Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping cellular interactions from spatially resolved transcriptomics data

Abstract

Cell–cell communication (CCC) is essential to how life forms and functions. However, accurate, high-throughput mapping of how expression of all genes in one cell affects expression of all genes in another cell is made possible only recently through the introduction of spatially resolved transcriptomics (SRT) technologies, especially those that achieve single-cell resolution. Nevertheless, substantial challenges remain to analyze such highly complex data properly. Here, we introduce a multiple-instance learning framework, Spacia, to detect CCCs from data generated by SRTs, by uniquely exploiting their spatial modality. We highlight Spacia’s power to overcome fundamental limitations of popular analytical tools for inference of CCCs, including losing single-cell resolution, limited to ligand–receptor relationships and prior interaction databases, high false positive rates and, most importantly, the lack of consideration of the multiple-sender-to-one-receiver paradigm. We evaluated the fitness of Spacia for three commercialized single-cell resolution SRT technologies: MERSCOPE/Vizgen, CosMx/NanoString and Xenium/10x. Overall, Spacia represents a notable step in advancing quantitative theories of cellular communications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Spacia model.
Fig. 2: Validating Spacia in real data.
Fig. 3: Applying Spacia to reveal EMT and lineage plasticity induction signals from the prostate cancer TME.
Fig. 4: Spacia reveals PD-L1 downstream target genes.
Fig. 5: The CD8-PD-L1 signature is prognostic and predictive.
Fig. 6: Spacia infers differential roles of γδ T cells in healthy livers and liver cancers.

Similar content being viewed by others

Data availability

The MERSCOPE datasets were downloaded from https://vizgen.com/data-release-program/ (the ‘MERSCOPE FFPE Human Immuno-oncology’ datasets). The breast cancer Xenium dataset was downloaded from www.10xgenomics.com/resources/datasets (the ‘xenium-ffpe-human-breast-with-custom-add-on-panel-1-standard’ dataset). The TCGA data were downloaded from https://gdac.broadinstitute.org/ (cohorts: BRCA, COAD, LIHC, LUSC, OV, PRAD, SKCM and UCEC). The scRNA-seq datasets by Zhang et al.49 and Sade-Feldman et al.48 were accessed via the Gene Expression Omnibus under accession numbers GSE169246 and GSE120575, respectively. The scRNA-seq datasets by Bassez et al.42 were accessed from https://biokey.lambrechtslab.org/. The CosMx datasets are available from https://nanostring.com/products/cosmx-spatial-molecular-imager/ffpe-dataset/human-liver-rna-ffpe-dataset/. The prostate cancer scRNA-seq data that we generated are archived in Zenodo at https://doi.org/10.5281/zenodo.8270765 (ref. 70). The breast cancer GeoMx data that we generated are archived at https://github.com/yunguan-wang/Spacia/tree/main/geomx/. Basic clinical characteristics of the individuals with prostate cancer and those with breast cancer, from whom we generated the scRNA-seq and GeoMX data, respectively, are provided in Supplementary Table 4. Source data are provided with this paper.

Code availability

The Spacia software is available at the Database for Actionable Immunology47,71,72 (https://dbai.biohpc.swmed.edu/tools/) and at https://github.com/yunguan-wang/Spacia/tree/main/geomx/. Runtime and memory usage information is provided in Supplementary Fig. 30.

References

  1. Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Hou, R., Denisenko, E., Ong, H. T., Ramilowski, J. A. & Forrest, A. R. R. Predicting cell-to-cell communication networks using NATMI. Nat. Commun. 11, 5011 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cabello-Aguilar, S. et al. SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics. Nucleic Acids Res. 48, e55 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Armingol, E., Baghdassarian, H. M. & Lewis, N. E. The diversification of methods for studying cell–cell interactions and communication. Nat. Rev. Genet. 25, 381–400 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, Y. et al. XYZeq: spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. Sci. Adv. 7, eabg4755 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cho, C.-S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xiong, D., Zhang, Z., Wang, T. & Wang, X. A comparative study of multiple instance learning methods for cancer detection using T-cell receptor sequences. Comput. Struct. Biotechnol. J. 19, 3255–3268 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, Y., Wang, T., Xiong, D., Wang, X. & Park, S. Multiple instance neural networks based on sparse attention for cancer detection using T-cell receptor sequences. BMC Bioinform. 23, 469 (2022).

    Article  Google Scholar 

  14. Park, S. et al. Bayesian multiple instance regression for modeling immunogenic neoantigens. Stat. Methods Med. Res. 29, 3032–3047 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell–cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Shao, X. et al. Knowledge-graph-based cell–cell communication inference for spatially resolved transcriptomic data with SpaTalk. Nat. Commun. 13, 4429 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cang, Z. et al. Screening cell–cell communication in spatial transcriptomics via collective optimal transport. Nat. Methods 20, 218–228 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, Z., Wang, T., Liu, P. & Huang, Y. SpatialDM for rapid identification of spatially co-expressed ligand–receptor and revealing cell–cell communication patterns. Nat. Commun. 14, 3995 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cachot, A. et al. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci. Adv. 7, eabe3348 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davari, K. et al. Development of a CD8 co-receptor independent T-cell receptor specific for tumor-associated antigen MAGE-A4 for next generation T-cell-based immunotherapy. J. Immunother. Cancer 9, e002035 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ghosh, D., Jiang, W., Mukhopadhyay, D. & Mellins, E. D. New insights into B cells as antigen presenting cells. Curr. Opin. Immunol. 70, 129–137 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Cai, J. et al. Tumor-associated macrophages derived TGF-β‒induced epithelial-to-mesenchymal transition in colorectal cancer cells through Smad2,3-4/Snail signaling pathway. Cancer Res. Treat. 51, 252–266 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Sun, D. et al. M2-polarized tumor-associated macrophages promote epithelial-mesenchymal transition via activation of the AKT3/PRAS40 signaling pathway in intrahepatic cholangiocarcinoma. J. Cell. Biochem. 121, 2828–2838 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, W. et al. Interaction with neutrophils promotes gastric cancer cell migration and invasion by inducing epithelial-mesenchymal transition. Oncol. Rep. 38, 2959–2966 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Qu, J. et al. Mast cells induce epithelial-to-mesenchymal transition and migration in non-small cell lung cancer through IL-8/Wnt/β-catenin pathway. J. Cancer 10, 5567 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu, X. et al. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget 8, 20741–20750 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang, L. et al. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway. Oncotarget 8, 76116–76128 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yu, Y. et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br. J. Cancer 110, 724–732 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Labelle, M., Begum, S. & Hynes, R. O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20, 576–590 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sigurdsson, V. et al. Endothelial induced EMT in breast epithelial cells with stem cell properties. PLoS ONE 6, e23833 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 10, 48 (2009).

    Article  Google Scholar 

  32. Eden, E., Lipson, D., Yogev, S. & Yakhini, Z. Discovering motifs in ranked lists of DNA sequences. PLoS Comput. Biol. 3, e39 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tirino, V. et al. TGF-β1 exposure induces epithelial to mesenchymal transition both in CSCs and non-CSCs of the A549 cell line, leading to an increase of migration ability in the CD133 + A549 cell fraction. Cell Death Dis. 4, e620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ping, Q. et al. TGF-β1 dominates stromal fibroblast-mediated EMT via the FAP/VCAN axis in bladder cancer cells. J. Transl. Med. 21, 475 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yadav, A., Kumar, B., Datta, J., Teknos, T. N. & Kumar, P. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK–STAT3–SNAIL signaling pathway. Mol. Cancer Res. 9, 1658–1667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ebbing, E. A. et al. Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma. Proc. Natl Acad. Sci. USA 116, 2237–2242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deng, S. et al. Ectopic JAK-STAT activation enables the transition to a stem-like and multilineage state conferring AR-targeted therapy resistance. Nat. Cancer 3, 1071–1087 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chu, T., Wang, Z., Pe’er, D. & Danko, C. G. Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology. Nat. Cancer 3, 505–517 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsujimoto, Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3, 697–707 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y. et al. GATA-3 controls the maintenance and proliferation of T cells downstream of TCR and cytokine signaling. Nat. Immunol. 14, 714–722 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Merlo, L. M. F., Peng, W. & Mandik-Nayak, L. Impact of IDO1 and IDO2 on the B cell immune response. Front. Immunol. 13, 886225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med. 27, 820–832 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hibino, S. et al. Inflammation-induced tumorigenesis and metastasis. Int. J. Mol. Sci. 22, 5421 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu, T. et al. Netie: inferring the evolution of neoantigen-T cell interactions in tumors. Nat. Methods 19, 1480–1489 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu, T. et al. Tumor neoantigenicity assessment with CSiN score incorporates clonality and immunogenicity to predict immunotherapy outcomes. Sci. Immunol. 5, eaaz3199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu, T. et al. Deep learning-based prediction of the T cell receptor-antigen binding specificity. Nat. Mach. Intell. 3, 864–875 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Ren, H., Li, W., Liu, X. & Zhao, N. γδ T cells: the potential role in liver disease and implications for cancer immunotherapy. J. Leukoc. Biol. 112, 1663–1668 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Hou, W. & Wu, X. Diverse functions of γδ T cells in the progression of hepatitis B virus and hepatitis C virus infection. Front. Immunol. 11, 619872 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, X. et al. Host-derived lipids orchestrate pulmonary γδ T cell response to provide early protection against influenza virus infection. Nat. Commun. 12, 1914 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ribot, J. C., Lopes, N. & Silva-Santos, B. γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 21, 221–232 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Wei, Y. et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 371, eabb1625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kimura, M., Moteki, H. & Ogihara, M. Role of hepatocyte growth regulators in liver regeneration. Cells 12, 208 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Botbol, Y., Guerrero-Ros, I. & Macian, F. Key roles of autophagy in regulating T-cell function. Eur. J. Immunol. 46, 1326–1334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumar, A. V., Mills, J. & Lapierre, L. R. Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging. Front. Cell Dev. Biol. 10, 793328 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li, H. et al. Decoding functional cell–cell communication events by multi-view graph learning on spatial transcriptomics. Brief. Bioinform. 24, bbad359 (2023).

    Article  PubMed  Google Scholar 

  59. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Y. et al. Sprod for de-noising spatially resolved transcriptomics data based on position and image information. Nat. Methods 19, 950–958 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rong, R. et al. A deep learning approach for histology-based nucleus segmentation and tumor microenvironment characterization. Mod. Pathol. 36, 100196 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang, S., Yang, D. M., Rong, R., Zhan, X. & Xiao, G. Pathology image analysis using segmentation deep learning algorithms. Am. J. Pathol. 189, 1686–1698 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang, K. et al. Comparative analysis of dimension reduction methods for cytometry by time-of-flight data. Nat. Commun. 14, 1836 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  65. McInnes, L., Healy, J., Saul, N. & Grossberger, L. UMAP: uniform manifold approximation and projection. JOSS https://doi.org/10.21105/joss.00861 (2018).

  66. Gogola, S. et al. Epithelial-to-mesenchymal transition-related markers in prostate cancer: from bench to bedside. Cancers 15, 2309 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Henry, G. H. et al. A cellular anatomy of the normal adult human prostate and prostatic urethra. Cell Rep. 25, 3530–3542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Song, H. et al. Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states. Nat. Commun. 13, 141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun, D. et al. TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res. 49, D1420–D1430 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Chang, W. Y. Single cell RNA sequencing data of ADT treated prostate cancer patients. Zenodo. https://doi.org/10.5281/zenodo.8270765 (2023).

  71. Zhang, Z., Xiong, D., Wang, X., Liu, H. & Wang, T. Mapping the functional landscape of T cell receptor repertoires by single-T cell transcriptomics. Nat. Methods 18, 92–99 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhu, J. et al. BepiTBR: T–B reciprocity enhances B cell epitope prediction. iScience 25, 103764 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institutes of Health (R01CA258584 to T.W.; RC2DK129994, R01DK115477 and R01DK135535 to D.S.; R01CA222405 and R01CA255064 to S.Z.), Cancer Prevention Research Institute of Texas (RP230363 and RP190208 to T.W.; RR170061 to C.A.; RR220024 to S.Z.) and Dedman Family Scholars in Clinical Care (to N.D.).

Author information

Authors and Affiliations

Authors

Contributions

J.Z., Y.W. and W.C. contributed to all bioinformatics analyses and implemented the software. A.M., J.G., R.H., P.M., D.S. and N.D. generated the prostate cancer scRNA-seq data and/or provided critical insights in analyses. M.Z., F.N., L.G., N.U., A.H. and C.A, generated the breast cancer GeoMX datasets. M.Z., S.Z., Z.Z. and D.C. performed in situ sequencing analyses on breast cancer mouse models. F.W. created the Read the Docs website. X.W., G.X., Y.X. and T.W. developed the initial concept and provided resources for the study. All authors wrote the paper.

Corresponding authors

Correspondence to Xinlei Wang, Yang Xie or Tao Wang.

Ethics declarations

Competing interests

T.W. receives personal consulting fees from Merck for projects unrelated to this study. A.B.H. receives or has received research grants from Takeda and Lilly and non-financial support from Puma Biotechnology and Tempus. C.L.A. receives or has received research grants from Pfizer, Lilly and Takeda; holds minor stock options in Provista; serves or has served in an advisory role to Novartis, Merck, Lilly, Daiichi Sankyo, Taiho Oncology, OrigiMed, Puma Biotechnology, Immunomedics, AstraZeneca, Arvinas and Sanofi; and reports scientific advisory board remuneration from the Susan G. Komen Foundation. The other authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Xiuwei Zhang, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Traceplots and autocorrelation plots prove convergence and stability of the MCMC estimation process in Spacia.

Only MCMC iterations after the burn-in period are shown.

Source data

Extended Data Fig. 2 Visualizing the CCCs predicted by (a) Spacia, CellPhoneDB, CellChat, SpatialDM, SpaTalk, and (b) COMMOT in their spatial context and at the single cell level.

To reduce cluttering, for each sender-receiver cell type pair, 10 connections were selected at random and visualized for CellPhoneDB’s results, and 500 connections were selected at random and visualized for CellChat’s results. The interactions refer to the overall potential for a given pair of cells to interact, taken from the output statistics of each CCC inference software. COMMOT was separately listed in panel (b) since the internal data used by COMMOT for the spatial plot were not readily accessible, and the plot was generated by COMMOT’s own plotting function instead. For SpatialDM, the software did not output specific interactions between individual cells, but rather, only gave a score for each cell that participated in the CCCs without knowing the interaction partners. The black dots refer to this score.

Source data

Extended Data Fig. 3

The sharing of sending-receiving genes by each pair of sending cell types, in the results of CellPhoneDB, COMMOT, SpatialDM, and SpaTalk. The colors represent the ratio of sending-receiving gene pairs shared between corresponding cell types, and the dendrograms represent the results of unsupervised clustering.

Source data

Extended Data Fig. 4

EMT activation potentials of each sending cell type by patient groups, dichotomized according to their lineage plasticity levels, in the prostate cancer cells. Colors refer to the status of the lineages (high or low).

Source data

Extended Data Fig. 5 Tumor cell PD-L1 up-regulates PDGFRA expression in B cells.

(a) The expression of PDGFRA in B cells before and after anti-PD1 treatment, in the Bassez cohort (n = 31). (b) The spatial distribution of the different types of cells in the breast cancer Xenium dataset. (c) The spatial distribution of the CCCs that Spacia inferred in this dataset. We zoomed into one area to more clearly show the interactions (in black). (d) The distributions of the inferred βs by Spacia, across MCMC iterations, for the interactions between tumor PD-L1 and B cell PDGFRA, indicating the direction and the strength of the interaction between these two genes. (e) Scatterplot showing the βs from the Spacia analyses on both the MERSCOPE and Xenium breast cancer datasets for B cells. The fitted curves between the X axis and the Y axis are shown as solid lines, with the shading denoting 95% CI.

Source data

Extended Data Fig. 6 Higher tumor PD-L1 expression is associated with better overall survival in TCGA patients of all eight cancer types when combined.

Patients were dichotomized by bulk tumor PD-L1 expression. P values are derived from log-rank tests of the dichotomized patient populations.

Source data

Extended Data Fig. 7

The spatial distribution of stromal/immune cells in the liver cancer and healthy liver CosMx datasets. Each dot represent a cell, and different colors refer to the different cell types.

Source data

Supplementary information

Supplementary Information

Supplementary File 1 Additional bioinformatics analyses associated with this study. Supplementary File 2 Details of the Spacia model.

Reporting Summary

Supplementary Table

Supplementary Table 1 Comparing Spacia against other related tools previously published. Supplementary Table 2 Correlations between EMT activation potentials of fibroblasts, endothelial cells and B cells and the EMT levels and lineage plasticity levels of the prostate cancer cells. Supplementary Table 3 CD8-PD-L1 signature genes in all eight cancer types. Supplementary Table 4 Basic clinical characteristics of the individuals with prostate cancer and the individuals with breast cancer, from whom we generated the scRNA-seq and GeoMX data, respectively.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Wang, Y., Chang, W.Y. et al. Mapping cellular interactions from spatially resolved transcriptomics data. Nat Methods (2024). https://doi.org/10.1038/s41592-024-02408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41592-024-02408-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing