Article

A craniofacial-specific monosynaptic circuit enables heightened affective pain

Received:
Accepted:
Published online:

Abstract

Humans often rank craniofacial pain as more severe than body pain. Evidence suggests that a stimulus of the same intensity induces stronger pain in the face than in the body. However, the underlying neural circuitry for the differential processing of facial versus bodily pain remains unknown. Interestingly, the lateral parabrachial nucleus (PBL), a critical node in the affective pain circuit, is activated more strongly by noxious stimulation of the face than of the hindpaw. Using a novel activity-dependent technology called CANE developed in our laboratory, we identified and selectively labeled noxious-stimulus-activated PBL neurons and performed comprehensive anatomical input–output mapping. Surprisingly, we uncovered a hitherto uncharacterized monosynaptic connection between cranial sensory neurons and the PBL-nociceptive neurons. Optogenetic activation of this monosynaptic craniofacial-to-PBL projection induced robust escape and avoidance behaviors and stress calls, whereas optogenetic silencing specifically reduced facial nociception. The monosynaptic circuit revealed here provides a neural substrate for heightened craniofacial affective pain.

  • Subscribe to Nature Neuroscience for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Waldman, S. D. Atlas of Common Pain Syndromes (Elsevier Health Sciences, Philadelphia, 2011).

  2. 2.

    Zakrzewska, J. M., Wu, J., Mon-Williams, M., Phillips, N. & Pavitt, S. H. Evaluating the impact of trigeminal neuralgia. Pain 158, 1166–1174 (2017).

  3. 3.

    Smith, J. G. et al. The psychosocial and affective burden of posttraumatic neuropathy following injuries to the trigeminal nerve. J. Orofac. Pain 27, 293–303 (2013).

  4. 4.

    Schmidt, K., Schunke, O., Forkmann, K. & Bingel, U. Enhanced short-term sensitization of facial compared with limb heat pain. J. Pain 16, 781–790 (2015).

  5. 5.

    Schmidt, K. et al. The differential effect of trigeminal vs. peripheral pain stimulation on visual processing and memory encoding is influenced by pain-related fear. Neuroimage 134, 386–395 (2016).

  6. 6.

    Moulton, E. A. et al. Capsaicin-induced thermal hyperalgesia and sensitization in the human trigeminal nociceptive pathway: an fMRI study. Neuroimage 35, 1586–1600 (2007).

  7. 7.

    Hunt, S. P. & Mantyh, P. W. The molecular dynamics of pain control. Nat. Rev. Neurosci. 2, 83–91 (2001).

  8. 8.

    Gauriau, C. & Bernard, J.-F. F. Pain pathways and parabrachial circuits in the rat. Exp. Physiol 87, 251–258 (2002).

  9. 9.

    Craig, A. D. Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J. Comp. Neurol. 361, 225–248 (1995).

  10. 10.

    Hermanson, O. & Blomqvist, A. Subnuclear localization of FOS-like immunoreactivity in the rat parabrachial nucleus after nociceptive stimulation. J. Comp. Neurol. 368, 45–56 (1996).

  11. 11.

    Hermanson, O. & Blomqvist, A. Subnuclear localization of FOS-like immunoreactivity in the parabrachial nucleus after orofacial nociceptive stimulation of the awake rat. J. Comp. Neurol. 387, 114–123 (1997).

  12. 12.

    Sakurai, K. et al. Capturing and manipulating activated neuronal ensembles with CANE delineates a hypothalamic social-fear circuit. Neuron 92, 739–753 (2016).

  13. 13.

    Slugg, R. M. & Light, A. R. Spinal cord and trigeminal projections to the pontine parabrachial region in the rat as demonstrated with Phaseolus vulgaris leucoagglutinin. J. Comp. Neurol. 339, 49–61 (1994).

  14. 14.

    Cechetto, D. F., Standaert, D. G. & Saper, C. B. Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat. J. Comp. Neurol. 240, 153–160 (1985).

  15. 15.

    Han, S., Soleiman, M. T., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Elucidating an affective pain circuit that creates a threat memory. Cell 162, 363–374 (2015).

  16. 16.

    Gaub, S., Fisher, S. E. & Ehret, G. Ultrasonic vocalizations of adult male Foxp2-mutant mice: behavioral contexts of arousal and emotion. Genes Brain Behav 15, 243–259 (2016).

  17. 17.

    Geerling, J. C. et al. FoxP2 expression defines dorsolateral pontine neurons activated by sodium deprivation. Brain Res. 1375, 19–27 (2011).

  18. 18.

    Ding, Y. Q., Takada, M., Shigemoto, R. & Mizuno, N. Trigeminoparabrachial projection neurons showing substance P receptor-like immunoreactivity in the rat. Neurosci. Res. 23, 415–418 (1995).

  19. 19.

    Tokita, K., Inoue, T. & Boughter, J. D. Jr. Afferent connections of the parabrachial nucleus in C57BL/6J mice. Neuroscience 161, 475–488 (2009).

  20. 20.

    Nishijo, H. & Norgren, R. Parabrachial neural coding of taste stimuli in awake rats. J. Neurophysiol. 78, 2254–2268 (1997).

  21. 21.

    Nakamura, K. & Morrison, S. F. A thermosensory pathway that controls body temperature. Nat. Neurosci. 11, 62–71 (2008).

  22. 22.

    Alhadeff, A. L., Golub, D., Hayes, M. R. & Grill, H. J. Peptide YY signaling in the lateral parabrachial nucleus increases food intake through the Y1 receptor. Am. J. Physiol. Endocrinol. Metab. 309, E759–E766 (2015).

  23. 23.

    Davern, P. J. A role for the lateral parabrachial nucleus in cardiovascular function and fluid homeostasis. Front. Physiol 5, 436 (2014).

  24. 24.

    Menani, J. V., De Luca, L. A. Jr. & Johnson, A. K. Role of the lateral parabrachial nucleus in the control of sodium appetite. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R201–R210 (2014).

  25. 25.

    Bester, H., Menendez, L., Besson, J. M. & Bernard, J. F. Spino (trigemino) parabrachiohypothalamic pathway: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol. 73, 568–585 (1995).

  26. 26.

    Bernard, J. F. & Besson, J. M. The spino(trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol. 63, 473–490 (1990).

  27. 27.

    Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

  28. 28.

    Kohara, K. et al. Cell type–specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat. Neurosci. 17, 269–279 (2014).

  29. 29.

    Cavanaugh, D. J. et al. Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J. Neurosci. 31, 10119–10127 (2011).

  30. 30.

    Panneton, W. M. & Gan, Q. Direct reticular projections of trigeminal sensory fibers immunoreactive to CGRP: potential monosynaptic somatoautonomic projections. Front. Neurosci. 8, 136 (2014).

  31. 31.

    Panneton, W. M., Gan, Q. & Juric, R. Brainstem projections from recipient zones of the anterior ethmoidal nerve in the medullary dorsal horn. Neuroscience 141, 889–906 (2006).

  32. 32.

    Cavanaugh, D. J. et al. Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J. Neurosci. 31, 5067–5077 (2011).

  33. 33.

    Mishra, S. K., Tisel, S. M., Orestes, P., Bhangoo, S. K. & Hoon, M. A. TRPV1-lineage neurons are required for thermal sensation. EMBO J 30, 582–593 (2011).

  34. 34.

    Foust, K. D., Poirier, A., Pacak, C. A., Mandel, R. J. & Flotte, T. R. Neonatal intraperitoneal or intravenous injections of recombinant adeno-associated virus type 8 transduce dorsal root ganglia and lower motor neurons. Hum. Gene Ther. 19, 61–70 (2008).

  35. 35.

    Machida, A. et al. Intraperitoneal administration of AAV9-shRNA inhibits target gene expression in the dorsal root ganglia of neonatal mice. Mol. Pain 9, 36 (2013).

  36. 36.

    Stanek, E. IV, Rodriguez, E., Zhao, S., Han, B.-X. X. & Wang, F. Supratrigeminal bilaterally projecting neurons maintain basal tone and enable bilateral phasic activation of jaw-closing muscles. J. Neurosci. 36, 7663–7675 (2016).

  37. 37.

    Bellavance, M. A. et al. Parallel inhibitory and excitatory trigemino-facial feedback circuitry for reflexive vibrissa movement. Neuron 95, 673–682.e4 (2017).

  38. 38.

    Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

  39. 39.

    Baastrup, C., Jensen, T. S. & Finnerup, N. B. Pregabalin attenuates place escape/avoidance behavior in a rat model of spinal cord injury. Brain Res. 1370, 129–135 (2011).

  40. 40.

    LaBuda, C. J. & Fuchs, P. N. A behavioral test paradigm to measure the aversive quality of inflammatory and neuropathic pain in rats. Exp. Neurol. 163, 490–494 (2000).

  41. 41.

    Zhang, Z. et al. Role of prelimbic GABAergic circuits in sensory and emotional aspects of neuropathic pain. Cell Rep. 12, 752–759 (2015).

  42. 42.

    Daou, I. et al. Optogenetic silencing of Nav1.8-positive afferents alleviates inflammatory and neuropathic pain. eNeuro 3, 0140-15.2016 (2016).

  43. 43.

    Li, B. et al. A novel analgesic approach to optogenetically and specifically inhibit pain transmission using TRPV1 promoter. Brain Res 1609, 12–20 (2015).

  44. 44.

    Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

  45. 45.

    Sato, M. et al. The lateral parabrachial nucleus is actively involved in the acquisition of fear memory in mice. Mol. Brain 8, 22 (2015).

  46. 46.

    Moffie, D. Late results of bulbar trigeminal tractotomy. Some remarks on recovery of sensibility. J. Neurol. Neurosurg. Psychiatry 34, 270–274 (1971).

  47. 47.

    Rahimpour, S. & Lad, S. P. Surgical options for atypical facial pain syndromes. Neurosurg. Clin. N. Am. 27, 365–370 (2016).

  48. 48.

    Romaniello, A., Iannetti, G. D., Truini, A. & Cruccu, G. Trigeminal responses to laser stimuli. Clin. Neurophysiol. 33, 315–324 (2003).

  49. 49.

    DeSouza, D. D., Moayedi, M., Chen, D. Q., Davis, K. D. & Hodaie, M. sensorimotor and pain modulation brain abnormalities in trigeminal neuralgia: a paroxysmal, sensory-triggered neuropathic pain. PLoS One 8, e66340 (2013).

  50. 50.

    Kuner, R. Central mechanisms of pathological pain. Nat. Med. 16, 1258–1266 (2010).

  51. 51.

    Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

  52. 52.

    Röhn, T. A. et al. A virus-like particle-based anti-nerve growth factor vaccine reduces inflammatory hyperalgesia: potential long-term therapy for chronic pain. J. Immunol. 186, 1769–1780 (2011).

  53. 53.

    Xu, Z. Z. et al. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat. Med. 21, 1326–1331 (2015).

  54. 54.

    Koh, W. U. et al. Perineural pretreatment of bee venom attenuated the development of allodynia in the spinal nerve ligation injured neuropathic pain model; an experimental study. BMC Complement. Altern. Med. 14, 431 (2014).

  55. 55.

    Jennings, J. H. et al. Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224–228 (2013).

  56. 56.

    Stamatakis, A. M. & Stuber, G. D. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat. Neurosci. 15, 1105–1107 (2012).

  57. 57.

    Lopes, G. et al. Bonsai: an event-based framework for processing and controlling data streams. Front. Neuroinform 9, 7 (2015).

  58. 58.

    Silva, J. R. et al. Neuroimmune-glia interactions in the sensory ganglia account for the development of acute herpetic neuralgia. J. Neurosci. 37, 6408–6422 (2017).

  59. 59.

    Peng, C. et al. miR-183 cluster scales mechanical pain sensitivity by regulating basal and neuropathic pain genes. Science 356, 1168–1171 (2017).

  60. 60.

    Kim, Y. S. et al. Central terminal sensitization of TRPV1 by descending serotonergic facilitation modulates chronic pain. Neuron 81, 873–887 (2014).

  61. 61.

    Aita, M., Byers, M. R., Chavkin, C. & Xu, M. Trigeminal injury causes kappa opioid-dependent allodynic, glial and immune cell responses in mice. Mol. Pain 6, 8 (2010).

  62. 62.

    Zhang, Y. et al. Identifying local and descending inputs for primary sensory neurons. J. Clin. Invest 125, 3782–3794 (2015).

  63. 63.

    Zhang, Y., Chen, Y., Liedtke, W. & Wang, F. Lack of evidence for ectopic sprouting of genetically labeled Aβ touch afferents in inflammatory and neuropathic trigeminal pain. Mol. Pain 11, 18 (2015).

Download references

Acknowledgements

We thank J. Takatoh for helping with a method to quantify axon innervation densities, K. Tschida and T. Gibson for helping with vocalization quantification and analysis, and V. Prevosto for helping with statistics. We also thank T. Gibson, M. Fu, K. Tschida, T. Stanek, V. Prevosto, and R. R. Ji for providing input and support throughout the project, and S. Lisberger and R. Mooney for critical reading of this manuscript. E.R. is supported by a F31 DE025197-03 fellowship. Y.C. is supported by K12DE022793. W.L. is supported by DE018549. This work is supported by NIH Grant DP1MH103908 to F.W.

Author information

Affiliations

  1. Department of Neurobiology, Duke University Medical Center, Durham, NC, USA

    • Erica Rodriguez
    • , Katsuyasu Sakurai
    • , Jennie Xu
    • , Shengli Zhao
    • , Bao-Xia Han
    • , David Ryu
    •  & Fan Wang
  2. Department of Neurology, Duke University Medical Center, Durham, NC, USA

    • Yong Chen
    •  & Wolfgang Liedtke
  3. Department of Psychology and Neuroscience, Duke University, Durham, NC, USA

    • Koji Toda
    •  & Henry Yin

Authors

  1. Search for Erica Rodriguez in:

  2. Search for Katsuyasu Sakurai in:

  3. Search for Jennie Xu in:

  4. Search for Yong Chen in:

  5. Search for Koji Toda in:

  6. Search for Shengli Zhao in:

  7. Search for Bao-Xia Han in:

  8. Search for David Ryu in:

  9. Search for Henry Yin in:

  10. Search for Wolfgang Liedtke in:

  11. Search for Fan Wang in:

Contributions

F.W. and E.R. conceived the idea and designed the experiments. E.R. performed the majority of the experiments and data analysis. K.S. performed some independent CANE capture experiments, bilateral fiber implantations and the place escape/avoidance (PEA) behavioral experiments. K.T. analyzed PEA results (blind to genotype). J.X. performed immunohistochemistry, quantified axon projections, and quantified cells in Fos and trans-synaptic experiments (blind to experimental conditions). Y.C. performed all the face and hindpaw von Frey assays (blind to genotypes). D.R. quantified cells in a subset of colocalization experiments. S.Z. produced all the CANE-LV and CANE-RV viruses. B.-X.H. took care of mouse husbandry and genotyping. H.Y. and W.L. provided critical equipment and reagents. F.W. and E.R. wrote the manuscript with help from W.L.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Fan Wang.

Integrated supplementary information

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1–10

  2. Life Sciences Reporting Summary

  3. Supplementary Video 1

    Optogenetic activation of TrpV1Cre::ChR2+ TG afferents in the PBL in a real-time place escape/avoidance test (related to Fig. 4). Photo activation of TrpV1Cre::ChR2+ TG axon terminals within the PBL elicits escaping from the stimulation chamber to the opposite chamber to stop the stimulation. After mouse escapes to the non-stimulated chamber, it moves less and spends more time in the chamber.

  4. Supplementary Video 2

    Photo illumination of TrpV1Cre::GFP+ TG afferents in the PBL in a real-time place escape/avoidance test (related to Fig. 4). Photo illumination of TrpV1Cre::GFP+ TG axon terminals within the PBL has no observable behavioral effects.

  5. Supplementary Video 3

    Optogenetic activation of TrpV1Cre::ChR2+ TG afferents in the PBL in a circular chamber to record vocalization (related to Fig. 4). Photo activation of TrpV1Cre::ChR2+ TG axon terminals within the PBL induces audible distress vocalization. Vocalization stops when laser light turns off.

  6. Supplementary Video 4

    Photo illumination of TrpV1Cre::GFP+ TG afferents in the PBL in a circular chamber to record vocalization (related to Fig. 4). Photo illumination of TrpV1Cre::GFP+ TG axon terminals within the PBL does not induce any vocalizations.