 407–416 (2007).

  23. 23.

    Andrásfalvy, B. K., Smith, M. A., Borchardt, T., Sprengel, R. & Magee, J. C. Impaired regulation of synaptic strength in hippocampal neurons from GluR1-deficient mice. J. Physiol. (Lond.) 552, 35–45 (2003).

  24. 24.

    Sans, N. et al. Aberrant formation of glutamate receptor complexes in hippocampal neurons of mice lacking the GluR2 AMPA receptor subunit. J. Neurosci. 23, 9367–9373 (2003).

  25. 25.

    Plant, K. et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat. Neurosci. 9, 602–604 (2006).

  26. 26.

    Liu, S. J. & Zukin, R. S. Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci. 30, 126–134 (2007).

  27. 27.

    Lee, H. K. et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112, 631–643 (2003).

  28. 28.

    Kim, C. H. et al. Persistent hippocampal CA1 LTP in mice lacking the C-terminal PDZ ligand of GluR1. Nat. Neurosci. 8, 985–987 (2005).

  29. 29.

    Gerlai, R., Henderson, J. T., Roder, J. C. & Jia, Z. Multiple behavioral anomalies in GluR2 mutant mice exhibiting enhanced LTP. Behav. Brain Res. 95, 37–45 (1998).

  30. 30.

    Collingridge, G. L., Peineau, S., Howland, J. G. & Wang, Y. T. Long-term depression in the CNS. Nat. Rev. Neurosci. 11, 459–473 (2010).

  31. 31.

    Lüscher, C. & Huber, K. M. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65, 445–459 (2010).

  32. 32.

    Kemp, N., McQueen, J., Faulkes, S. & Bashir, Z. I. Different forms of LTD in the CA1 region of the hippocampus: role of age and stimulus protocol. Eur. J. Neurosci. 12, 360–366 (2000).

  33. 33.

    Lu, W. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001).

  34. 34.

    Benke, T. A., Lüthi, A., Isaac, J. T. & Collingridge, G. L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797 (1998).

  35. 35.

    Clem, R. L. & Huganir, R. L. Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330, 1108–1112 (2010).

  36. 36.

    Humeau, Y. et al. A pathway-specific function for different AMPA receptor subunits in amygdala long-term potentiation and fear conditioning. J. Neurosci. 27, 10947–10956 (2007).

  37. 37.

    Mitsushima, D., Ishihara, K., Sano, A., Kessels, H. W. & Takahashi, T. Contextual learning requires synaptic AMPA receptor delivery in the hippocampus. Proc. Natl. Acad. Sci. USA 108, 12503–12508 (2011).

  38. 38.

    Rudy, J. W., Barrientos, R. M. & O’Reilly, R. C. Hippocampal formation supports conditioning to memory of a context. Behav. Neurosci. 116, 530–538 (2002).

  39. 39.

    Lu, W. & Roche, K. W. Posttranslational regulation of AMPA receptor trafficking and function. Curr. Opin. Neurobiol. 22, 470–479 (2012).

  40. 40.

    Kim, C. H., Chung, H. J., Lee, H. K. & Huganir, R. L. Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression. Proc. Natl. Acad. Sci. USA 98, 11725–11730 (2001).

  41. 41.

    Reisel, D. et al. Spatial memory dissociations in mice lacking GluR1. Nat. Neurosci. 5, 868–873 (2002).

  42. 42.

    Schmitt, W. B. et al. Spatial reference memory in GluR-A-deficient mice using a novel hippocampal-dependent paddling pool escape task. Hippocampus 14, 216–223 (2004).

  43. 43.

    Bannerman, D. M. et al. Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci. 15, 181–192 (2014).

  44. 44.

    Moser, E., Moser, M. B. & Andersen, P. Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J. Neurosci. 13, 3916–3925 (1993).

  45. 45.

    Frankland, P. W., Cestari, V., Filipkowski, R. K., McDonald, R. J. & Silva, A. J. The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behav. Neurosci. 112, 863–874 (1998).

  46. 46.

    Wiltgen, B. J., Sanders, M. J., Anagnostaras, S. G., Sage, J. R. & Fanselow, M. S. Context fear learning in the absence of the hippocampus. J. Neurosci. 26, 5484–5491 (2006).

  47. 47.

    Burwell, R. D., Saddoris, M. P., Bucci, D. J. & Wiig, K. A. Corticohippocampal contributions to spatial and contextual learning. J. Neurosci. 24, 3826–3836 (2004).

  48. 48.

    Liu, X., Gu, Q. H., Duan, K. & Li, Z. NMDA receptor-dependent LTD is required for consolidation but not acquisition of fear memory. J. Neurosci. 34, 8741–8748 (2014).

  49. 49.

    Meng, Y. et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35, 121–133 (2002).

  50. 50.

    Zhou, Z., Hu, J., Passafaro, M., Xie, W. & Jia, Z. GluA2 (GluR2) regulates metabotropic glutamate receptor-dependent long-term depression through N-cadherin-dependent and cofilin-mediated actin reorganization. J. Neurosci. 31, 819–833 (2011).

Download references

Acknowledgements

We thank Y.-T. Wang for GluA2-CTD antibodies, W. Lu for the use of the fear conditioning chambers, and L. Han, R. Mao and other members of Jia laboratory for technical assistance and comments on the manuscript. This work was supported by grants from the Canadian Institutes of Health Research (CIHR, MOP119421, Z.J.; FDN154276, G.L.C.), Canadian Natural Science and Engineering Research Council (NSERC, RGPIN341498, Z.J.), Natural Science Foundation of China (NSFC 31571040, Z.Z.), NSFC and CIHR Joint Health Research Initiative Program (81161120543, W.X. and CCI117959, Z.J.), Brain Canada (Z.J. and G.L.C.) and the Hospital for Sick Children Foundation (Z.J.). S.X. was supported by the Scientific Research Foundation of Graduate School of Southeast University, China.

Author information

Author notes

  1. Zikai Zhou, An Liu, Shuting Xia and Celeste Leung contributed equally to this work.

Affiliations

  1. Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada

    • Zikai Zhou
    • , Shuting Xia
    • , Celeste Leung
    • , Yanghong Meng
    •  & Zhengping Jia
  2. Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada

    • Zikai Zhou
    • , Shuting Xia
    • , Celeste Leung
    • , Yanghong Meng
    • , Pojeong Park
    • , Graham L. Collingridge
    •  & Zhengping Jia
  3. The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China

    • Zikai Zhou
    • , An Liu
    • , Shuting Xia
    • , Junxia Qi
    •  & Wei Xie
  4. Co-innovation Center of Neuroregeneration, Nantong University, Nanjing, China

    • Zikai Zhou
    •  & Wei Xie
  5. Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada

    • Pojeong Park
    •  & Graham L. Collingridge
  6. Centre for Synaptic Plasticity, Department of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK

    • Pojeong Park
    •  & Graham L. Collingridge

Authors

  1. Search for Zikai Zhou in:

  2. Search for An Liu in:

  3. Search for Shuting Xia in:

  4. Search for Celeste Leung in:

  5. Search for Junxia Qi in:

  6. Search for Yanghong Meng in:

  7. Search for Wei Xie in:

  8. Search for Pojeong Park in:

  9. Search for Graham L. Collingridge in:

  10. Search for Zhengping Jia in:

Contributions

Z.J. conceived and supervised the study. A.L., Z.Z., G.L.C. and Z.J. designed the experiments. Z.Z., A.L., S.X., C.L., J.Q. and Y.M. performed experiments. Z.Z., A.L., S.X., C.L., P.P. and W.X. analyzed data. Z.J., G.L.C. and A.L. wrote the paper. All authors read and approved the final manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Graham L. Collingridge or Zhengping Jia.

Integrated Supplementary Information

Supplementary information

  1. Supplementary text and Figures

    Supplementary figures 1–10.

  2. Life sciences reporting summary

  3. Statistics data reporting by figure

    Statistics data reporting by figure.