Abstract
Optoacoustic (photoacoustic) imaging advances allow high-resolution optical imaging much deeper than optical microscopy. However, while label-free optoacoustics have already entered clinical application, biological imaging is in need of ubiquitous optoacoustic labels for use in ways that are similar to how fluorescent proteins propelled optical microscopy. We review photoswitching advances that shine a new light or, in analogy, ‘bring a new sound’ to biological optoacoustic imaging. Based on engineered labels and novel devices, switching uses light or other energy forms and enables signal modulation and synchronous detection for maximizing contrast and detection sensitivity over other optoacoustic labels. Herein, we explain contrast enhancement in the spectral versus temporal domains and review labels and key concepts of switching and their properties to modulate optoacoustic signals. We further outline systems and applications and discuss how switching can enable optoacoustic imaging of cellular or molecular contrast at depths and resolutions beyond those of other optical methods.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Eggeling, C., Willig, K. I., Sahl, S. J. & Hell, S. W. Lens-based fluorescence nanoscopy. Q. Rev. Biophys. 48, 178–243 (2015).
Lukinavičius, G. et al. Stimulated emission depletion microscopy. Nat. Rev. Methods Primers 4, 56 (2024).
Sahl, S. J. & Moerner, W. E. Super-resolution fluorescence imaging with single molecules. Curr. Opin. Struct. Biol. 23, 778–787 (2013).
Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1, 39 (2021).
Entenberg, D., Oktay, M. H. & Condeelis, J. S. Intravital imaging to study cancer progression and metastasis. Nat. Rev. Cancer 23, 25–42 (2022).
Miller, D. R., Jarrett, J. W., Hassan, A. M. & Dunn, A. K. Deep tissue imaging with multiphoton fluorescence microscopy. Curr. Opin. Biomed. Eng. 4, 32–39 (2017).
Iwano, S. et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359, 935–939 (2018).
Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).
Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).
Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 9, 219–227 (2015).
Haedicke, K. et al. High-resolution optoacoustic imaging of tissue responses to vascular-targeted therapies. Nat. Biomed. Eng. 4, 286–297 (2020).
Attia, A. B. E. et al. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics 16, 100144 (2019).
Lin, L. & Wang, L. V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 19, 365–384 (2022).
Tzoumas, S. et al. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat. Commun. 7, 12121 (2016).
Allen, T. J., Hall, A., Dhillon, A. P., Owen, J. S. & Beard, P. C. Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range. J. Biomed. Opt. 17, 061209 (2012).
Schwarz, M., Buehler, A., Aguirre, J. & Ntziachristos, V. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo. J. Biophotonics 9, 55–60 (2016).
Hindelang, B. et al. Enabling precision monitoring of psoriasis treatment by optoacoustic mesoscopy. Sci. Transl. Med. 14, eabm8059 (2022).
Omar, M., Aguirre, J. & Ntziachristos, V. Optoacoustic mesoscopy for biomedicine. Nat. Biomed. Eng. 3, 354–370 (2019).
He, H. et al. Fast raster-scan optoacoustic mesoscopy enables assessment of human melanoma microvasculature in vivo. Nat. Commun. 13, 2803 (2022).
Brown, E., Brunker, J. & Bohndiek, S. E. Photoacoustic imaging as a tool to probe the tumour microenvironment. Dis. Model Mech. 12, dmm039636 (2019).
Karlas, A. et al. Cardiovascular optoacoustics: from mice to men—a review. Photoacoustics 14, 19–30 (2019).
Karlas, A., Pleitez, M. A., Aguirre, J. & Ntziachristos, V. Optoacoustic imaging in endocrinology and metabolism. Nat. Rev. Endocrinol. 17, 323–335 (2021).
Knieling, F. et al. Raster-scanning optoacoustic mesoscopy for gastrointestinal imaging at high resolution. Gastroenterology 154, 807–809 (2018).
Knieling, F. et al. Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N. Engl. J. Med. 376, 1292–1294 (2017).
Regensburger, A. P. et al. Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nat. Med. 25, 1905–1915 (2019).
Brunker, J., Yao, J., Laufer, J. & Bohndiek, S. E. Photoacoustic imaging using genetically encoded reporters: a review. J. Biomed. Opt. 22, 70901 (2017).
Stiel, A. C. et al. High-contrast imaging of reversibly switchable fluorescent proteins via temporally unmixed multispectral optoacoustic tomography. Opt. Lett. 40, 367–370 (2015).
Yao, J. et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat. Methods 13, 67–73 (2016).
Zelmer, A. & Ward, T. H. Noninvasive fluorescence imaging of small animals. J. Microsc. 252, 8–15 (2013).
Stuker, F., Ripoll, J. & Rudin, M. Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 3, 229–274 (2011).
Busse, G. & Rosencwaig, A. Subsurface imaging with photoacoustics. Appl. Phys. Lett. 36, 815–816 (1980).
Wong, Y. H., Thomas, R. L. & Hawkins, G. F. Surface and subsurface structure of solids by laser photoacoustic spectroscopy. Appl. Phys. Lett. 32, 538–539 (1978).
Choi, W. et al. Recent advances in contrast-enhanced photoacoustic imaging: overcoming the physical and practical challenges. Chem. Rev. 123, 7379–7419 (2023).
Yao, D. K., Maslov, K., Shung, K. K., Zhou, Q. & Wang, L. V. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Opt. Lett. 35, 4139–4141 (2010).
Zhang, C., Zhang, Y. S., Yao, D. K., Xia, Y. & Wang, L. V. Label-free photoacoustic microscopy of cytochromes. J. Biomed. Opt. 18, 20504 (2013).
Pleitez, M. A. et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat. Biotechnol. 38, 293–296 (2020).
He, Y. et al. Label-free imaging of lipid-rich biological tissues by mid-infrared photoacoustic microscopy. J. Biomed. Opt. 25, 106506 (2020).
Shi, J., Tang, Y. & Yao, J. Advances in super-resolution photoacoustic imaging. Quant. Imaging Med. Surg. 8, 724–732 (2018).
Gujrati, V., Mishra, A. & Ntziachristos, V. Molecular imaging probes for multi-spectral optoacoustic tomography. Chem. Commun. 53, 4653–4672 (2017).
Tarvainen, T. & Cox, B. Quantitative photoacoustic tomography: modeling and inverse problems. J. Biomed. Opt. 29, S11509 (2024).
Olefir, I. et al. Deep learning-based spectral unmixing for optoacoustic imaging of tissue oxygen saturation. IEEE Trans. Med. Imaging 39, 3643–3654 (2020).
Grasso, V., Hassan, H. W., Mirtaheri, P., Willumeit-Rӧmer, R. & Jose, J. Recent advances in photoacoustic blind source spectral unmixing approaches and the enhanced detection of endogenous tissue chromophores. Front. Signal Process. https://doi.org/10.3389/frsip.2022.984901 (2022).
Tzoumas, S. & Ntziachristos, V. Spectral unmixing techniques for optoacoustic imaging of tissue pathophysiology. Philos. Trans. A Math. Phys. Eng. Sci. 375, 20170262 (2017).
Paproski, R. J., Heinmiller, A., Wachowicz, K. & Zemp, R. J. Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors. Sci. Rep. 4, 5329 (2014).
Icha, J., Weber, M., Waters, J. C. & Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays https://doi.org/10.1002/bies.201700003 (2017).
Yang, Z. et al. Options for tracking GFP-labeled transplanted myoblasts using in vivo fluorescence imaging: implications for tracking stem cell fate. BMC Biotechnol. 14, 55 (2014).
Ansari, A. M. et al. Cellular GFP toxicity and immunogenicity: potential confounders in in vivo cell tracking experiments. Stem Cell Rev. Rep. 12, 553–559 (2016).
Mishra, K. et al. Multiplexed whole-animal imaging with reversibly switchable optoacoustic proteins. Sci. Adv. 6, eaaz6293 (2020).
Li, L. et al. Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo. Nat. Commun. 9, 2734 (2018).
Stankevych, M., Mishra, K., Ntziachristos, V. & Stiel, A. C. A practical guide to photoswitching optoacoustics tomography. In Methods in Enzymology Vol. 657 (ed. Chan, J.) 365–383 (Elsevier, 2021).
Dong, M. et al. Near-infrared photoswitching of azobenzenes under physiological conditions. J. Am. Chem. Soc. 139, 13483–13486 (2017).
Hu, F., Cao, M., Ma, X., Liu, S. H. & Yin, J. Visible-light-dependent photocyclization: design, synthesis, and properties of a cyanine-based dithienylethene. J. Org. Chem. 80, 7830–7835 (2015).
Shcherbakova, D. M., Shemetov, A. A., Kaberniuk, A. A. & Verkhusha, V. V. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu. Rev. Biochem. 84, 519–550 (2014).
Lukyanov, K. A. et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275, 25879–25882 (2000).
Egner, A. et al. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys. J. 93, 3285–3290 (2007).
Querard, J. et al. Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations. Nat. Commun. 8, 969 (2017).
Chouket, R. et al. Extra kinetic dimensions for label discrimination. Nat. Commun. 13, 1482 (2022).
Qian, Y., Celiker, O. T., Wang, Z., Guner-Ataman, B. & Boyden, E. S. Temporally multiplexed imaging of dynamic signaling networks in living cells. Cell 5656–5672.e21 (2023).
Marriott, G. et al. Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells. Proc. Natl Acad. Sci. USA 105, 17789–17794 (2008).
Chen, Y. C. et al. Optically modulated photoswitchable fluorescent proteins yield improved biological imaging sensitivity. J. Am. Chem. Soc. 137, 12764–12767 (2015).
Hsiang, J. C., Jablonski, A. E. & Dickson, R. M. Optically modulated fluorescence bioimaging: visualizing obscured fluorophores in high background. Acc. Chem. Res. 47, 1545–1554 (2014).
Yao, J. et al. Reversibly switchable fluorescence microscopy with enhanced resolution and image contrast. J. Biomed. Opt. 19, 086018 (2014).
Wiltbank, L. B. & Kehoe, D. M. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat. Rev. Microbiol. 17, 37–50 (2019).
Shcherbakova, D. M., Baloban, M. & Verkhusha, V. V. Near-infrared fluorescent proteins engineered from bacterial phytochromes. Curr. Opin. Chem. Biol. 27, 52–63 (2015).
Vetschera, P. et al. Characterization of reversibly switchable fluorescent proteins in optoacoustic imaging. Anal. Chem. 90, 10527–10535 (2018).
Maines, M. D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 2, 2557–2568 (1988).
Montecinos-Franjola, F., Lin, J. Y. & Rodriguez, E. A. Fluorescent proteins for in vivo imaging, where’s the biliverdin? Biochem. Soc. Trans. 48, 2657–2667 (2020).
Piatkevich, K. D. et al. Near-infrared fluorescent proteins engineered from bacterial phytochromes in neuroimaging. Biophys. J. 113, 2299–2309 (2017).
Shemetov, A. A., Oliinyk, O. S. & Verkhusha, V. V. How to increase brightness of near-infrared fluorescent proteins in mammalian cells. Cell Chem. Biol. 24, 758–766 (2017).
Lehtivuori, H. et al. Fluorescence properties of the chromophore-binding domain of bacteriophytochrome from Deinococcus radiodurans. J. Phys. Chem. B 117, 11049–11057 (2013).
Rodriguez, E. A. et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat. Methods 13, 763–769 (2016).
Yu, D. et al. An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. Nat. Commun. 5, 3626 (2014).
Kobachi, K. et al. Biliverdin reductase-a deficiency brighten and sensitize biliverdin-binding chromoproteins. Cell Struct. Funct. 45, 131–141 (2020).
Kaberniuk, A. A., Shemetov, A. A. & Verkhusha, V. V. A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nat. Methods 13, 591–597 (2016).
Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10, 751–754 (2013).
Auldridge, M. E., Satyshur, K. A., Anstrom, D. M. & Forest, K. T. Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein. J. Biol. Chem. 287, 7000–7009 (2012).
Kamper, M., Ta, H., Jensen, N. A., Hell, S. W. & Jakobs, S. Near-infrared STED nanoscopy with an engineered bacterial phytochrome. Nat. Commun. 9, 4762 (2018).
Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).
Gao, R. et al. Background-suppressed tumor-targeted photoacoustic imaging using bacterial carriers. Proc. Natl Acad. Sci. USA 119, e2121982119 (2022).
Märk, J. et al. Dual-wavelength 3D photoacoustic imaging of mammalian cells using a photoswitchable phytochrome reporter protein. Commun. Phys. 1, 3 (2018).
Dortay, H. et al. Dual-wavelength photoacoustic imaging of a photoswitchable reporter protein. in Proc. SPIE 9708, Photons Plus Ultrasound: Imaging and Sensing 2016 (eds Alexander A. Oraevsky & Lihong V. Wang) 970820 (International Society for Optics and Photonics, 2016).
Chee, R. K. W., Li, Y., Zhang, W., Campbell, R. E. & Zemp, R. J. In vivo photoacoustic difference-spectra imaging of bacteria using photoswitchable chromoproteins. J. Biomed. Opt. 23, 1–11 (2018).
Kasatkina, L. A. et al. Optogenetic manipulation and photoacoustic imaging using a near-infrared transgenic mouse model. Nat. Commun. 13, 2813 (2022).
Liu, C. et al. Reversibly photoswitching upconversion nanoparticles for super-sensitive photoacoustic molecular imaging. Angew. Chem. Int. Ed. Engl. 61, e202116802 (2022).
Yang, Y., Hughes, R. P. & Aprahamian, I. Near-infrared light activated azo-BF2 switches. J. Am. Chem. Soc. 136, 13190–13193 (2014).
Beharry, A. A., Sadovski, O. & Woolley, G. A. Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 133, 19684–19687 (2011).
Galanzha, E. I. et al. Photoacoustic and photothermal cytometry using photoswitchable proteins and nanoparticles with ultrasharp resonances. J. Biophotonics 8, 81–93 (2015).
Mishra, K. et al. Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. Nat. Biotechnol. 40, 598–605 (2022).
Vu, T. et al. On the importance of low-frequency signals in functional and molecular photoacoustic computed tomography. IEEE Trans. Med. Imaging 43, 771–783 (2024).
Longo, A., Justel, D. & Ntziachristos, V. Disentangling the frequency content in optoacoustics. IEEE Trans. Med. Imaging 41, 3373–3384 (2022).
Greenwald, E. C., Mehta, S. & Zhang, J. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem. Rev. 118, 11707–11794 (2018).
Gottschalk, S. et al. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat. Biomed. Eng. 3, 392–401 (2019).
Subach, O. M., Barykina, N. V., Anokhin, K. V., Piatkevich, K. D. & Subach, F. V. Near-infrared genetically encoded positive calcium indicator based on GAF-FP bacterial phytochrome. Int. J. Mol. Sci. 20, 3488 (2019).
Shemetov, A. A. et al. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat. Biotechnol. 39, 368–377 (2021).
Qian, Y. et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16, 171–174 (2019).
Wang, Y. & Wang, L. V. Forster resonance energy transfer photoacoustic microscopy. J. Biomed. Opt. 17, 086007 (2012).
Vetschera, P. et al. Beyond early development: observing zebrafish over 6 weeks with hybrid optical and optoacoustic imaging. Laser Photonics Rev. 17, 2200846 (2023).
Seeger, M., Dehner, C., Justel, D. & Ntziachristos, V. Label-free concurrent 5-modal microscopy (Co5M) resolves unknown spatio-temporal processes in wound healing. Commun. Biol. 4, 1040 (2021).
Seeger, M., Stylogiannis, A., Prade, L., Glasl, S. & Ntziachristos, V. Overdriven laser diode optoacoustic microscopy. Sci. Rep. 13, 19542 (2023).
Upputuri, P. K. & Pramanik, M. Fast photoacoustic imaging systems using pulsed laser diodes: a review. Biomed. Eng. Lett. 8, 167–181 (2018).
Dean-Ben, X. L. et al. Light fluence normalization in turbid tissues via temporally unmixed multispectral optoacoustic tomography. Opt. Lett. 40, 4691–4694 (2015).
Mark, J., Wagener, A., Zhang, E. & Laufer, J. Photoacoustic pump-probe tomography of fluorophores in vivo using interleaved image acquisition for motion suppression. Sci. Rep. 7, 40496 (2017).
Demissie, A. A., VanderLaan, D., Islam, M. S., Emelianov, S. & Dickson, R. M. Synchronously Amplified Photoacoustic Image Recovery (SAPhIRe). Photoacoustics 20, 100198 (2020).
Chen, Y. S., Yoon, S. J., Frey, W., Dockery, M. & Emelianov, S. Dynamic contrast-enhanced photoacoustic imaging using photothermal stimuli-responsive composite nanomodulators. Nat. Commun. 8, 15782 (2017).
Feng, X., Gao, F. & Zheng, Y. Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles. Opt. Lett. 39, 3414–3417 (2014).
Li, J. et al. Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging. ACS Nano 9, 1964–1976 (2015).
Ma, C. et al. Multiscale photoacoustic tomography using reversibly switchable thermochromics. J. Biomed. Opt. 28, 082804 (2023).
Acknowledgements
We thank E. Bonnin and S. Lee for their attentive reading and improvements of the manuscript. A.C.S. acknowledges funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 101002646 (‘Switch2See’) and the Deutsche Forschungsgemeinschaft (STI-656/5-1 and STI-656/6-1).
Author information
Authors and Affiliations
Contributions
A.C.S. and V.N. wrote the manuscript together.
Corresponding authors
Ethics declarations
Competing interests
V.N. is a founder and equity owner of Maurus OY, sThesis GmbH, iThera Medical GmbH, Spear UG and I3. A.C.S. declares no competing interests.
Peer review
Peer review information
Nature Methods thanks Junjie Yao, Jeesu Kim, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Table 1, Fig. 1, Text 1 and 2 and References
Supplementary Table 1
Spreadsheet version of Supplementary Table 1.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Stiel, A.C., Ntziachristos, V. Controlling the sound of light: photoswitching optoacoustic imaging. Nat Methods (2024). https://doi.org/10.1038/s41592-024-02396-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41592-024-02396-2