Article

Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice

Received:
Accepted:
Published online:

Abstract

Experience-dependent plasticity in the mature visual system is widely considered to be cortical. Using chronic two-photon Ca2+ imaging of thalamic afferents in layer 1 of binocular visual cortex, we provide evidence against this tenet: the respective dorsal lateral geniculate nucleus (dLGN) cells showed pronounced ocular dominance (OD) shifts after monocular deprivation in adult mice. Most (86%), but not all, of dLGN cell boutons were monocular during normal visual experience. Following deprivation, initially deprived-eye-dominated boutons reduced or lost their visual responsiveness to that eye and frequently became responsive to the non-deprived eye. This cannot be explained by eye-specific cortical changes propagating to dLGN via cortico-thalamic feedback because the shift in dLGN responses was largely resistant to cortical inactivation using the GABAA receptor agonist muscimol. Our data suggest that OD shifts observed in the binocular visual cortex of adult mice may at least partially reflect plasticity of eye-specific inputs onto dLGN neurons.

  • Subscribe to Nature Neuroscience for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Hubel, D. H. & Wiesel, T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419–436 (1970).

  2. 2.

    LeVay, S., Wiesel, T. N. & Hubel, D. H. The development of ocular dominance columns in normal and visually deprived monkeys. J. Comp. Neurol. 191, 1–51 (1980).

  3. 3.

    Sato, M. & Stryker, M. P. Distinctive features of adult ocular dominance plasticity. J. Neurosci. 28, 10278–10286 (2008).

  4. 4.

    Rose, T., Jaepel, J., Hübener, M. & Bonhoeffer, T. Cell-specific restoration of stimulus preference after monocular deprivation in the visual cortex. Science 352, 1319–1322 (2016).

  5. 5.

    Sawtell, N. B. et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38, 977–985 (2003).

  6. 6.

    Wiesel, T. N. & Hubel, D. H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

  7. 7.

    Dräger, U. C. Observations on monocular deprivation in mice. J. Neurophysiol. 41, 28–42 (1978).

  8. 8.

    Sherman, S. M. & Spear, P. D. Organization of visual pathways in normal and visually deprived cats. Physiol. Rev. 62, 738–855 (1982).

  9. 9.

    Wiesel, T. N. & Hubel, D. H. Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. J. Neurophysiol. 26, 978–993 (1963).

  10. 10.

    Moore, B. D. IV, Kiley, C. W., Sun, C. & Usrey, W. M. Rapid plasticity of visual responses in the adult lateral geniculate nucleus. Neuron 71, 812–819 (2011).

  11. 11.

    Fox, K., Wallace, H. & Glazewski, S. Is there a thalamic component to experience-dependent cortical plasticity? Phil. Trans. R. Soc. Lond. B 357, 1709–1715 (2002).

  12. 12.

    Tian, N. & Copenhagen, D. R. Visual deprivation alters development of synaptic function in inner retina after eye opening. Neuron 32, 439–449 (2001).

  13. 13.

    Huberman, A. D., Feller, M. B. & Chapman, B. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008).

  14. 14.

    Ziburkus, J. & Guido, W. Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation. J. Neurophysiol. 96, 2775–2784 (2006).

  15. 15.

    Chen, C. & Regehr, W. G. Developmental remodeling of the retinogeniculate synapse. Neuron 28, 955–966 (2000).

  16. 16.

    Jaubert-Miazza, L. et al. Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis. Neurosci. 22, 661–676 (2005).

  17. 17.

    Gilbert, C. D. & Wiesel, T. N. Receptive field dynamics in adult primary visual cortex. Nature 356, 150–152 (1992).

  18. 18.

    Grubb, M. S., Rossi, F. M., Changeux, J. P. & Thompson, I. D. Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron 40, 1161–1172 (2003).

  19. 19.

    Zhao, X., Liu, M. & Cang, J. Sublinear binocular integration preserves orientation selectivity in mouse visual cortex. Nat. Commun. 4, 2088 (2013).

  20. 20.

    Grieve, K. L. Binocular visual responses in cells of the rat dLGN. J. Physiol. (Lond.) 566, 119–124 (2005).

  21. 21.

    Howarth, M., Walmsley, L. & Brown, T. M. Binocular integration in the mouse lateral geniculate nuclei. Curr. Biol. 24, 1241–1247 (2014).

  22. 22.

    Zeater, N., Cheong, S. K., Solomon, S. G., Dreher, B. & Martin, P. R. Binocular visual responses in the primate lateral geniculate nucleus. Curr. Biol. 25, 3190–3195 (2015).

  23. 23.

    Rompani, S. B. et al. Different modes of visual integration in the lateral geniculate nucleus revealed by single-cell-initiated transsynaptic tracing. Neuron 93, 767–776.e6 (2017).

  24. 24.

    Wiesel, T. N. Postnatal development of the visual cortex and the influence of environment. Nature 299, 583–591 (1982).

  25. 25.

    Kaneko, M., Stellwagen, D., Malenka, R. C. & Stryker, M. P. Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58, 673–680 (2008).

  26. 26.

    Stafford, B. K. & Huberman, A. D. Signal integration in thalamus: labeled lines go cross-eyed and blurry. Neuron 93, 717–720 (2017).

  27. 27.

    Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

  28. 28.

    Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

  29. 29.

    Cruz-Martín, A. et al. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507, 358–361 (2014).

  30. 30.

    Sun, W., Tan, Z., Mensh, B. D. & Ji, N. Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci. 19, 308–315 (2016).

  31. 31.

    Kondo, S. & Ohki, K. Laminar differences in the orientation selectivity of geniculate afferents in mouse primary visual cortex. Nat. Neurosci. 19, 316–319 (2016).

  32. 32.

    Roth, M. M. et al. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat. Neurosci. 19, 299–307 (2016).

  33. 33.

    Piscopo, D. M., El-Danaf, R. N., Huberman, A. D. & Niell, C. M. Diverse visual features encoded in mouse lateral geniculate nucleus. J. Neurosci. 33, 4642–4656 (2013).

  34. 34.

    Aarts, E., Verhage, M., Veenvliet, J. V., Dolan, C. V. & van der Sluis, S. A solution to dependency: using multilevel analysis to accommodate nested data. Nat. Neurosci. 17, 491–496 (2014).

  35. 35.

    Lur, G., Vinck, M. A., Tang, L., Cardin, J. A. & Higley, M. J. Projection-specific visual feature encoding by layer 5 cortical subnetworks. Cell Reports 14, 2538–2545 (2016).

  36. 36.

    Matthies, U., Balog, J. & Lehmann, K. Temporally coherent visual stimuli boost ocular dominance plasticity. J. Neurosci. 33, 11774–11778 (2013).

  37. 37.

    Greifzu, F. et al. Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity. Proc. Natl. Acad. Sci. USA 111, 1150–1155 (2014).

  38. 38.

    Bickford, M. E. Thalamic circuit diversity: modulation of the driver/modulator framework. Front. Neural Circuits 9, 86 (2016).

  39. 39.

    Denman, D. J. & Contreras, D. Complex effects on in vivo visual responses by specific projections from mouse cortical layer 6 to dorsal lateral geniculate nucleus. J. Neurosci. 35, 9265–9280 (2015).

  40. 40.

    Usrey, W. M. & Alitto, H. J. Visual functions of the thalamus. Annu. Rev. Vis. Sci. 1, 351–371 (2015).

  41. 41.

    Scholl, B., Tan, A. Y. Y., Corey, J. & Priebe, N. J. Emergence of orientation selectivity in the Mammalian visual pathway. J. Neurosci. 33, 10616–10624 (2013).

  42. 42.

    Wekselblatt, J. B., Flister, E. D., Piscopo, D. M. & Niell, C. M. Large-scale imaging of cortical dynamics during sensory perception and behavior. J. Neurophysiol. 115, 2852–2866 (2016).

  43. 43.

    Yamauchi, T., Hori, T. & Takahashi, T. Presynaptic inhibition by muscimol through GABAB receptors. Eur. J. Neurosci. 12, 3433–3436 (2000).

  44. 44.

    Coleman, J. E., Law, K. & Bear, M. F. Anatomical origins of ocular dominance in mouse primary visual cortex. Neuroscience 161, 561–571 (2009).

  45. 45.

    Baden, T. et al. The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345–350 (2016).

  46. 46.

    Krahe, T. E. & Guido, W. Homeostatic plasticity in the visual thalamus by monocular deprivation. J. Neurosci. 31, 6842–6849 (2011).

  47. 47.

    Hooks, B. M. & Chen, C. Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse. Neuron 52, 281–291 (2006).

  48. 48.

    Morgan, J. L., Berger, D. R., Wetzel, A. W. & Lichtman, J. W. The fuzzy logic of network connectivity in mouse visual thalamus. Cell 165, 192–206 (2016).

  49. 49.

    Hammer, S., Monavarfeshani, A., Lemon, T., Su, J. & Fox, M. A. Multiple retinal axons converge onto relay cells in the adult mouse thalamus. Cell Reports 12, 1575–1583 (2015).

  50. 50.

    Chen, C., Bickford, M. E. & Hirsch, J. A. Untangling the web between eye and brain. Cell 165, 20–21 (2016).

  51. 51.

    Durand, S. et al. A comparison of visual response properties in the lateral geniculate nucleus and primary visual cortex of awake and anesthetized mice. J. Neurosci. 36, 12144–12156 (2016).

  52. 52.

    Morin, L. P. & Studholme, K. M. Retinofugal projections in the mouse. J. Comp. Neurol. 522, 3733–3753 (2014).

  53. 53.

    Harrington, M. E. The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci. Biobehav. Rev. 21, 705–727 (1997).

  54. 54.

    Charbonneau, V., Laramée, M.-E., Boucher, V., Bronchti, G. & Boire, D. Cortical and subcortical projections to primary visual cortex in anophthalmic, enucleated and sighted mice. Eur. J. Neurosci. 36, 2949–2963 (2012).

  55. 55.

    Hofer, S. B., Mrsic-Flogel, T. D., Bonhoeffer, T. & Hübener, M. Prior experience enhances plasticity in adult visual cortex. Nat. Neurosci. 9, 127–132 (2006).

  56. 56.

    Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

  57. 57.

    Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

  58. 58.

    Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

  59. 59.

    Liu, B. H., Wu, G. K., Arbuckle, R., Tao, H. W. & Zhang, L. I. Defining cortical frequency tuning with recurrent excitatory circuitry. Nat. Neurosci. 10, 1594–1600 (2007).

  60. 60.

    Khibnik, L. A., Cho, K. K. & Bear, M. F. Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex. Neuron 66, 493–500 (2010).

  61. 61.

    Mazurek, M., Kager, M. & Van Hooser, S. D. Robust quantification of orientation selectivity and direction selectivity. Front. Neural Circuits 8, 92 (2014).

  62. 62.

    Petreanu, L. et al. Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 489, 299–303 (2012).

Download references

Acknowledgements

We thank C. Huber, V. Staiger, F. Voss and H. Tultschin for technical assistance, J. Sigl-Glöckner and D. Laubender for help with our transfection protocol, and P. Goltstein for programming help. This work was supported by the Max Planck Society, a Marie Curie Intra-European Fellowship to T.R., a Boehringer Ingelheim Ph.D. fellowship to J.J., and the Deutsche Forschungsgemeinschaft (grant SFB870 to T.R., M.H. and T.B.).

Author information

Affiliations

  1. Synapses – Circuits – Plasticity, Max Planck Institute of Neurobiology, Martinsried, Germany

    • Juliane Jaepel
    • , Mark Hübener
    • , Tobias Bonhoeffer
    •  & Tobias Rose

Authors

  1. Search for Juliane Jaepel in:

  2. Search for Mark Hübener in:

  3. Search for Tobias Bonhoeffer in:

  4. Search for Tobias Rose in:

Contributions

J.J. and T.R. performed the experiments and analyzed the data. J.J., M.H., T.B. and T.R. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Tobias Bonhoeffer or Tobias Rose.

Integrated supplementary information

Supplementary information