Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Controlling the sound of light: photoswitching optoacoustic imaging

Abstract

Optoacoustic (photoacoustic) imaging advances allow high-resolution optical imaging much deeper than optical microscopy. However, while label-free optoacoustics have already entered clinical application, biological imaging is in need of ubiquitous optoacoustic labels for use in ways that are similar to how fluorescent proteins propelled optical microscopy. We review photoswitching advances that shine a new light or, in analogy, ‘bring a new sound’ to biological optoacoustic imaging. Based on engineered labels and novel devices, switching uses light or other energy forms and enables signal modulation and synchronous detection for maximizing contrast and detection sensitivity over other optoacoustic labels. Herein, we explain contrast enhancement in the spectral versus temporal domains and review labels and key concepts of switching and their properties to modulate optoacoustic signals. We further outline systems and applications and discuss how switching can enable optoacoustic imaging of cellular or molecular contrast at depths and resolutions beyond those of other optical methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamental principles of psOptA.
Fig. 2: Illustration of different mechanisms of temporal control of the OptA signal.
Fig. 3: Imaging examples of psOptA, OptA with thermo-control and magneto-control of label states and other applications of photocontrollable agents in OptA.

Similar content being viewed by others

References

  1. Eggeling, C., Willig, K. I., Sahl, S. J. & Hell, S. W. Lens-based fluorescence nanoscopy. Q. Rev. Biophys. 48, 178–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Lukinavičius, G. et al. Stimulated emission depletion microscopy. Nat. Rev. Methods Primers 4, 56 (2024).

    Article  Google Scholar 

  3. Sahl, S. J. & Moerner, W. E. Super-resolution fluorescence imaging with single molecules. Curr. Opin. Struct. Biol. 23, 778–787 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1, 39 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Entenberg, D., Oktay, M. H. & Condeelis, J. S. Intravital imaging to study cancer progression and metastasis. Nat. Rev. Cancer 23, 25–42 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miller, D. R., Jarrett, J. W., Hassan, A. M. & Dunn, A. K. Deep tissue imaging with multiphoton fluorescence microscopy. Curr. Opin. Biomed. Eng. 4, 32–39 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Iwano, S. et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359, 935–939 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 9, 219–227 (2015).

    Article  CAS  Google Scholar 

  11. Haedicke, K. et al. High-resolution optoacoustic imaging of tissue responses to vascular-targeted therapies. Nat. Biomed. Eng. 4, 286–297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Attia, A. B. E. et al. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics 16, 100144 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lin, L. & Wang, L. V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 19, 365–384 (2022).

    Article  PubMed  Google Scholar 

  14. Tzoumas, S. et al. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat. Commun. 7, 12121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allen, T. J., Hall, A., Dhillon, A. P., Owen, J. S. & Beard, P. C. Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range. J. Biomed. Opt. 17, 061209 (2012).

    Article  PubMed  Google Scholar 

  16. Schwarz, M., Buehler, A., Aguirre, J. & Ntziachristos, V. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo. J. Biophotonics 9, 55–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Hindelang, B. et al. Enabling precision monitoring of psoriasis treatment by optoacoustic mesoscopy. Sci. Transl. Med. 14, eabm8059 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Omar, M., Aguirre, J. & Ntziachristos, V. Optoacoustic mesoscopy for biomedicine. Nat. Biomed. Eng. 3, 354–370 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. He, H. et al. Fast raster-scan optoacoustic mesoscopy enables assessment of human melanoma microvasculature in vivo. Nat. Commun. 13, 2803 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown, E., Brunker, J. & Bohndiek, S. E. Photoacoustic imaging as a tool to probe the tumour microenvironment. Dis. Model Mech. 12, dmm039636 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karlas, A. et al. Cardiovascular optoacoustics: from mice to men—a review. Photoacoustics 14, 19–30 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Karlas, A., Pleitez, M. A., Aguirre, J. & Ntziachristos, V. Optoacoustic imaging in endocrinology and metabolism. Nat. Rev. Endocrinol. 17, 323–335 (2021).

    Article  PubMed  Google Scholar 

  23. Knieling, F. et al. Raster-scanning optoacoustic mesoscopy for gastrointestinal imaging at high resolution. Gastroenterology 154, 807–809 (2018).

    Article  PubMed  Google Scholar 

  24. Knieling, F. et al. Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N. Engl. J. Med. 376, 1292–1294 (2017).

    Article  PubMed  Google Scholar 

  25. Regensburger, A. P. et al. Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nat. Med. 25, 1905–1915 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Brunker, J., Yao, J., Laufer, J. & Bohndiek, S. E. Photoacoustic imaging using genetically encoded reporters: a review. J. Biomed. Opt. 22, 70901 (2017).

    Article  Google Scholar 

  27. Stiel, A. C. et al. High-contrast imaging of reversibly switchable fluorescent proteins via temporally unmixed multispectral optoacoustic tomography. Opt. Lett. 40, 367–370 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Yao, J. et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat. Methods 13, 67–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Zelmer, A. & Ward, T. H. Noninvasive fluorescence imaging of small animals. J. Microsc. 252, 8–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Stuker, F., Ripoll, J. & Rudin, M. Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 3, 229–274 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Busse, G. & Rosencwaig, A. Subsurface imaging with photoacoustics. Appl. Phys. Lett. 36, 815–816 (1980).

    Article  CAS  Google Scholar 

  32. Wong, Y. H., Thomas, R. L. & Hawkins, G. F. Surface and subsurface structure of solids by laser photoacoustic spectroscopy. Appl. Phys. Lett. 32, 538–539 (1978).

    Article  CAS  Google Scholar 

  33. Choi, W. et al. Recent advances in contrast-enhanced photoacoustic imaging: overcoming the physical and practical challenges. Chem. Rev. 123, 7379–7419 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Yao, D. K., Maslov, K., Shung, K. K., Zhou, Q. & Wang, L. V. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Opt. Lett. 35, 4139–4141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, C., Zhang, Y. S., Yao, D. K., Xia, Y. & Wang, L. V. Label-free photoacoustic microscopy of cytochromes. J. Biomed. Opt. 18, 20504 (2013).

    Article  PubMed  Google Scholar 

  36. Pleitez, M. A. et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat. Biotechnol. 38, 293–296 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. He, Y. et al. Label-free imaging of lipid-rich biological tissues by mid-infrared photoacoustic microscopy. J. Biomed. Opt. 25, 106506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi, J., Tang, Y. & Yao, J. Advances in super-resolution photoacoustic imaging. Quant. Imaging Med. Surg. 8, 724–732 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gujrati, V., Mishra, A. & Ntziachristos, V. Molecular imaging probes for multi-spectral optoacoustic tomography. Chem. Commun. 53, 4653–4672 (2017).

    Article  CAS  Google Scholar 

  40. Tarvainen, T. & Cox, B. Quantitative photoacoustic tomography: modeling and inverse problems. J. Biomed. Opt. 29, S11509 (2024).

    PubMed  Google Scholar 

  41. Olefir, I. et al. Deep learning-based spectral unmixing for optoacoustic imaging of tissue oxygen saturation. IEEE Trans. Med. Imaging 39, 3643–3654 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Grasso, V., Hassan, H. W., Mirtaheri, P., Willumeit-Rӧmer, R. & Jose, J. Recent advances in photoacoustic blind source spectral unmixing approaches and the enhanced detection of endogenous tissue chromophores. Front. Signal Process. https://doi.org/10.3389/frsip.2022.984901 (2022).

  43. Tzoumas, S. & Ntziachristos, V. Spectral unmixing techniques for optoacoustic imaging of tissue pathophysiology. Philos. Trans. A Math. Phys. Eng. Sci. 375, 20170262 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Paproski, R. J., Heinmiller, A., Wachowicz, K. & Zemp, R. J. Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors. Sci. Rep. 4, 5329 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Icha, J., Weber, M., Waters, J. C. & Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays https://doi.org/10.1002/bies.201700003 (2017).

  46. Yang, Z. et al. Options for tracking GFP-labeled transplanted myoblasts using in vivo fluorescence imaging: implications for tracking stem cell fate. BMC Biotechnol. 14, 55 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ansari, A. M. et al. Cellular GFP toxicity and immunogenicity: potential confounders in in vivo cell tracking experiments. Stem Cell Rev. Rep. 12, 553–559 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Mishra, K. et al. Multiplexed whole-animal imaging with reversibly switchable optoacoustic proteins. Sci. Adv. 6, eaaz6293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, L. et al. Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo. Nat. Commun. 9, 2734 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Stankevych, M., Mishra, K., Ntziachristos, V. & Stiel, A. C. A practical guide to photoswitching optoacoustics tomography. In Methods in Enzymology Vol. 657 (ed. Chan, J.) 365–383 (Elsevier, 2021).

  51. Dong, M. et al. Near-infrared photoswitching of azobenzenes under physiological conditions. J. Am. Chem. Soc. 139, 13483–13486 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Hu, F., Cao, M., Ma, X., Liu, S. H. & Yin, J. Visible-light-dependent photocyclization: design, synthesis, and properties of a cyanine-based dithienylethene. J. Org. Chem. 80, 7830–7835 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Shcherbakova, D. M., Shemetov, A. A., Kaberniuk, A. A. & Verkhusha, V. V. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu. Rev. Biochem. 84, 519–550 (2014).

  54. Lukyanov, K. A. et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275, 25879–25882 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Egner, A. et al. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys. J. 93, 3285–3290 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Querard, J. et al. Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations. Nat. Commun. 8, 969 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chouket, R. et al. Extra kinetic dimensions for label discrimination. Nat. Commun. 13, 1482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qian, Y., Celiker, O. T., Wang, Z., Guner-Ataman, B. & Boyden, E. S. Temporally multiplexed imaging of dynamic signaling networks in living cells. Cell 5656–5672.e21 (2023).

  59. Marriott, G. et al. Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells. Proc. Natl Acad. Sci. USA 105, 17789–17794 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, Y. C. et al. Optically modulated photoswitchable fluorescent proteins yield improved biological imaging sensitivity. J. Am. Chem. Soc. 137, 12764–12767 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hsiang, J. C., Jablonski, A. E. & Dickson, R. M. Optically modulated fluorescence bioimaging: visualizing obscured fluorophores in high background. Acc. Chem. Res. 47, 1545–1554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yao, J. et al. Reversibly switchable fluorescence microscopy with enhanced resolution and image contrast. J. Biomed. Opt. 19, 086018 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wiltbank, L. B. & Kehoe, D. M. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat. Rev. Microbiol. 17, 37–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Shcherbakova, D. M., Baloban, M. & Verkhusha, V. V. Near-infrared fluorescent proteins engineered from bacterial phytochromes. Curr. Opin. Chem. Biol. 27, 52–63 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vetschera, P. et al. Characterization of reversibly switchable fluorescent proteins in optoacoustic imaging. Anal. Chem. 90, 10527–10535 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Maines, M. D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 2, 2557–2568 (1988).

    Article  CAS  PubMed  Google Scholar 

  67. Montecinos-Franjola, F., Lin, J. Y. & Rodriguez, E. A. Fluorescent proteins for in vivo imaging, where’s the biliverdin? Biochem. Soc. Trans. 48, 2657–2667 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Piatkevich, K. D. et al. Near-infrared fluorescent proteins engineered from bacterial phytochromes in neuroimaging. Biophys. J. 113, 2299–2309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shemetov, A. A., Oliinyk, O. S. & Verkhusha, V. V. How to increase brightness of near-infrared fluorescent proteins in mammalian cells. Cell Chem. Biol. 24, 758–766 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lehtivuori, H. et al. Fluorescence properties of the chromophore-binding domain of bacteriophytochrome from Deinococcus radiodurans. J. Phys. Chem. B 117, 11049–11057 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Rodriguez, E. A. et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat. Methods 13, 763–769 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu, D. et al. An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. Nat. Commun. 5, 3626 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Kobachi, K. et al. Biliverdin reductase-a deficiency brighten and sensitize biliverdin-binding chromoproteins. Cell Struct. Funct. 45, 131–141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaberniuk, A. A., Shemetov, A. A. & Verkhusha, V. V. A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nat. Methods 13, 591–597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10, 751–754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Auldridge, M. E., Satyshur, K. A., Anstrom, D. M. & Forest, K. T. Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein. J. Biol. Chem. 287, 7000–7009 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Kamper, M., Ta, H., Jensen, N. A., Hell, S. W. & Jakobs, S. Near-infrared STED nanoscopy with an engineered bacterial phytochrome. Nat. Commun. 9, 4762 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gao, R. et al. Background-suppressed tumor-targeted photoacoustic imaging using bacterial carriers. Proc. Natl Acad. Sci. USA 119, e2121982119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Märk, J. et al. Dual-wavelength 3D photoacoustic imaging of mammalian cells using a photoswitchable phytochrome reporter protein. Commun. Phys. 1, 3 (2018).

    Article  Google Scholar 

  81. Dortay, H. et al. Dual-wavelength photoacoustic imaging of a photoswitchable reporter protein. in Proc. SPIE 9708, Photons Plus Ultrasound: Imaging and Sensing 2016 (eds Alexander A. Oraevsky & Lihong V. Wang) 970820 (International Society for Optics and Photonics, 2016).

  82. Chee, R. K. W., Li, Y., Zhang, W., Campbell, R. E. & Zemp, R. J. In vivo photoacoustic difference-spectra imaging of bacteria using photoswitchable chromoproteins. J. Biomed. Opt. 23, 1–11 (2018).

    Article  PubMed  Google Scholar 

  83. Kasatkina, L. A. et al. Optogenetic manipulation and photoacoustic imaging using a near-infrared transgenic mouse model. Nat. Commun. 13, 2813 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu, C. et al. Reversibly photoswitching upconversion nanoparticles for super-sensitive photoacoustic molecular imaging. Angew. Chem. Int. Ed. Engl. 61, e202116802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang, Y., Hughes, R. P. & Aprahamian, I. Near-infrared light activated azo-BF2 switches. J. Am. Chem. Soc. 136, 13190–13193 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Beharry, A. A., Sadovski, O. & Woolley, G. A. Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 133, 19684–19687 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Galanzha, E. I. et al. Photoacoustic and photothermal cytometry using photoswitchable proteins and nanoparticles with ultrasharp resonances. J. Biophotonics 8, 81–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Mishra, K. et al. Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. Nat. Biotechnol. 40, 598–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Vu, T. et al. On the importance of low-frequency signals in functional and molecular photoacoustic computed tomography. IEEE Trans. Med. Imaging 43, 771–783 (2024).

    Article  PubMed  Google Scholar 

  90. Longo, A., Justel, D. & Ntziachristos, V. Disentangling the frequency content in optoacoustics. IEEE Trans. Med. Imaging 41, 3373–3384 (2022).

    Article  PubMed  Google Scholar 

  91. Greenwald, E. C., Mehta, S. & Zhang, J. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem. Rev. 118, 11707–11794 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gottschalk, S. et al. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat. Biomed. Eng. 3, 392–401 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Subach, O. M., Barykina, N. V., Anokhin, K. V., Piatkevich, K. D. & Subach, F. V. Near-infrared genetically encoded positive calcium indicator based on GAF-FP bacterial phytochrome. Int. J. Mol. Sci. 20, 3488 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shemetov, A. A. et al. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat. Biotechnol. 39, 368–377 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Qian, Y. et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16, 171–174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, Y. & Wang, L. V. Forster resonance energy transfer photoacoustic microscopy. J. Biomed. Opt. 17, 086007 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Vetschera, P. et al. Beyond early development: observing zebrafish over 6 weeks with hybrid optical and optoacoustic imaging. Laser Photonics Rev. 17, 2200846 (2023).

    Article  Google Scholar 

  98. Seeger, M., Dehner, C., Justel, D. & Ntziachristos, V. Label-free concurrent 5-modal microscopy (Co5M) resolves unknown spatio-temporal processes in wound healing. Commun. Biol. 4, 1040 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Seeger, M., Stylogiannis, A., Prade, L., Glasl, S. & Ntziachristos, V. Overdriven laser diode optoacoustic microscopy. Sci. Rep. 13, 19542 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Upputuri, P. K. & Pramanik, M. Fast photoacoustic imaging systems using pulsed laser diodes: a review. Biomed. Eng. Lett. 8, 167–181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Dean-Ben, X. L. et al. Light fluence normalization in turbid tissues via temporally unmixed multispectral optoacoustic tomography. Opt. Lett. 40, 4691–4694 (2015).

    Article  PubMed  Google Scholar 

  102. Mark, J., Wagener, A., Zhang, E. & Laufer, J. Photoacoustic pump-probe tomography of fluorophores in vivo using interleaved image acquisition for motion suppression. Sci. Rep. 7, 40496 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Demissie, A. A., VanderLaan, D., Islam, M. S., Emelianov, S. & Dickson, R. M. Synchronously Amplified Photoacoustic Image Recovery (SAPhIRe). Photoacoustics 20, 100198 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chen, Y. S., Yoon, S. J., Frey, W., Dockery, M. & Emelianov, S. Dynamic contrast-enhanced photoacoustic imaging using photothermal stimuli-responsive composite nanomodulators. Nat. Commun. 8, 15782 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Feng, X., Gao, F. & Zheng, Y. Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles. Opt. Lett. 39, 3414–3417 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Li, J. et al. Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging. ACS Nano 9, 1964–1976 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ma, C. et al. Multiscale photoacoustic tomography using reversibly switchable thermochromics. J. Biomed. Opt. 28, 082804 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Bonnin and S. Lee for their attentive reading and improvements of the manuscript. A.C.S. acknowledges funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 101002646 (‘Switch2See’) and the Deutsche Forschungsgemeinschaft (STI-656/5-1 and STI-656/6-1).

Author information

Authors and Affiliations

Authors

Contributions

A.C.S. and V.N. wrote the manuscript together.

Corresponding authors

Correspondence to Andre C. Stiel or Vasilis Ntziachristos.

Ethics declarations

Competing interests

V.N. is a founder and equity owner of Maurus OY, sThesis GmbH, iThera Medical GmbH, Spear UG and I3. A.C.S. declares no competing interests.

Peer review

Peer review information

Nature Methods thanks Junjie Yao, Jeesu Kim, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Fig. 1, Text 1 and 2 and References

Supplementary Table 1

Spreadsheet version of Supplementary Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stiel, A.C., Ntziachristos, V. Controlling the sound of light: photoswitching optoacoustic imaging. Nat Methods (2024). https://doi.org/10.1038/s41592-024-02396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41592-024-02396-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing