Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior

Published online:


Haploinsufficiency of the AT-rich interactive domain 1B (ARID1B) gene causes autism spectrum disorder and intellectual disability; however, the neurobiological basis for this is unknown. Here we generated Arid1b-knockout mice and examined heterozygotes to model human patients. Arid1b-heterozygous mice showed a decreased number of cortical GABAergic interneurons and reduced proliferation of interneuron progenitors in the ganglionic eminence. Arid1b haploinsufficiency also led to an imbalance between excitatory and inhibitory synapses in the cerebral cortex. Furthermore, we found that Arid1b haploinsufficiency suppressed histone H3 lysine 9 acetylation (H3K9ac) overall and particularly reduced H3K9ac of the Pvalb promoter, resulting in decreased transcription. Arid1b-heterozygous mice exhibited abnormal cognitive and social behaviors, which were rescued by treatment with a positive allosteric GABAA receptor modulator. Our results demonstrate a critical role for Arid1b in interneuron development and behavior and provide insight into the pathogenesis of autism spectrum disorder and intellectual disability.

  • Subscribe to Nature Neuroscience for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    Ellison, J. W., Rosenfeld, J. A. & Shaffer, L. G. Genetic basis of intellectual disability. Annu. Rev. Med. 64, 441–450 (2013).

  2. 2.

    Halgren, C. et al. Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B. Clin. Genet. 82, 248–255 (2012).

  3. 3.

    Santen, G. W. et al. Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome. Nat. Genet. 44, 379–380 (2012).

  4. 4.

    Hoyer, J. et al. Haploinsufficiency of ARID1B, a member of the SWI/SNF-a chromatin-remodeling complex, is a frequent cause of intellectual disability. Am. J. Hum. Genet. 90, 565–572 (2012).

  5. 5.

    Ronan, J. L., Wu, W. & Crabtree, G. R. From neural development to cognition: unexpected roles for chromatin. Nat. Rev. Genet. 14, 347–359 (2013).

  6. 6.

    López, A. J. & Wood, M. A. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders. Front. Behav. Neurosci. 9, 100 (2015).

  7. 7.

    Marín, O. Interneuron dysfunction in psychiatric disorders. Nat. Rev. Neurosci. 13, 107–120 (2012).

  8. 8.

    Nelson, S. B. & Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87, 684–698 (2015).

  9. 9.

    Ben-Ari, Y. The GABA excitatory/inhibitory developmental sequence: a personal journey. Neuroscience 279, 187–219 (2014).

  10. 10.

    Robertson, C. E., Ratai, E. M. & Kanwisher, N. Reduced GABAergic action in the autistic brain. Curr. Biol. 26, 80–85 (2016).

  11. 11.

    Han, S. et al. Autistic-like behaviour in Scn1a +/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489, 385–390 (2012).

  12. 12.

    Moffat, J. J., Ka, M., Jung, E. M. & Kim, W. Y. Genes and brain malformations associated with abnormal neuron positioning. Mol. Brain 8, 72 (2015).

  13. 13.

    Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011).

  14. 14.

    Stenman, J., Toresson, H. & Campbell, K. Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J. Neurosci. 23, 167–174 (2003).

  15. 15.

    Xu, Q., Tam, M. & Anderson, S. A. Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J. Comp. Neurol. 506, 16–29 (2008).

  16. 16.

    Kim, D. I. et al. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell 27, 1188–1196 (2016).

  17. 17.

    Sommeijer, J. P. & Levelt, C. N. Synaptotagmin-2 is a reliable marker for parvalbumin positive inhibitory boutons in the mouse visual cortex. PLoS One 7, e35323 (2012).

  18. 18.

    Lucas, E. K. et al. PGC-1α provides a transcriptional framework for synchronous neurotransmitter release from parvalbumin-positive interneurons. J. Neurosci. 34, 14375–14387 (2014).

  19. 19.

    Cowell, R. M., Blake, K. R. & Russell, J. W. Localization of the transcriptional coactivator PGC-1alpha to GABAergic neurons during maturation of the rat brain. J. Comp. Neurol. 502, 1–18 (2007).

  20. 20.

    Tsurusaki, Y. et al. Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat. Genet. 44, 376–378 (2012).

  21. 21.

    Wonders, C. P. & Anderson, S. A. The origin and specification of cortical interneurons. Nat. Rev. Neurosci. 7, 687–696 (2006).

  22. 22.

    Ka, M., Chopra, D. A., Dravid, S. M. & Kim, W. Y. Essential roles for ARID1B in dendritic arborization and spine morphology of developing pyramidal neurons. J. Neurosci. 36, 2723–2742 (2016).

  23. 23.

    Zikopoulos, B. & Barbas, H. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Front. Hum. Neurosci. 7, 609 (2013).

  24. 24.

    Stoner, R. et al. Patches of disorganization in the neocortex of children with autism. N. Engl. J. Med. 370, 1209–1219 (2014).

  25. 25.

    Reynolds, G. P., Zhang, Z. J. & Beasley, C. L. Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding protein immunoreactivity. Brain Res. Bull. 55, 579–584 (2001).

  26. 26.

    Lawrence, Y. A., Kemper, T. L., Bauman, M. L. & Blatt, G. J. Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurol. Scand. 121, 99–108 (2010).

  27. 27.

    Mariani, J. et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162, 375–390 (2015).

  28. 28.

    Gogolla, N. et al. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord. 1, 172–181 (2009).

  29. 29.

    Cellot, G. & Cherubini, E. GABAergic signaling as therapeutic target for autism spectrum disorders. Front Pediatr. 2, 70 (2014).

  30. 30.

    Wöhr, M. et al. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities. Transl. Psychiatry 5, e525 (2015).

  31. 31.

    Saunders, J. A. et al. Knockout of NMDA receptors in parvalbumin interneurons recreates autism-like phenotypes. Autism Res. 6, 69–77 (2013).

  32. 32.

    Nagl, N. G. Jr., Wang, X., Patsialou, A., Van Scoy, M. & Moran, E. Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J. 26, 752–763 (2007).

  33. 33.

    Chatterjee, N. et al. Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms. Nucleic Acids Res. 39, 8378–8391 (2011).

  34. 34.

    Naidu, S. R., Love, I. M., Imbalzano, A. N., Grossman, S. R. & Androphy, E. J. The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene 28, 2492–2501 (2009).

  35. 35.

    Vogel-Ciernia, A. et al. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat. Neurosci. 16, 552–561 (2013).

  36. 36.

    Boyd, K., Woodbury-Smith, M. & Szatmari, P. Managing anxiety and depressive symptoms in adults with autism-spectrum disorders. J. Psychiatry Neurosci. 36, E35–E36 (2011).

  37. 37.

    Reid, K. A., Smiley, E. & Cooper, S. A. Prevalence and associations of anxiety disorders in adults with intellectual disabilities. J. Intellect. Disabil. Res. 55, 172–181 (2011).

  38. 38.

    Celen, C. et al. Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment. eLife 6, e25730 (2017).

  39. 39.

    Dahlin, M. G., Amark, P. E. & Nergårdh, A. R. Reduction of seizures with low-dose clonazepam in children with epilepsy. Pediatr. Neurol. 28, 48–52 (2003).

  40. 40.

    Jung, E. M., Ka, M. & Kim, W. Y. Loss of GSK-3 causes abnormal astrogenesis and behavior in mice. Mol. Neurobiol. 53, 3954–3966 (2016).

  41. 41.

    Ka, M. & Kim, W. Y. Microtubule-actin crosslinking factor 1 is required for dendritic arborization and axon outgrowth in the developing brain. Mol. Neurobiol. 53, 6018–6032 (2016).

  42. 42.

    Ka, M., Kook, Y. H., Liao, K., Buch, S. & Kim, W. Y. Transactivation of TrkB by Sigma-1 receptor mediates cocaine-induced changes in dendritic spine density and morphology in hippocampal and cortical neurons. Cell Death Dis. 7, e2414 (2016).

  43. 43.

    Ka, M., Smith, A. L. & Kim, W. Y. MTOR controls genesis and autophagy of GABAergic interneurons during brain development. Autophagy 13, 1348–1363 (2017).

  44. 44.

    Ka, M., Condorelli, G., Woodgett, J. R. & Kim, W. Y. mTOR regulates brain morphogenesis by mediating GSK3 signaling. Development 141, 4076–4086 (2014).

  45. 45.

    Jung, E. M., An, B. S., Choi, K. C. & Jeung, E. B. Apoptosis- and endoplasmic reticulum stress-related genes were regulated by estrogen and progesterone in the uteri of calbindin-D(9k) and -D(28k) knockout mice. J. Cell. Biochem. 113, 194–203 (2012).

  46. 46.

    Ka, M., Jung, E. M., Mueller, U. & Kim, W. Y. MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling. Dev. Biol. 395, 4–18 (2014).

  47. 47.

    Ka, M., Moffat, J.J. & Kim, W.Y. MACF1 controls migration and positioning of cortical GABAergic interneurons in mice. Cereb. Cortex (2016).

Download references


We thank S. Bonasera for helping with the behavioral analysis. Research reported in this publication was supported by an award from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award number R01NS091220 and an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under award number P20GM103471 to W.-Y.K.

Author information


  1. Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA

    • Eui-Man Jung
    • , Jeffrey Jay Moffat
    • , Channabasavaiah Basavaraju Gurumurthy
    •  & Woo-Yang Kim
  2. Department of Pharmacology, Creighton University, Omaha, Nebraska, USA

    • Jinxu Liu
    •  & Shashank Manohar Dravid


  1. Search for Eui-Man Jung in:

  2. Search for Jeffrey Jay Moffat in:

  3. Search for Jinxu Liu in:

  4. Search for Shashank Manohar Dravid in:

  5. Search for Channabasavaiah Basavaraju Gurumurthy in:

  6. Search for Woo-Yang Kim in:


E.-M.J. and W.-Y.K. designed, performed and analyzed the experiments and wrote the paper. J.J.M., C.G. and J.L. performed the experiments. S.M.D. designed and analyzed the experiments. W.-Y.K. conceived and supervised the study.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Woo-Yang Kim.

Integrated supplementary information

Supplementary information