Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thalamic functions in distributed cognitive control

Abstract

Cognition can be conceptualized as a set of algorithmic control functions whose real-time deployment determines how an organism stores and uses information to guide thought and action. A subset of these functions is required for goal-directed selection and amplification of sensory signals—broadly referred to as attention—and for its flexible control and its interaction with processes such as working memory and decision making. While the contribution of recurrent cortical microcircuits to cognition has been extensively studied, the role of the thalamus is just beginning to be elucidated. Here we highlight recent studies across rodents and primates showing how thalamus contributes to attentional control. In addition to high-fidelity information relay to or between cortical regions, thalamic circuits shift and sustain functional interactions within and across cortical areas. This thalamic process enables rapid coordination of spatially segregated cortical computations, thereby constructing task-relevant functional networks. Because such function may be critical for cognitive flexibility, clarifying its mechanisms will likely expand our basic understanding of cognitive control and its perturbation in disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Attentional selection: model, cortical networks and thalamic interactions.
Fig. 2: The LGN as a relay: functional anatomy across primates and rodents.
Fig. 3: Connectivity of the pulvinar and MD.
Fig. 4: Pulvinar modulation during attentional control and evidence for controlling cortical synaptic gain.

Similar content being viewed by others

References

  1. Jonas, E. & Kording, K. P. Could a neuroscientist understand a microprocessor? PLOS Comput. Biol. 13, e1005268 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Heeger, D. J. Theory of cortical function. Proc. Natl. Acad. Sci. USA 114, 1773–1782 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Marblestone, A. H., Wayne, G. & Kording, K. P. Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 10, 94 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jazayeri, M. & Afraz, A. Navigating the neural space in search of the neural code. Neuron 93, 1003–1014 (2017).

    Article  PubMed  CAS  Google Scholar 

  5. Lückmann, H. C., Jacobs, H. I. & Sack, A. T. The cross-functional role of frontoparietal regions in cognition: internal attention as the overarching mechanism. Prog. Neurobiol. 116, 66–86 (2014).

    Article  PubMed  Google Scholar 

  6. Ganguli, S. et al. One-dimensional dynamics of attention and decision making in LIP. Neuron 58, 15–25 (2008).

    Article  PubMed  CAS  Google Scholar 

  7. Smith, P. L. & Ratcliff, R. An integrated theory of attention and decision making in visual signal detection. Psychol. Rev. 116, 283–317 (2009).

    Article  PubMed  Google Scholar 

  8. Gottlieb, J. & Balan, P. Attention as a decision in information space. Trends Cogn. Sci. 14, 240–248 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jensen, O., Gips, B., Bergmann, T. O. & Bonnefond, M. Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci. 37, 357–369 (2014).

    Article  PubMed  CAS  Google Scholar 

  10. Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wang, X. J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mitchell, A. S. et al. Advances in understanding mechanisms of thalamic relays in cognition and behavior. J. Neurosci. 34, 15340–15346 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sherman, S. M. Thalamus plays a central role in ongoing cortical functioning. Nat. Neurosci. 19, 533–541 (2016).

    Article  PubMed  CAS  Google Scholar 

  14. Usrey, W. M. & Alitto, H. J. Visual functions of the thalamus. Annu. Rev. Vis. Sci. 1, 351–371 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hirsch, J. A., Wang, X., Sommer, F. T. & Martinez, L. M. How inhibitory circuits in the thalamus serve vision. Annu. Rev. Neurosci. 38, 309–329 (2015).

    Article  PubMed  CAS  Google Scholar 

  16. Reid, R. C. & Alonso, J. M. The processing and encoding of information in the visual cortex. Curr. Opin. Neurobiol. 6, 475–480 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  18. Priebe, N. J. Mechanisms of orientation selectivity in the primary visual cortex. Annu. Rev. Vis. Sci. 2, 85–107 (2016).

    Article  PubMed  Google Scholar 

  19. Moore, T., Armstrong, K. M. & Fallah, M. Visuomotor origins of covert spatial attention. Neuron 40, 671–683 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. Wang, X. et al. Perisaccadic receptive field expansion in the lateral intraparietal area. Neuron 90, 400–409 (2016).

    Article  PubMed  CAS  Google Scholar 

  21. Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74 (2016).

    Article  PubMed  CAS  Google Scholar 

  22. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nakajima, M. & Halassa, M. M. Thalamic control of functional cortical connectivity. Curr. Opin. Neurobiol. 44, 127–131 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Schmitt, L. I. et al. Thalamic amplification of cortical connectivity sustains attentional control. Nature 545, 219–223 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Buschman, T. J. & Kastner, S. From behavior to neural dynamics: an integrated theory of attention. Neuron 88, 127–144 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gregoriou, G. G., Gotts, S. J., Zhou, H. & Desimone, R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324, 1207–1210 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Reynolds, J. H., Pasternak, T. & Desimone, R. Attention increases sensitivity of V4 neurons. Neuron 26, 703–714 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. Ptak, R. The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment. Neuroscientist 18, 502–515 (2012).

    Article  PubMed  Google Scholar 

  29. Dehaene, S. & Sigman, M. From a single decision to a multi-step algorithm. Curr. Opin. Neurobiol. 22, 937–945 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. Wallis, J. D., Anderson, K. C. & Miller, E. K. Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953–956 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. Moore, T. & Fallah, M. Control of eye movements and spatial attention. Proc. Natl. Acad. Sci. USA 98, 1273–1276 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gottlieb, J. From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron 53, 9–16 (2007).

    Article  PubMed  CAS  Google Scholar 

  33. Carandini, M. & Heeger, D. J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Reynolds, J. H. & Heeger, D. J. The normalization model of attention. Neuron 61, 168–185 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Petersen, S. E., Robinson, D. L. & Keys, W. Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. J. Neurophysiol. 54, 867–886 (1985).

    Article  PubMed  CAS  Google Scholar 

  36. Petersen, S. E., Robinson, D. L. & Morris, J. D. Contributions of the pulvinar to visual spatial attention. Neuropsychologia 25(1A), 97–105 (1987).

    Article  PubMed  CAS  Google Scholar 

  37. Crick, F. Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natl. Acad. Sci. USA 81, 4586–4590 (1984).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. McAlonan, K., Cavanaugh, J. & Wurtz, R. H. Attentional modulation of thalamic reticular neurons. J. Neurosci. 26, 4444–4450 (2006).

    Article  PubMed  CAS  Google Scholar 

  39. McAlonan, K., Cavanaugh, J. & Wurtz, R. H. Guarding the gateway to cortex with attention in visual thalamus. Nature 456, 391–394 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wimmer, R. D. et al. Thalamic control of sensory selection in divided attention. Nature 526, 705–709 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. O’Connor, D. H., Fukui, M. M., Pinsk, M. A. & Kastner, S. Attention modulates responses in the human lateral geniculate nucleus. Nat. Neurosci. 5, 1203–1209 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. Schmitt, L. I. & Halassa, M. M. Interrogating the mouse thalamus to correct human neurodevelopmental disorders. Mol. Psychiatry 22, 183–191 (2017).

    Article  PubMed  CAS  Google Scholar 

  43. Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X. & Kastner, S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753–756 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhou, H., Schafer, R. J. & Desimone, R. Pulvinar-cortex interactions in vision and attention. Neuron 89, 209–220 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Casagrande, V. A., Sáry, G., Royal, D. & Ruiz, O. On the impact of attention and motor planning on the lateral geniculate nucleus. Prog. Brain Res. 149, 11–29 (2005).

    Article  PubMed  Google Scholar 

  46. Purushothaman, G., Marion, R., Li, K. & Casagrande, V. A. Gating and control of primary visual cortex by pulvinar. Nat. Neurosci. 15, 905–912 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Jones, E. G. Functional subdivision and synaptic organization of the mammalian thalamus. Int. Rev. Physiol. 25, 173–245 (1981).

    PubMed  CAS  Google Scholar 

  48. FitzGerald, T. H. B., Hämmerer, D., Friston, K. J., Li, S. C. & Dolan, R. J. Sequential inference as a mode of cognition and its correlates in fronto-parietal and hippocampal brain regions. PLOS Comput. Biol. 13, e1005418 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rovó, Z., Ulbert, I. & Acsády, L. Drivers of the primate thalamus. J. Neurosci. 32, 17894–17908 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Mease, R. A., Kuner, T., Fairhall, A. L. & Groh, A. Multiplexed spike coding and adaptation in the thalamus. Cell Reports 19, 1130–1140 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Clascá, F., Rubio-Garrido, P. & Jabaudon, D. Unveiling the diversity of thalamocortical neuron subtypes. Eur. J. Neurosci. 35, 1524–1532 (2012).

    Article  PubMed  Google Scholar 

  52. Kuramoto, E. et al. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors. J. Comp. Neurol. 525, 166–185 (2017).

    Article  PubMed  Google Scholar 

  53. Naud, R. & Gerstner, W. Coding and decoding with adapting neurons: a population approach to the peri-stimulus time histogram. PLOS Comput. Biol. 8, e1002711 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Quang D. & Xie X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Research 44, e107 (2016).

  55. Wang, X., Sommer, F. T. & Hirsch, J. A. Inhibitory circuits for visual processing in thalamus. Curr. Opin. Neurobiol. 21, 726–733 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Halassa, M. M. et al. State-dependent architecture of thalamic reticular subnetworks. Cell 158, 808–821 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Halassa, M. M. & Acsády, L. Thalamic inhibition: diverse sources, diverse scales. Trends Neurosci. 39, 680–693 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Jones, E. G. Viewpoint: the core and matrix of thalamic organization. Neuroscience 85, 331–345 (1998).

    Article  PubMed  CAS  Google Scholar 

  59. Jones, E. G. The anatomy of sensory relay functions in the thalamus. Prog. Brain Res. 87, 29–52 (1991).

    Article  PubMed  CAS  Google Scholar 

  60. Bridge, H., Leopold, D. A. & Bourne, J. A. Adaptive pulvinar circuitry supports visual cognition. Trends Cogn. Sci. 20, 146–157 (2016).

    Article  PubMed  Google Scholar 

  61. Grieve, K. L., Acuña, C. & Cudeiro, J. The primate pulvinar nuclei: vision and action. Trends Neurosci. 23, 35–39 (2000).

    Article  PubMed  CAS  Google Scholar 

  62. Rockland, K. S., Andresen, J., Cowie, R. J. & Robinson, D. L. Single axon analysis of pulvinocortical connections to several visual areas in the macaque. J. Comp. Neurol. 406, 221–250 (1999).

    Article  PubMed  CAS  Google Scholar 

  63. Jeffries, A. M., Killian, N. J. & Pezaris, J. S. Mapping the primate lateral geniculate nucleus: a review of experiments and methods. J. Physiol. Paris 108, 3–10 (2014).

    Article  PubMed  Google Scholar 

  64. Malpeli, J. G., Lee, D. & Baker, F. H. Laminar and retinotopic organization of the macaque lateral geniculate nucleus: magnocellular and parvocellular magnification functions. J. Comp. Neurol. 375, 363–377 (1996).

    Article  PubMed  CAS  Google Scholar 

  65. Fitzpatrick, D., Itoh, K. & Diamond, I. T. The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus). J. Neurosci. 3, 673–702 (1983).

    Article  PubMed  CAS  Google Scholar 

  66. Zeater, N., Cheong, S. K., Solomon, S. G., Dreher, B. & Martin, P. R. Binocular visual responses in the primate lateral geniculate nucleus. Curr. Biol. S0960-9822(15), 01295–6 (2015).

    Google Scholar 

  67. Cheong, S. K., Tailby, C., Solomon, S. G. & Martin, P. R. Cortical-like receptive fields in the lateral geniculate nucleus of marmoset monkeys. J. Neurosci. 33, 6864–6876 (2013).

    Article  PubMed  CAS  Google Scholar 

  68. Piscopo, D. M., El-Danaf, R. N., Huberman, A. D. & Niell, C. M. Diverse visual features encoded in mouse lateral geniculate nucleus. J. Neurosci. 33, 4642–4656 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Denman, D. J. & Contreras, D. On parallel streams through the mouse dorsal lateral geniculate nucleus. Front. Neural Circuits 10, 20 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996).

    Article  PubMed  CAS  Google Scholar 

  71. Lien, A. D. & Scanziani, M. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16, 1315–1323 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Pei, X., Vidyasagar, T. R., Volgushev, M. & Creutzfeldt, O. D. Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex. J. Neurosci. 14, 7130–7140 (1994).

    Article  PubMed  CAS  Google Scholar 

  73. Kaas, J. H. & Lyon, D. C. Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res. Rev. 55, 285–296 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Arcaro, M. J., Pinsk, M. A. & Kastner, S. The anatomical and functional organization of the human visual pulvinar. J. Neurosci. 35, 9848–9871 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Baldwin, M. K., Balaram, P. & Kaas, J. H. Projections of the superior colliculus to the pulvinar in prosimian galagos (Otolemur garnettii) and VGLUT2 staining of the visual pulvinar. J. Comp. Neurol. 521, 1664–1682 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Warner, C. E. et al. Preservation of vision by the pulvinar following early-life primary visual cortex lesions. Curr. Biol. 25, 424–434 (2015).

    Article  PubMed  CAS  Google Scholar 

  77. Baldwin, M. K., Wong, P., Reed, J. L. & Kaas, J. H. Superior colliculus connections with visual thalamus in gray squirrels (Sciurus carolinensis): evidence for four subdivisions within the pulvinar complex. J. Comp. Neurol. 519, 1071–1094 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Allen, A. E., Procyk, C. A., Howarth, M., Walmsley, L. & Brown, T. M. Visual input to the mouse lateral posterior and posterior thalamic nuclei: photoreceptive origins and retinotopic order. J. Physiol. (Lond.) 594, 1911–1929 (2016).

    Article  CAS  Google Scholar 

  79. Takahashi, T. The organization of the lateral thalamus of the hooded rat. J. Comp. Neurol. 231, 281–309 (1985).

    Article  PubMed  CAS  Google Scholar 

  80. Mason, R. & Groos, G. A. Cortico-recipient and tecto-recipient visual zones in the rat’s lateral posterior (pulvinar) nucleus: an anatomical study. Neurosci. Lett. 25, 107–112 (1981).

    Article  PubMed  CAS  Google Scholar 

  81. Masterson, S. P., Li, J. & Bickford, M. E. Synaptic organization of the tectorecipient zone of the rat lateral posterior nucleus. J. Comp. Neurol. 515, 647–663 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tohmi, M., Meguro, R., Tsukano, H., Hishida, R. & Shibuki, K. The extrageniculate visual pathway generates distinct response properties in the higher visual areas of mice. Curr. Biol. 24, 587–597 (2014).

    Article  PubMed  CAS  Google Scholar 

  83. Roth, M. M. et al. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat. Neurosci. 19, 299–307 (2016).

    Article  PubMed  CAS  Google Scholar 

  84. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  PubMed  CAS  Google Scholar 

  85. Rockland, K. S. & Van Hoesen, G. W. Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey. Cereb. Cortex 4, 300–313 (1994).

    Article  PubMed  CAS  Google Scholar 

  86. Chen, M. et al. Incremental integration of global contours through interplay between visual cortical areas. Neuron 82, 682–694 (2014).

    Article  PubMed  CAS  Google Scholar 

  87. Usrey, W. M., Reppas, J. B. & Reid, R. C. Specificity and strength of retinogeniculate connections. J. Neurophysiol. 82, 3527–3540 (1999).

    Article  PubMed  CAS  Google Scholar 

  88. Alonso, J. M., Yeh, C. I., Weng, C. & Stoelzel, C. Retinogeniculate connections: A balancing act between connection specificity and receptive field diversity. Prog. Brain Res. 154, 3–13 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chalupa, L. M. & Abramson, B. P. Visual receptive fields in the striate-recipient zone of the lateral posterior-pulvinar complex. J. Neurosci. 9, 347–357 (1989).

    Article  PubMed  CAS  Google Scholar 

  90. Goldman-Rakic, P. S. & Porrino, L. J. The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J. Comp. Neurol. 242, 535–560 (1985).

    Article  PubMed  CAS  Google Scholar 

  91. Giguere, M. & Goldman-Rakic, P. S. Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J. Comp. Neurol. 277, 195–213 (1988).

    Article  PubMed  CAS  Google Scholar 

  92. Alcaraz, F., Marchand, A. R., Courtand, G., Coutureau, E. & Wolff, M. Parallel inputs from the mediodorsal thalamus to the prefrontal cortex in the rat. Eur. J. Neurosci. 44, 1972–1986 (2016).

    PubMed  Google Scholar 

  93. Bolkan, S. S. et al. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat. Neurosci. 20, 987–996 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Sommer, M. A. & Wurtz, R. H. Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444, 374–377 (2006).

    Article  PubMed  CAS  Google Scholar 

  95. Daum, I. & Ackermann, H. Frontal-type memory impairment associated with thalamic damage. Int. J. Neurosci. 77, 187–198 (1994).

    Article  PubMed  CAS  Google Scholar 

  96. Van der Werf, Y. D., Witter, M. P., Uylings, H. B. & Jolles, J. Neuropsychology of infarctions in the thalamus: a review. Neuropsychologia 38, 613–627 (2000).

    Article  PubMed  Google Scholar 

  97. Van der Werf, Y. D. et al. Deficits of memory, executive functioning and attention following infarction in the thalamus; a study of 22 cases with localised lesions. Neuropsychologia 41, 1330–1344 (2003).

    Article  PubMed  Google Scholar 

  98. Monchi, O., Petrides, M., Petre, V., Worsley, K. & Dagher, A. Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J. Neurosci. 21, 7733–7741 (2001).

    Article  PubMed  CAS  Google Scholar 

  99. Watanabe, Y. & Funahashi, S. Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. II. Activity encoding visual versus motor signal. J. Neurophysiol. 92, 1756–1769 (2004).

    Article  PubMed  Google Scholar 

  100. Funahashi, S., Chafee, M. V. & Goldman-Rakic, P. S. Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365, 753–756 (1993).

    Article  PubMed  CAS  Google Scholar 

  101. Lundqvist, M. et al. Gamma and beta bursts underlie working memory. Neuron 90, 152–164 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Watanabe, Y. & Funahashi, S. Thalamic mediodorsal nucleus and working memory. Neurosci. Biobehav. Rev. 36, 134–142 (2012).

    Article  PubMed  Google Scholar 

  103. Karnath, H. O., Himmelbach, M. & Rorden, C. The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 125, 350–360 (2002).

    Article  PubMed  Google Scholar 

  104. Wilke, M., Turchi, J., Smith, K., Mishkin, M. & Leopold, D. A. Pulvinar inactivation disrupts selection of movement plans. J. Neurosci. 30, 8650–8659 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Danziger, S., Ward, R., Owen, V. & Rafal, R. The effects of unilateral pulvinar damage in humans on reflexive orienting and filtering of irrelevant information. Behav. Neurol. 13, 95–104 (2001). -2002.

    Article  PubMed  Google Scholar 

  106. Rafal, R. D. & Posner, M. I. Deficits in human visual spatial attention following thalamic lesions. Proc. Natl. Acad. Sci. USA 84, 7349–7353 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Danziger, S., Ward, R., Owen, V. & Rafal, R. Contributions of the human pulvinar to linking vision and action. Cogn. Affect. Behav. Neurosci. 4, 89–99 (2004).

    Article  PubMed  Google Scholar 

  108. Snow, J. C., Allen, H. A., Rafal, R. D. & Humphreys, G. W. Impaired attentional selection following lesions to human pulvinar: evidence for homology between human and monkey. Proc. Natl. Acad. Sci. USA 106, 4054–4059 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Friedman-Hill, S. R., Robertson, L. C., Desimone, R. & Ungerleider, L. G. Posterior parietal cortex and the filtering of distractors. Proc. Natl. Acad. Sci. USA 100, 4263–4268 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Gallant, J. L., Shoup, R. E. & Mazer, J. A. A human extrastriate area functionally homologous to macaque V4. Neuron 27, 227–235 (2000).

    Article  PubMed  CAS  Google Scholar 

  111. De Weerd, P., Peralta, M. R. III, Desimone, R. & Ungerleider, L. G. Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nat. Neurosci. 2, 753–758 (1999).

    Article  PubMed  Google Scholar 

  112. Bender, D. B. & Youakim, M. Effect of attentive fixation in macaque thalamus and cortex. J. Neurophysiol. 85, 219–234 (2001).

    Article  PubMed  CAS  Google Scholar 

  113. Lee, W. C. et al. Anatomy and function of an excitatory network in the visual cortex. Nature 532, 370–374 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Cossell, L. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 399–403 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Buzsáki, G. & Wang, X. J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Buzsáki, G. & Watson, B. O. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin. Neurosci. 14, 345–367 (2012).

    PubMed  PubMed Central  Google Scholar 

  117. Pinault, D. The thalamic reticular nucleus: structure, function and concept. Brain Res. Brain Res. Rev. 46, 1–31 (2004).

    Article  PubMed  Google Scholar 

  118. Pinault, D. & Deschênes, M. Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. J. Comp. Neurol. 391, 180–203 (1998).

    Article  PubMed  CAS  Google Scholar 

  119. Wells, M. F., Wimmer, R. D., Schmitt, L. I., Feng, G. & Halassa, M. M. Thalamic reticular impairment underlies attention deficit in Ptchd1(Y/-) mice. Nature 532, 58–63 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Chaudhry, A. et al. Phenotypic spectrum associated with PTCHD1 deletions and truncating mutations includes intellectual disability and autism spectrum disorder. Clin. Genet. 88, 224–233 (2015).

    Article  PubMed  CAS  Google Scholar 

  121. Noor, A. et al. Disruption at the PTCHD1 locus on Xp22.11 in autism spectrum disorder and intellectual disability. Sci. Transl. Med. 2, 49ra68 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Goldberg, J. H., Farries, M. A. & Fee, M. S. Basal ganglia output to the thalamus: still a paradox. Trends Neurosci. 36, 695–705 (2013).

    Article  PubMed  CAS  Google Scholar 

  123. Rivlin-Etzion, M. et al. Basal ganglia oscillations and pathophysiology of movement disorders. Curr. Opin. Neurobiol. 16, 629–637 (2006).

    Article  PubMed  CAS  Google Scholar 

  124. White, A. J., Wilder, H. D., Goodchild, A. K., Sefton, A. J. & Martin, P. R. Segregation of receptive field properties in the lateral geniculate nucleus of a New-World monkey, the marmoset Callithrix jacchus. J. Neurophysiol. 80, 2063–2076 (1998).

    Article  PubMed  CAS  Google Scholar 

  125. Adams, M. M., Hof, P. R., Gattass, R., Webster, M. J. & Ungerleider, L. G. Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. J. Comp. Neurol. 419, 377–393 (2000).

    Article  PubMed  CAS  Google Scholar 

  126. Gambino, F. et al. Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature 515, 116–119 (2014).

    Article  PubMed  CAS  Google Scholar 

  127. Muñoz, W., Tremblay, R., Levenstein, D. & Rudy, B. Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science 355, 954–959 (2017).

    Article  PubMed  CAS  Google Scholar 

  128. Kamigaki, T. & Dan, Y. Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior. Nat. Neurosci. 20, 854–863 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding support from NIH (R01NS098505, R01MH107680, R00NS078115 and R21MH105779 to M.M.H.; 2R01MH064043-11 and 5R01EY017699-09 to S.K.); NSF (BCS-1328270 to S.K.); Human Frontiers Science Program, the Simons Foundation, Klingenstein Foundation, Sloan Foundation, Feldstein Foundation, Brain & Behavior Research Foundation, and Pew Foundation to M.M.H.; and from the James S. McDonnell Foundation to S.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Halassa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halassa, M.M., Kastner, S. Thalamic functions in distributed cognitive control. Nat Neurosci 20, 1669–1679 (2017). https://doi.org/10.1038/s41593-017-0020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-017-0020-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing