Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Whole genome sequencing in psychiatric disorders: the WGSPD consortium

A Publisher Correction to this article was published on 16 March 2018

This article has been updated

Abstract

As technology advances, whole genome sequencing (WGS) is likely to supersede other genotyping technologies. The rate of this change depends on its relative cost and utility. Variants identified uniquely through WGS may reveal novel biological pathways underlying complex disorders and provide high-resolution insight into when, where, and in which cell type these pathways are affected. Alternatively, cheaper and less computationally intensive approaches may yield equivalent insights. Understanding the role of rare variants in the noncoding gene-regulating genome through pilot WGS projects will be critical to determining which of these two extremes best represents reality. With large cohorts, well-defined risk loci, and a compelling need to understand the underlying biology, psychiatric disorders have a role to play in this preliminary WGS assessment. The Whole Genome Sequencing for Psychiatric Disorders Consortium will integrate data for 18,000 individuals with psychiatric disorders, beginning with autism spectrum disorder, schizophrenia, bipolar disorder, and major depressive disorder, along with over 150,000 controls.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Statistical power in the noncoding genome.
Fig. 2: Overview of the WGSPD.

Change history

  • 16 March 2018

    In the version of this article initially published, the consortium authorship and corresponding authors were not presented correctly. In the PDF and print versions, the Whole Genome Sequencing for Psychiatric Disorders (WGSPD) consortium was missing from the author list at the beginning of the paper, where it should have appeared as the seventh author; it was present in the author list at the end of the paper, but the footnote directing readers to the Supplementary Note for a list of members was missing. In the HTML version, the consortium was listed as the last author instead of as the seventh, and the line directing readers to the Supplementary Note for a list of members appeared at the end of the paper under Author Information but not in association with the consortium name itself. Also, this line stated that both member names and affiliations could be found in the Supplementary Note; in fact, only names are given. In all versions of the paper, the corresponding author symbols were attached to A. Jeremy Willsey, Steven E. Hyman, Anjene M. Addington and Thomas Lehner; they should have been attached, respectively, to Steven E. Hyman, Anjene M. Addington, Thomas Lehner and Nelson B. Freimer. As a result of this shift, the respective contact links in the HTML version did not lead to the indicated individuals. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Owen, M. J., Sawa, A. & Mortensen, P. B. Lancet 388, 86–97 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Power, R. A. et al. JAMA Psychiatry 70, 22–30 (2013).

    Article  PubMed  Google Scholar 

  3. Sekar, A. et al. Nature 530, 177–183 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. De Rubeis, S. et al. Nature 515, 209–215 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sanders, S. J. Curr. Opin. Genet. Dev. 33, 80–82 (2015).

    Article  PubMed  CAS  Google Scholar 

  6. Sanders, S. J. et al. Neuron 87, 1215–1233 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Nature 511, 421–427 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  8. Brandler, W. M. et al. Am. J. Hum. Genet. 98, 1–13 (2016).

    Article  CAS  Google Scholar 

  9. Collins, R. L. et al. Genome Biol. 18, 36 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chiang, C. et al. Nat. Genet. 49, 692–699 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hindorff, L. A. et al. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Maurano, M. T. et al. Science 337, 1190–1195 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Siepel, A. et al. Genome Res. 15, 1034–1050 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Visel, A. et al. Cell 152, 895–908 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Willsey, A. J. et al. Cell 155, 997–1007 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gasperini, M. et al. Am. J. Hum. Genet. 101, 192–205 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Scacheri, C. A. & Scacheri, P. C. Curr. Opin. Pediatr. 27, 659–664 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sanders, S. J. et al. Nature 485, 237–241 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Iossifov, I. et al. Nature 515, 216–221 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. McRae, J. F. et al. Nature 542, 433–438 (2017).

    Article  CAS  Google Scholar 

  21. Katz, D. M. et al. Trends Neurosci. 39, 100–113 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Berrios, J. et al. Nat. Commun. 7, 10702 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Erickson, C. A. et al. J. Autism Dev. Disord. 44, 958–964 (2014).

    Article  PubMed  Google Scholar 

  24. de la Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Nat. Med. 22, 345–361 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sittig, L. J. et al. Neuron 91, 1253–1259 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Doan, R. N. et al. Cell 167, 341–354.e12 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lim, E.T. et al. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004494 (2014).

  28. Service, S.K. et al. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004147 (2014).

  29. Stoll, G. et al. Nat. Neurosci. 16, 1228–1237 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gudbjartsson, D. F. et al. Nat. Genet. 47, 435–444 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Cirulli, E. T. & Goldstein, D. B. Nat. Rev. Genet. 11, 415–425 (2010).

    Article  PubMed  CAS  Google Scholar 

  32. Leppa, V. M. et al. Am. J. Hum. Genet. 99, 540–554 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Laumonnier, F. et al. Am. J. Hum. Genet. 74, 552–557 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Novarino, G. et al. Science 338, 394–397 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gamsiz, E. D. et al. Am. J. Hum. Genet. 93, 103–109 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lim, E. T. T. et al. Neuron 77, 235–242 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yu, T. W. W. et al. Neuron 77, 259–273 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lee, S. H. et al. Nat. Genet. 45, 984–994 (2013).

    Article  PubMed  CAS  Google Scholar 

  39. Psychiatric GWAS Consortium Bipolar Disorder Working Group. et al. Nat. Genet. 43, 977–983 (2011).

    Article  CAS  Google Scholar 

  40. Chaste, P. et al. Biol. Psychiatry 77, 775–784 (2015).

    Article  PubMed  Google Scholar 

  41. Saint-Pierre, A. et al. Eur. J. Hum. Genet. 19, 710–716 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Köhler, S. et al. Nucleic Acids Res 45, D865–D876 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Insel, T. et al. Am. J. Psychiatry 167, 748–751 (2010).

    Article  PubMed  Google Scholar 

  44. Stefansson, H. et al. Nature 505, 361–366 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. Kendall, K. M. et al. Biol. Psychiatry 82, 103–110 (2016).

    Article  PubMed  Google Scholar 

  46. Dewey, F. E. et al. Science 354, aaf6814 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. Nature 489, 109–113 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Rao, S. S. P. et al. Cell 159, 1665–1680 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sahlén, P. et al. Genome Biol. 16, 156 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Schoenfelder, S. et al. Genome Res. 25, 582–597 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Babaei, S. et al. PLOS Comput. Biol. 11, e1004221 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. ENCODE Project Consortium. Science 306, 636–640 (2004).

    Article  CAS  Google Scholar 

  53. Kundaje, A. et al. Nature 518, 317–330 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Akbarian, S. et al. Nat. Neurosci. 18, 1707–1712 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Won, H. et al. Nature 538, 523–527 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lek, M. et al. Nature 536, 285–291 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Petrovski, S., Wang, Q., Heinzen, E. L., Allen, A. S. & Goldstein, D. B. PLoS Genet. 9, e1003709 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Samocha, K. E. et al. Nat. Genet. 46, 944–950 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kosmicki, J. A. et al. Nat. Genet. 49, 504–510 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Melnikov, A., Zhang, X., Rogov, P., Wang, L. & Mikkelsen, T. S. J. Vis. Exp. 90, e51719 (2014).

    Google Scholar 

  61. Arnold, C. D. et al. Science 339, 1074–1077 (2013).

    Article  PubMed  CAS  Google Scholar 

  62. Lehner, T., Senthil, G. & Addington, A. M. Biol. Psychiatry 77, 6–14 (2015).

    Article  PubMed  Google Scholar 

  63. Ganna, A. et al. Nat. Neurosci. 19, 1563–1565 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. The Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium. Mol. Autism 8, 21 (2017).

  65. Hyde, C. L. et al. Nat. Genet. 48, 1–9 (2016).

    Article  CAS  Google Scholar 

  66. Marshall, C. R. et al. Nat. Genet. 49, 27–35 (2017).

    Article  PubMed  CAS  Google Scholar 

  67. Green, E. K. et al. Mol. Psychiatry 21, 89–93 (2016).

    Article  PubMed  CAS  Google Scholar 

  68. Rucker, J. J. H. et al. Biol. Psychiatry 79, 329–336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Purcell, S. M. et al. Nature 506, 185–190 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Genovese, G. et al. Nat. Neurosci. 19, 1433–1441 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Fromer, M. et al. Nature 506, 179–184 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Singh, T. et al. Nat. Neurosci. 19, 571–577 (2016).

    Article  PubMed  CAS  Google Scholar 

  73. Fischbach, G. D. & Lord, C. Neuron 68, 192–195 (2010).

    Article  PubMed  CAS  Google Scholar 

  74. Buxbaum, J. D. et al. Autism Sequencing Consortium. Neuron 76, 1052–1056 (2012).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge and thank the study participants and their families. The WGSPD is a public–private partnership between the NIMH, the Stanley Center for Psychiatric Research, and researchers at 11 academic institutions across the USA. This work was supported by grants from the NIMH, specifically U01 MH105653 (M.B.), U01 MH105641 (S.A.M.), U01 MH105573 (C.N.P.), U01 MH105670 (D.B.G.), U01 MH105575 (M.W.S., A.J.W.), U01 MH105669 (M.J.D., K.E.), U01 MH105575 (N.B.F., D.H.G., R.A.O.), U01 MH105666 (A.P.), U01 MH105630 (D.C.G.), U01 MH105632 (J.B.), U01 MH105634 (R.E.G.), U01 MH100239-03S1 (M.W.S., S.J.S., A.J.W.), R01 MH095454 (N.B.F.); by grants from the Simons Foundation (SFARI #385110, M.W.S., S.J.S., A.J.W., D.B.G., SFARI #401457 (D.H.G.)); and by a gift from the Stanley Foundation (S.E.H.).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

S.J.S., B.M.N., H.H., and D.M.W. contributed to the power calculation. All authors contributed to the text.

Corresponding authors

Correspondence to Steven E. Hyman, Anjene M. Addington, Thomas Lehner or Nelson B. Freimer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Statistical power in the noncoding genome by cohort size, related to Figure 1 in the main manuscript.

We estimated the power at a significance threshold (alpha) of 5 × 10−5, accounting for 1,000 categories of noncoding variants, to detect an excess of noncoding variants at 122,500 risk loci in cases vs. controls as we varied the sample size and risk:non-risk ratio, which represents annotation quality (Supplementary Tables 1 and 3). In a) we assessed the power for detecting an excess of de novo mutations at a relative risk of 5 as sample size increases. With a risk:non-risk ratio of 1:20, approximately equivalent to assessing protein truncating variants in the coding genome, we achieve >80% power with a sample size of 5,000. In b) the power to detect an excess burden of rare variants (allele frequency ≤0.1%) is assessed at a relative risk of 1.2. In c) we assessed the power to identify an excess of de novo mutations at a specific genomic locus, e.g. the noncoding region regulating a single gene. Consequently, we set the significance threshold (alpha) at 2.5 × 10−6 to account for 20,000 genes. In d) we assessed the power to identify an excess of rare variants (allele frequency ≤0.1%) at a specific nucleotide (alpha = 1.7 × 10−11), since this yielded better power than testing for burden at a locus (alpha = 2.5 × 10−6).

Electronic supplementary material

Supplementary Text and Figures

Supplementary Figure 1, Supplementary Tables 1–4, and Supplementary Experimental Procedures

Supplementary Methods

Supplementary Tables

Supplementary Note

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanders, S.J., Neale, B.M., Huang, H. et al. Whole genome sequencing in psychiatric disorders: the WGSPD consortium. Nat Neurosci 20, 1661–1668 (2017). https://doi.org/10.1038/s41593-017-0017-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-017-0017-9

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing