Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex

A Publisher Correction to this article was published on 11 May 2018

This article has been updated (view changelog)

Abstract

Activity-dependent transcriptional responses shape cortical function. However, a comprehensive understanding of the diversity of these responses across the full range of cortical cell types, and how these changes contribute to neuronal plasticity and disease, is lacking. To investigate the breadth of transcriptional changes that occur across cell types in the mouse visual cortex after exposure to light, we applied high-throughput single-cell RNA sequencing. We identified significant and divergent transcriptional responses to stimulation in each of the 30 cell types characterized, thus revealing 611 stimulus-responsive genes. Excitatory pyramidal neurons exhibited inter- and intralaminar heterogeneity in the induction of stimulus-responsive genes. Non-neuronal cells showed clear transcriptional responses that may regulate experience-dependent changes in neurovascular coupling and myelination. Together, these results reveal the dynamic landscape of the stimulus-dependent transcriptional changes occurring across cell types in the visual cortex; these changes are probably critical for cortical function and may be sites of deregulation in developmental brain disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Workflow and identification of cell types.
Fig. 2: Identification of sensory-stimulus-regulated genes.
Fig. 3: Diversity of experience-regulated ERGs.
Fig. 4: Sensory-experience-induced transcriptional responses in V1 excitatory neurons.
Fig. 5: Inhibitory neuronal LRGs.
Fig. 6: Light-induced transcriptional changes in non-neuronal cells.

Change history

  • 11 May 2018

    In the version of this article initially published, the x-axis labels in Fig. 3c read Vglut, Gad1/2, Aldh1l1 and Pecam1; they should have read Vglut+, Gad1/2+, Aldh1l1+ and Pecam1+. In Fig. 4, the range values were missing from the color scales; they are, from left to right, 4–15, 0–15, 4–15 and 0–15 in Fig. 4a and 4–15, 4–15 and 4–8 in Fig. 4h. In the third paragraph of the main text, the phrase reading “Previous approaches have analyzed a limited number of inhibitory cell types, thus masking the full diversity of excitatory populations” should have read “Previous approaches have analyzed a limited number of inhibitory cell types and masked the full diversity of excitatory populations.” In the second paragraph of Results section “Diversity of experience-regulated ERGs,” the phrase reading “thus suggesting considerable divergence within the gene expression program responding to early stimuli” should have read “thus suggesting considerable divergence within the early stimulus-responsive gene expression program.” In the fourth paragraph of Results section “Excitatory neuronal LRGs,” the sentence reading “The anatomical organization of these cell types into sublayers, coupled with divergent transcriptional responses to a sensory stimulus, suggested previously unappreciated functional subdivisions located within the laminae of the mouse visual cortex and resembling the cytoarchitecture in higher mammals” should have read “The anatomical organization of these cell types into sublayers, coupled with divergent transcriptional responses to a sensory stimulus, suggests previously unappreciated functional subdivisions located within the laminae of the mouse visual cortex, resembling the cytoarchitecture in higher mammals.” In the last sentence of the Results, “sensory-responsive genes” should have read “sensory-stimulus-responsive genes.” The errors have been corrected in the HTML and PDF versions of the article.

References

  1. 1.

    Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Wiesel, T. N. & Hubel, D. H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    West, A. E. & Greenberg, M. E. Neuronal activity-regulated gene transcription in synapse development and cognitive function. Cold Spring Harb. Perspect. Biol. 3, a005744 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. 5.

    Bading, H. Nuclear calcium signalling in the regulation of brain function. Nat. Rev. Neurosci. 14, 593–608 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    MacManus, J. P. et al. Translation-state analysis of gene expression in mouse brain after focal ischemia. J. Cereb. Blood Flow Metab. 24, 657–667 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Ginty, D. D. et al. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260, 238–241 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Renier, N. et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165, 1789–1802 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    Ben-David, E. & Shifman, S. Networks of neuronal genes affected by common and rare variants in autism spectrum disorders. PLoS Genet. 8, e1002556 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Thomas, G. M. & Huganir, R. L. MAPK cascade signalling and synaptic plasticity. Nat. Rev. Neurosci. 5, 173–183 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Shepherd, J. D. & Bear, M. F. New views of Arc, a master regulator of synaptic plasticity. Nat. Neurosci. 14, 279–284 (2011).

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Mardinly, A. R. et al. Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons. Nature 531, 371–375 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Harward, S. C. et al. Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature 538, 99–103 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. 15.

    Lin, Y. et al. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 455, 1198–1204 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Majdan, M. & Shatz, C. J. Effects of visual experience on activity-dependent gene regulation in cortex. Nat. Neurosci. 9, 650–659 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Spiegel, I. et al. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs. Cell 157, 1216–1229 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Lacoste, B. et al. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex. Neuron 83, 1117–1130 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Wang, X. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9, 816–823 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 7, 11022 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. 23.

    Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Wu, G.-Y., Deisseroth, K. & Tsien, R. W. Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 98, 2808–2813 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Harris, K. D. & Shepherd, G. M. G. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Chacón, P. J. et al. Cerebellin 4, a synaptic protein, enhances inhibitory activity and resistance of neurons to amyloid-β toxicity. Neurobiol. Aging 36, 1057–1071 (2015).

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Hattox, A. M. & Nelson, S. B. Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. J. Neurophysiol. 98, 3330–3340 (2007).

    Article  PubMed  Google Scholar 

  28. 28.

    Schulz, T. W. et al. Actin/alpha-actinin-dependent transport of AMPA receptors in dendritic spines: role of the PDZ-LIM protein RIL. J. Neurosci. 24, 8584–8594 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    de Kock, C. P. J., Bruno, R. M., Spors, H. & Sakmann, B. Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. J. Physiol. (Lond.) 581, 139–154 (2007).

    Article  CAS  Google Scholar 

  31. 31.

    Nassi, J. J. & Callaway, E. M. Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 10, 360–372 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Kratzer, S. et al. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels. Front. Cell. Neurosci. 7, 91 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Li, K., Nakajima, M., Ibañez-Tallon, I. & Heintz, N. A cortical circuit for sexually dimorphic oxytocin-dependent anxiety behaviors. Cell 167, 60–72.e11 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Roy, C. S. & Sherrington, C. S. On the regulation of the blood-supply of the brain. J. Physiol. 11, 158-7–158.17 (1890).

    Article  Google Scholar 

  36. 36.

    Attwell, D. et al. Glial and neuronal control of brain blood flow. Nature 468, 232–243 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. 37.

    Gurnik, S. et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol. 131, 753–773 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. 38.

    Augustin, H. G., Koh, G. Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Weinl, C. et al. Endothelial SRF/MRTF ablation causes vascular disease phenotypes in murine retinae. J. Clin. Invest. 123, 2193–2206 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Zhou, Z. et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532, 122–126 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. 41.

    Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. 42.

    Miyata, S., Hattori, T., Shimizu, S., Ito, A. & Tohyama, M. Disturbance of oligodendrocyte function plays a key role in the pathogenesis of schizophrenia and major depressive disorder. BioMed Res. Int. 2015, 492367 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Ramilowski, J. A. et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat. Commun. 6, 7866 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. 44.

    Habib, N. et al. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353, 925–928 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. 45.

    Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. 46.

    Gokce, O. et al. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq. Cell Rep. 16, 1126–1137 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Su, Y. et al. Neuronal activity modifies the chromatin accessibility landscape in the adult brain. Nat. Neurosci. 20, 476–483 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. 48.

    Tu Z. & Bai X. Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.  32, 1744–1757 (2010).

  49. 49.

    Richmond, D., Kainmueller, D., Glocker, B., Rother, C. & Myers, G. Uncertainty-driven forest predictors for vertebra localization and segmentation. in International Conference on Medical Image Computing and Computer-Assisted Intervention 653–660 (Springer, Munich, 2015).

  50. 50.

    Aguet, F., Antonescu, C. N., Mettlen, M., Schmid, S. L. & Danuser, G. Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. Dev. Cell 26, 279–291 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. 51.

    Cicconet, M., Hochbaum, D. R., Richmond, D. & Sabatini, B. L. Bots for software-assisted analysis of image-based transcriptomics. Preprint at https://www.biorxiv.org/content/early/2017/08/03/172296 (2017).

  52. 52.

    Fan, J. Notes on Poisson distribution-based minimum error thresholding. Pattern Recognit. Lett. 19, 425–431 (1998).

    Article  CAS  Google Scholar 

  53. 53.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. 54.

    Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. 55.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. 56.

    Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. 57.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  PubMed  CAS  Google Scholar 

  58. 58.

    McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. 59.

    Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. 60.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. 61.

    Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12, 44–73 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. 62.

    Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163–166 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. 63.

    van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  64. 64.

    Rodriguez, A. & Laio, A. Clustering by fast search and find of density peaks. Science 344, 1492–1496 (2014).

    Article  PubMed  CAS  Google Scholar 

  65. 65.

    Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. 66.

    Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. 67.

    Straub, A. C. et al. Endothelial cell expression of haemoglobin α regulates nitric oxide signalling. Nature 491, 473–477 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. 68.

    Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. 69.

    Huang, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  70. 70.

    Huang, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  71. 71.

    Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323.e30 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. 72.

    Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360.e4 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Griffith and J. Gray for critical reading of the manuscript; the HMS Single Cell Core for sample processing; and D. Harmin, A. Veres, D. Kotliar, H. Finucane, Y. Reshef, B. Hall, T. Otis, and D. Malhotra for discussions. This work was supported by funding from National Institutes of Health (NIH) grant R01 NS028829 and the ROADS Program funded by F. Hoffmann-La Roche Ltd. to M.E.G.; NIH grant R01 NS046579 to B.L.S.; the William F. Milton Fund to D.R.H.; NIH grant T32GM007753 to M.A.N.; NIH Training Grant in the Molecular Biology of Neurodegeneration 5T32AG000222-23 to S.H.; and a Burroughs Wellcome Fund Career award at the scientific interface, an Edward J. Mallinckrodt Scholarship, and NCI grant R33CA212697 to A.M.K.

Author information

Affiliations

Authors

Contributions

S.H., D.R.H., and M.A.N. conceived the study and designed all experiments. S.H. and D.R.H. developed the optimized dissociation protocol. S.H. and D.R.H. performed single-cell experiments with assistance from R.Z., A.M.K., and A.R. M.A.N. processed all sequencing data. S.H., M.A.N., and D.R.H. analyzed data with assistance from R.B.-M. and A.M.K. D.R.H., K.R., and L.C. carried out FISH experiments and imaging, D.R.H. analyzed the FISH data. M.C. and D.R.H. developed automated software for FISH analysis. S.H., D.R.H., M.A.N., and M.E.G. wrote the manuscript. M.E.G. and B.L.S. advised on all aspects of the study.

Corresponding authors

Correspondence to Bernardo L. Sabatini or Michael E. Greenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–24

Life Sciences Reporting Summary

Supplementary Table 1

GEO terms for genes induced by drug-cocktail treatment

Supplementary Table 2

Cell-type enriched genes

Supplementary Table 3

The 611 induced genes across cell types and time points

Supplementary Table 4

GEO terms for sensory-experience-regulated genes

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hrvatin, S., Hochbaum, D.R., Nagy, M.A. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat Neurosci 21, 120–129 (2018). https://doi.org/10.1038/s41593-017-0029-5

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing