Elucidating the underlying components of food valuation in the human orbitofrontal cortex

Published online:


The valuation of food is a fundamental component of our decision-making. Yet little is known about how value signals for food and other rewards are constructed by the brain. Using a food-based decision task in human participants, we found that subjective values can be predicted from beliefs about constituent nutritive attributes of food: protein, fat, carbohydrates and vitamin content. Multivariate analyses of functional MRI data demonstrated that, while food value is represented in patterns of neural activity in both medial and lateral parts of the orbitofrontal cortex (OFC), only the lateral OFC represents the elemental nutritive attributes. Effective connectivity analyses further indicate that information about the nutritive attributes represented in the lateral OFC is integrated within the medial OFC to compute an overall value. These findings provide a mechanistic account for the construction of food value from its constituent nutrients.

  • Subscribe to Nature Neuroscience for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    Clithero, J. A. & Rangel, A. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 9, 1289–1302 (2014).

  2. 2.

    Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

  3. 3.

    Rich, E. L. & Wallis, J. D. Decoding subjective decisions from orbitofrontal cortex. Nat. Neurosci. 19, 973–980 (2016).

  4. 4.

    Rudebeck, P. H. & Murray, E. A. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron 84, 1143–1156 (2014).

  5. 5.

    Grabenhorst, F. & Rolls, E. T. Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn. Sci. 15, 56–67 (2011).

  6. 6.

    McNamee, D., Rangel, A. & O’Doherty, J. P. Category-dependent and category-independent goal-value codes in human ventromedial prefrontal cortex. Nat. Neurosci. 16, 479–485 (2013).

  7. 7.

    Chikazoe, J., Lee, D. H., Kriegeskorte, N. & Anderson, A. K. Population coding of affect across stimuli, modalities and individuals. Nat. Neurosci. 17, 1114–1122 (2014).

  8. 8.

    Howard, J. D., Gottfried, J. A., Tobler, P. N. & Kahnt, T. Identity-specific coding of future rewards in the human orbitofrontal cortex. Proc. Natl. Acad. Sci. USA 112, 5195–5200 (2015).

  9. 9.

    Lebreton, M., Jorge, S., Michel, V., Thirion, B. & Pessiglione, M. An automatic valuation system in the human brain: evidence from functional neuroimaging. Neuron 64, 431–439 (2009).

  10. 10.

    Small, D. M. et al. Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron 39, 701–711 (2003).

  11. 11.

    Kable, J. W. & Glimcher, P. W. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10, 1625–1633 (2007).

  12. 12.

    Stalnaker, T. A. et al. Orbitofrontal neurons infer the value and identity of predicted outcomes. Nat. Commun 5, 3926 (2014).

  13. 13.

    Gross, J. et al. Value signals in the prefrontal cortex predict individual preferences across reward categories. J. Neurosci. 34, 7580–7586 (2014).

  14. 14.

    Chib, V. S., Rangel, A., Shimojo, S. & O’Doherty, J. P. Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. J. Neurosci. 29, 12315–12320 (2009).

  15. 15.

    Levy, D. J. & Glimcher, P. W. Comparing apples and oranges: using reward-specific and reward-general subjective value representation in the brain. J. Neurosci. 31, 14693–14707 (2011).

  16. 16.

    Suzuki, S. et al. Learning to simulate others’ decisions. Neuron 74, 1125–1137 (2012).

  17. 17.

    Suzuki, S., Adachi, R., Dunne, S., Bossaerts, P. & O’Doherty, J. P. Neural mechanisms underlying human consensus decision-making. Neuron 86, 591–602 (2015).

  18. 18.

    Foerde, K., Steinglass, J. E., Shohamy, D. & Walsh, B. T. Neural mechanisms supporting maladaptive food choices in anorexia nervosa. Nat. Neurosci. 18, 1571–1573 (2015).

  19. 19.

    Carnell, S., Gibson, C., Benson, L., Ochner, C. N. & Geliebter, A. Neuroimaging and obesity: current knowledge and future directions. Obes. Rev. 13, 43–56 (2012).

  20. 20.

    Barron, H. C., Dolan, R. J. & Behrens, T. E. J. Online evaluation of novel choices by simultaneous representation of multiple memories. Nat. Neurosci. 16, 1492–1498 (2013).

  21. 21.

    Klein-Flügge, M. C., Barron, H. C., Brodersen, K. H., Dolan, R. J. & Behrens, T. E. J. Segregated encoding of reward-identity and stimulus-reward associations in human orbitofrontal cortex. J. Neurosci. 33, 3202–3211 (2013).

  22. 22.

    Ongür, D. & Price, J. L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000).

  23. 23.

    Tang, D. W., Fellows, L. K. & Dagher, A. Behavioral and neural valuation of foods is driven by implicit knowledge of caloric content. Psychol. Sci. 25, 2168–2176 (2014).

  24. 24.

    Zuker, C. S. Food for the brain. Cell 161, 9–11 (2015).

  25. 25.

    de Araujo, I. E. et al. Food reward in the absence of taste receptor signaling. Neuron 57, 930–941 (2008).

  26. 26.

    Tellez, L. A. et al. Separate circuitries encode the hedonic and nutritional values of sugar. Nat. Neurosci. 19, 465–470 (2016).

  27. 27.

    Haynes, J.-D. A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron 87, 257–270 (2015).

  28. 28.

    Nichols, T., Brett, M., Andersson, J., Wager, T. & Poline, J.-B. Valid conjunction inference with the minimum statistic. Neuroimage 25, 653–660 (2005).

  29. 29.

    Kriegeskorte, N. & Kievit, R. A. Representational geometry: integrating cognition, computation, and the brain. Trends Cogn. Sci. 17, 401–412 (2013).

  30. 30.

    Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1993).

  31. 31.

    Vickery, T. J., Chun, M. M. & Lee, D. Ubiquity and specificity of reinforcement signals throughout the human brain. Neuron 72, 166–177 (2011).

  32. 32.

    Kahnt, T., Park, S. Q., Haynes, J.-D. & Tobler, P. N. Disentangling neural representations of value and salience in the human brain. Proc. Natl. Acad. Sci. USA 111, 5000–5005 (2014).

  33. 33.

    Gottfried, J. A., O’Doherty, J. & Dolan, R. J. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301, 1104–1107 (2003).

  34. 34.

    Mishkin, M., Ungerleider, L. G. & Macko, K. A. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6, 414–417 (1983).

  35. 35.

    Howard, J. D. & Kahnt, T. Identity-specific reward representations in orbitofrontal cortex are modulated by selective devaluation. J. Neurosci. 37, 2627–2638 (2017).

  36. 36.

    Noonan, M. P. et al. Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. Proc. Natl. Acad. Sci. USA 107, 20547–20552 (2010).

  37. 37.

    Rozin, P. & Vollmecke, T. A. Food likes and dislikes. Annu. Rev. Nutr. 6, 433–456 (1986).

  38. 38.

    Hare, T. A., Malmaud, J. & Rangel, A. Focusing attention on the health aspects of foods changes value signals in vmPFC and improves dietary choice. J. Neurosci. 31, 11077–11087 (2011).

  39. 39.

    Becker, G. M., DeGroot, M. H. & Marschak, J. Measuring utility by a single-response sequential method. Behav. Sci. 9, 226–232 (1964).

  40. 40.

    Deichmann, R., Gottfried, J. A., Hutton, C. & Turner, R. Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19, 430–441 (2003).

  41. 41.

    Hebart, M. N., Görgen, K. & Haynes, J.-D. The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data. Front. Neuroinform. 8, 88 (2015).

  42. 42.

    Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002).

  43. 43.

    Allefeld, C., Görgen, K. & Haynes, J.-D. Valid population inference for information-based imaging: From the second-level t-test to prevalence inference. Neuroimage 141, 378–392 (2016).

  44. 44.

    Kriegeskorte, N., Goebel, R. & Bandettini, P. Information-based functional brain mapping. Proc. Natl. Acad. Sci. USA 103, 3863–3868 (2006).

  45. 45.

    McNamee, D., Liljeholm, M., Zika, O. & O’Doherty, J. P. Characterizing the associative content of brain structures involved in habitual and goal-directed actions in humans: a multivariate fMRI study. J. Neurosci. 35, 3764–3771 (2015).

  46. 46.

    Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis - connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).

  47. 47.

    Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E. & Penny, W.D. Statistical Parametric Mapping: the Analysis of Functional Brain Images (Academic Press, 2006).

Download references


This work was supported by the JSPS Postdoctoral Fellowship for Research Abroad (S.S.), JSPS KAKENHI Grants JP17H05933 and JP17H06022 (S.S.) and the NIMH Caltech Conte Center for the Neurobiology of Social Decision Making (J.P.O.).

Author information


  1. Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA

    • Shinsuke Suzuki
    •  & John P. O’Doherty
  2. Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan

    • Shinsuke Suzuki
  3. Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan

    • Shinsuke Suzuki
  4. Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA

    • Logan Cross
    •  & John P. O’Doherty


  1. Search for Shinsuke Suzuki in:

  2. Search for Logan Cross in:

  3. Search for John P. O’Doherty in:


S.S., L.C. and J.P.O. designed the research; S.S. and L.C. carried out the experiment; S.S. and L.C. analyzed the data; and S.S., L.C. and J.P.O. wrote the paper.

Competing interests

The authors declare no competing financial interest.

Corresponding author

Correspondence to Shinsuke Suzuki.

Integrated supplementary information

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1–8 and Supplementary Tables 1 and 2

  2. Life Sciences Reporting Summary