Abstract
As technology advances, whole genome sequencing (WGS) is likely to supersede other genotyping technologies. The rate of this change depends on its relative cost and utility. Variants identified uniquely through WGS may reveal novel biological pathways underlying complex disorders and provide high-resolution insight into when, where, and in which cell type these pathways are affected. Alternatively, cheaper and less computationally intensive approaches may yield equivalent insights. Understanding the role of rare variants in the noncoding gene-regulating genome through pilot WGS projects will be critical to determining which of these two extremes best represents reality. With large cohorts, well-defined risk loci, and a compelling need to understand the underlying biology, psychiatric disorders have a role to play in this preliminary WGS assessment. The Whole Genome Sequencing for Psychiatric Disorders Consortium will integrate data for 18,000 individuals with psychiatric disorders, beginning with autism spectrum disorder, schizophrenia, bipolar disorder, and major depressive disorder, along with over 150,000 controls.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The 22q11.2 region regulates presynaptic gene-products linked to schizophrenia
Nature Communications Open Access 27 June 2022
-
Ultra-rare and common genetic variant analysis converge to implicate negative selection and neuronal processes in the aetiology of schizophrenia
Molecular Psychiatry Open Access 03 June 2022
-
The druggable schizophrenia genome: from repurposing opportunities to unexplored drug targets
npj Genomic Medicine Open Access 25 March 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


Change history
16 March 2018
In the version of this article initially published, the consortium authorship and corresponding authors were not presented correctly. In the PDF and print versions, the Whole Genome Sequencing for Psychiatric Disorders (WGSPD) consortium was missing from the author list at the beginning of the paper, where it should have appeared as the seventh author; it was present in the author list at the end of the paper, but the footnote directing readers to the Supplementary Note for a list of members was missing. In the HTML version, the consortium was listed as the last author instead of as the seventh, and the line directing readers to the Supplementary Note for a list of members appeared at the end of the paper under Author Information but not in association with the consortium name itself. Also, this line stated that both member names and affiliations could be found in the Supplementary Note; in fact, only names are given. In all versions of the paper, the corresponding author symbols were attached to A. Jeremy Willsey, Steven E. Hyman, Anjene M. Addington and Thomas Lehner; they should have been attached, respectively, to Steven E. Hyman, Anjene M. Addington, Thomas Lehner and Nelson B. Freimer. As a result of this shift, the respective contact links in the HTML version did not lead to the indicated individuals. The errors have been corrected in the HTML and PDF versions of the article.
References
Owen, M. J., Sawa, A. & Mortensen, P. B. Lancet 388, 86–97 (2016).
Power, R. A. et al. JAMA Psychiatry 70, 22–30 (2013).
Sekar, A. et al. Nature 530, 177–183 (2016).
De Rubeis, S. et al. Nature 515, 209–215 (2014).
Sanders, S. J. Curr. Opin. Genet. Dev. 33, 80–82 (2015).
Sanders, S. J. et al. Neuron 87, 1215–1233 (2015).
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Nature 511, 421–427 (2014).
Brandler, W. M. et al. Am. J. Hum. Genet. 98, 1–13 (2016).
Collins, R. L. et al. Genome Biol. 18, 36 (2017).
Chiang, C. et al. Nat. Genet. 49, 692–699 (2017).
Hindorff, L. A. et al. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).
Maurano, M. T. et al. Science 337, 1190–1195 (2012).
Siepel, A. et al. Genome Res. 15, 1034–1050 (2005).
Visel, A. et al. Cell 152, 895–908 (2013).
Willsey, A. J. et al. Cell 155, 997–1007 (2013).
Gasperini, M. et al. Am. J. Hum. Genet. 101, 192–205 (2017).
Scacheri, C. A. & Scacheri, P. C. Curr. Opin. Pediatr. 27, 659–664 (2015).
Sanders, S. J. et al. Nature 485, 237–241 (2012).
Iossifov, I. et al. Nature 515, 216–221 (2014).
McRae, J. F. et al. Nature 542, 433–438 (2017).
Katz, D. M. et al. Trends Neurosci. 39, 100–113 (2016).
Berrios, J. et al. Nat. Commun. 7, 10702 (2016).
Erickson, C. A. et al. J. Autism Dev. Disord. 44, 958–964 (2014).
de la Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Nat. Med. 22, 345–361 (2016).
Sittig, L. J. et al. Neuron 91, 1253–1259 (2016).
Doan, R. N. et al. Cell 167, 341–354.e12 (2016).
Lim, E.T. et al. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004494 (2014).
Service, S.K. et al. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004147 (2014).
Stoll, G. et al. Nat. Neurosci. 16, 1228–1237 (2013).
Gudbjartsson, D. F. et al. Nat. Genet. 47, 435–444 (2015).
Cirulli, E. T. & Goldstein, D. B. Nat. Rev. Genet. 11, 415–425 (2010).
Leppa, V. M. et al. Am. J. Hum. Genet. 99, 540–554 (2016).
Laumonnier, F. et al. Am. J. Hum. Genet. 74, 552–557 (2004).
Novarino, G. et al. Science 338, 394–397 (2012).
Gamsiz, E. D. et al. Am. J. Hum. Genet. 93, 103–109 (2013).
Lim, E. T. T. et al. Neuron 77, 235–242 (2013).
Yu, T. W. W. et al. Neuron 77, 259–273 (2013).
Lee, S. H. et al. Nat. Genet. 45, 984–994 (2013).
Psychiatric GWAS Consortium Bipolar Disorder Working Group. et al. Nat. Genet. 43, 977–983 (2011).
Chaste, P. et al. Biol. Psychiatry 77, 775–784 (2015).
Saint-Pierre, A. et al. Eur. J. Hum. Genet. 19, 710–716 (2011).
Köhler, S. et al. Nucleic Acids Res 45, D865–D876 (2016).
Insel, T. et al. Am. J. Psychiatry 167, 748–751 (2010).
Stefansson, H. et al. Nature 505, 361–366 (2014).
Kendall, K. M. et al. Biol. Psychiatry 82, 103–110 (2016).
Dewey, F. E. et al. Science 354, aaf6814 (2016).
Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. Nature 489, 109–113 (2012).
Rao, S. S. P. et al. Cell 159, 1665–1680 (2014).
Sahlén, P. et al. Genome Biol. 16, 156 (2015).
Schoenfelder, S. et al. Genome Res. 25, 582–597 (2015).
Babaei, S. et al. PLOS Comput. Biol. 11, e1004221 (2015).
ENCODE Project Consortium. Science 306, 636–640 (2004).
Kundaje, A. et al. Nature 518, 317–330 (2015).
Akbarian, S. et al. Nat. Neurosci. 18, 1707–1712 (2015).
Won, H. et al. Nature 538, 523–527 (2016).
Lek, M. et al. Nature 536, 285–291 (2016).
Petrovski, S., Wang, Q., Heinzen, E. L., Allen, A. S. & Goldstein, D. B. PLoS Genet. 9, e1003709 (2013).
Samocha, K. E. et al. Nat. Genet. 46, 944–950 (2014).
Kosmicki, J. A. et al. Nat. Genet. 49, 504–510 (2017).
Melnikov, A., Zhang, X., Rogov, P., Wang, L. & Mikkelsen, T. S. J. Vis. Exp. 90, e51719 (2014).
Arnold, C. D. et al. Science 339, 1074–1077 (2013).
Lehner, T., Senthil, G. & Addington, A. M. Biol. Psychiatry 77, 6–14 (2015).
Ganna, A. et al. Nat. Neurosci. 19, 1563–1565 (2016).
The Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium. Mol. Autism 8, 21 (2017).
Hyde, C. L. et al. Nat. Genet. 48, 1–9 (2016).
Marshall, C. R. et al. Nat. Genet. 49, 27–35 (2017).
Green, E. K. et al. Mol. Psychiatry 21, 89–93 (2016).
Rucker, J. J. H. et al. Biol. Psychiatry 79, 329–336 (2016).
Purcell, S. M. et al. Nature 506, 185–190 (2014).
Genovese, G. et al. Nat. Neurosci. 19, 1433–1441 (2016).
Fromer, M. et al. Nature 506, 179–184 (2014).
Singh, T. et al. Nat. Neurosci. 19, 571–577 (2016).
Fischbach, G. D. & Lord, C. Neuron 68, 192–195 (2010).
Buxbaum, J. D. et al. Autism Sequencing Consortium. Neuron 76, 1052–1056 (2012).
Acknowledgements
The authors acknowledge and thank the study participants and their families. The WGSPD is a public–private partnership between the NIMH, the Stanley Center for Psychiatric Research, and researchers at 11 academic institutions across the USA. This work was supported by grants from the NIMH, specifically U01 MH105653 (M.B.), U01 MH105641 (S.A.M.), U01 MH105573 (C.N.P.), U01 MH105670 (D.B.G.), U01 MH105575 (M.W.S., A.J.W.), U01 MH105669 (M.J.D., K.E.), U01 MH105575 (N.B.F., D.H.G., R.A.O.), U01 MH105666 (A.P.), U01 MH105630 (D.C.G.), U01 MH105632 (J.B.), U01 MH105634 (R.E.G.), U01 MH100239-03S1 (M.W.S., S.J.S., A.J.W.), R01 MH095454 (N.B.F.); by grants from the Simons Foundation (SFARI #385110, M.W.S., S.J.S., A.J.W., D.B.G., SFARI #401457 (D.H.G.)); and by a gift from the Stanley Foundation (S.E.H.).
Author information
Authors and Affiliations
Consortia
Contributions
S.J.S., B.M.N., H.H., and D.M.W. contributed to the power calculation. All authors contributed to the text.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Integrated supplementary information
Supplementary Figure 1 Statistical power in the noncoding genome by cohort size, related to Figure 1 in the main manuscript.
We estimated the power at a significance threshold (alpha) of 5 × 10−5, accounting for 1,000 categories of noncoding variants, to detect an excess of noncoding variants at 122,500 risk loci in cases vs. controls as we varied the sample size and risk:non-risk ratio, which represents annotation quality (Supplementary Tables 1 and 3). In a) we assessed the power for detecting an excess of de novo mutations at a relative risk of 5 as sample size increases. With a risk:non-risk ratio of 1:20, approximately equivalent to assessing protein truncating variants in the coding genome, we achieve >80% power with a sample size of 5,000. In b) the power to detect an excess burden of rare variants (allele frequency ≤0.1%) is assessed at a relative risk of 1.2. In c) we assessed the power to identify an excess of de novo mutations at a specific genomic locus, e.g. the noncoding region regulating a single gene. Consequently, we set the significance threshold (alpha) at 2.5 × 10−6 to account for 20,000 genes. In d) we assessed the power to identify an excess of rare variants (allele frequency ≤0.1%) at a specific nucleotide (alpha = 1.7 × 10−11), since this yielded better power than testing for burden at a locus (alpha = 2.5 × 10−6).
Electronic supplementary material
Supplementary Text and Figures
Supplementary Figure 1, Supplementary Tables 1–4, and Supplementary Experimental Procedures
Rights and permissions
About this article
Cite this article
Sanders, S.J., Neale, B.M., Huang, H. et al. Whole genome sequencing in psychiatric disorders: the WGSPD consortium. Nat Neurosci 20, 1661–1668 (2017). https://doi.org/10.1038/s41593-017-0017-9
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41593-017-0017-9
This article is cited by
-
The genetic architecture of schizophrenia: review of large-scale genetic studies
Journal of Human Genetics (2023)
-
A transdiagnostic network for psychiatric illness derived from atrophy and lesions
Nature Human Behaviour (2023)
-
Functional genomics and systems biology in human neuroscience
Nature (2023)
-
Ten challenges for clinical translation in psychiatric genetics
Nature Genetics (2022)
-
Ultra-rare and common genetic variant analysis converge to implicate negative selection and neuronal processes in the aetiology of schizophrenia
Molecular Psychiatry (2022)