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Standard scATAC sequencing (scATAC-seq) analysis pipelines represent
cells as sparse numeric vectors relative to an atlas of peaks or genomic tiles
and consequently ignore genomic sequence information at accessible loci.

Here we present CellSpace, an efficient and scalable sequence-informed
embedding algorithm for scATAC-seq that learns a mapping of DNA
k-mers and cells to the same space, to address this limitation. We show that
CellSpace captures meaningful latent structure in scATAC-seq datasets,
including cell subpopulations and developmental hierarchies, and can
score transcription factor activities in single cells based on proximity

to binding motifs embedded in the same space. Importantly, CellSpace
implicitly mitigates batch effects arising from multiple samples, donors or
assays, even whenindividual datasets are processed relative to different
peak atlases. Thus, CellSpace provides a powerful tool for integrating and
interpreting large-scale scATAC-seq compendia.

Typical computational strategies to discover latent structure in
SsCATAC-seq datasets mimic sSCRNA-seq workflows. First, scATAC-seq
data is summarized as a sparse cell-by-event matrix, where events
correspond either to an atlas of accessible peaks or to highly variable
genomic tiles'?, analogous to the cell-by-gene matrix in scRNA-seq
analysis. The cell-by-event matrix can be binarized (1if the event was
accessibleinacelland O ifthe event wasinaccessible or not captured)
or contain counts. Then normalization followed by a standard dimen-
sionality reduction method (for example, latent semantic indexing
(LSI)) allows construction of a nearest neighbor (NN) graph on cells
inthe lower-dimensional space and use of graph-based clustering and
embeddingalgorithms from the scRNA-seq toolkit. However, due toits
high dimensionality and sparsity, dimensionality reduction and embed-
ding of scATAC-seq is challenging and prone to complex batch effects.
Another strategy summarizes single-cell chromatin accessibility pro-
files at the gene locus level to generate scRNA-seq-like data, allowing
integration with scRNA-seq datasets® but losing the representational
richness of sSCATAC-seq.

Rather than mimicking scRNA-seq strategies, we will exploit the
genomic DNA sequences underlying accessible peaks/tiles. Sequence

signals, such as transcription factor (TF) binding motif's, reflect devel-
opmental state and cell identity and therefore should help reveal
biologically meaningful latent structure. Importantly, we will incor-
porate sequence information in the latent structure discovery step
of scATAC-seq analysis rather than in a post hoc analysis step. So far,
few approaches have attempted sequence-informed embedding of
SCATAC-seq. Early work used chromVAR* to represent each cell as a
vector of accessibility scores relative to a fixed library of known TF
motifs®. This approach can indeed group cells by cell type but intro-
duces bias through a priori motif choice; moreover, TF motif acces-
sibility scores can capture technical differences between samples and,
hence, preserve batch effects. Recently, scBasset® used a multitask
neural network to learn both a sequence model for accessible peaks
that passes through abottleneck layer and cell-specific model vectors
that predict whether a peak—givenits bottleneck representation—will
be accessible in the cell. This approach yields a low-dimensional rep-
resentation of cells via the model vectors and assigns TF accessibility
scoresto cells viamotifinjection. However, scBasset requires training
of alarge neural network model where the number of tasks equals
the number of cells and likely will require further optimizations to
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scale to large datasets. Finally, a recent method called SIMBA uses a
graph-embedding approach for scRNA-seq, scATAC-seq and multiome
data’, where cells, genes, peaks, k-mers and TF motifs are vertices and
edges connect entities (such as peaks) that relate to other entities
(such as cells). Notably, applying this method to scATAC-seq requires
TF motifs to be specified before training to define the graph which
could biasthelearned embedding. Moreover, the cell-by-peak matrix
is explicitly encoded in the graph, potentially inheriting underlying
sparsity and batch effect issues.

Here, we present CellSpace, an efficient and scalable k-mer-based
embedding algorithm for scATAC-seq. CellSpace employs a latent
embedding algorithm from natural language processing called Star-
Space®, similar to the strategy we used in the BindSpace model to
learn subtle binding preferences of TFs from SELEX-seq data’. Cell-
Space learns a joint embedding of k-mers and cells, where cells are
embedded closeto each otherinthelatent space based onshared DNA
sequence content of their accessible events. Notably, CellSpace avoids
explicitly embedding peaks and tiles and, therefore, does not encode
the cell-by-event matrix. Single-cell TF motif activities can be readily
computedin CellSpace’s latent space; the selection of TF motifs is not
required ahead of time and does not influence training. Importantly,
thanks to key representational and training choices, we show that
CellSpace’s sequence-aware embedding has powerful intrinsic batch
mitigating properties, allowing discovery of latent structure to enable
trajectory analysis and cluster discovery across multiple samples and
assays, even when the individual datasets are processed independently.

Results

Algorithm overview

CellSpace trains on scATAC-seq data to learn an embedding of DNA
k-mers and cells into acommon latent space (Fig. 1 and Methods). To
generate training examples, CellSpace samples genomic sequences
of fixed length from accessible events (peaks or tiles) and treats cells
in which an event is present as positive labels for the sampled input
sequence (Fig. 1a). This process produces left-hand side (LHS) and
right-hand side (RHS) training pairs, where the LHS is a bag of k-mers
from the sampled sequence, and the RHS is a cellin which the event is
accessible. Duringtraining, CellSpace updates the embedding vectors
of k-mers and cells to push the induced embedding representation of
the LHS sequence towards the embedding of the ‘positive’ cell on the
RHS and away from sampled ‘negative’ cells (Fig. 1b). Here, aK-negative
sampling strategy'®, where K negative cells are sampled at random,
improves training time by updating only some of the weights at each
optimization step. This technique is useful, since there are orders of
magnitude that are more negative observations than positive ones,
and also reduces the effect of false negatives caused by scATAC-seq
sparsity. Importantly, CellSpace uses N-grams in the bag of k-mers
representation to extract context from the data and improve the
embedding (Fig. 1b).

Accessible events (peaks and tiles) are not explicitly embed-
ded; an induced representation of an event can be computed from
the embedding of its k-mers. By not directly embedding peaks and
by updating the cell embedding on the basis of the k-mer content
ratherthantheidentity of accessible regions, CellSpace appears to be
less influenced by preprocessing choices or by technical differences
between batches or even assay variants. Finally, any TF motif can be
embedded in the latent space based on the embedding of constitu-
ent k-mers from its consensus sequence (Fig. 1c). Notably, the set of
(known) TF motifs to be examined is not required at training time
and does not bias the embedding. Similarity between a TF motif and
cell embedding in the latent space produces a TF activity score, and
these motif scores are useful in characterizing cell subpopulations.
Finally, similarity of cells in the latent space can be used to produce a
NN graph for clustering, visualization with UMAP" and other down-
stream analyses (Fig. 1c).

CellSpace learns latent structure and mitigates batch effects

We first tested our approach onasmaller scATAC-seq dataset profiling
CD34" hematopoietic stem and progenitor cell (HSPC) populations
from multiple human donors’, where ground truth cell types based on
fluorescence-activated cell sorting are available. After preprocessing
steps (Methods), we retained 2,154 cells for embedding with CellSpace
using 50,000 variable 500-bp tiles, sampling 150-bp sequences with
3-grams of 8-mers. CellSpace obtained a biologically meaningful embed-
ding of the hematopoietic differentiation hierarchy as visualized by
UMAP (Fig.2a), where hematopoietic stem (HS) cells and multipotent
progenitors (MPPs) diverge into two main erythroid and lymphoid
branches, with common myeloid progenitors (CMPs) giving rise to
megakaryocyte-erythrocyte progenitors (MEPs) along one branch
andlymphoid-primed MPPs (LMPPs) giving rise to common lymphoid
progenitors (CLPs) along the other. The granulocyte-monocyte pro-
genitors (GMPs) branch off both from LMPP and CMP populations,
consistent with current knowledge (Fig. 2b). Trajectory analysis with
Palantir®?, usingan HS cell as the origin, recovers six termini that include
the most differentiated cell types represented in the dataset: CLPs,
plasmacytoid dendritic cells (pDCs), MEPs, an end point within the GMP
populationand aGMP-adjacent populationlabeled as ‘unknown’inthe
original study and monocytes (Fig. 2c and Extended Data Fig. 1a). We also
embedded motifs for TFsimportant in hematopoietic differentiation
using CellSpace (Fig. 2a). The location of motifs in the UMAP provides
intuition for why CellSpace correctly recovers the developmental hier-
archy, with cell-type-specific TFs embedded close to the cells where they
areactive; for example, the HOXA9 motifis embedded near the HS cell
population, GATA1 near MEPs, CEBPB near GMPs, PAX5 near CLPs and
IRF1near pDCs. TFsactivein multiple celltypesend up inbetween them;
for example, the ESRRA motifis close to GMP and pDC populations.

Strikingly, CellSpace mitigates batch effects in this dataset, with
cells from multiple donors well mixed and with HS celland MPP popula-
tions from three donors clustering together (Extended Data Fig. 1b).
Seurat’s shared NNs (SNN)-based clustering®" on the CellSpace embed-
ding largely recovered the known cell type labels, with earliest stem
and progenitor populations HS cell and MPP grouping in one cluster
(Extended Data Fig. 1b). By contrast, iterative LSI (itLSI) using ArchR
separated the HS cell and MPP populations into two separate clus-
ters based on donor and obscured the overall hierarchy (Fig. 2d and
Extended Data Fig. 1c). Similarly, scBasset reported a strong donor
batch effect in their embedding of this dataset, requiring a modifica-
tion of the model to explicitly account for batch®.

We also asked whether we could learn TF motifs de novo from the
CellSpace embedding, whichin principle could enable the discovery of
novel motifs. To do this, we used the trained CellSpace embedding to
find the induced embedding of all 10-mers and compiled the 10-mers
thatare frequentlyamong the NNs of cellsin each cell cluster (Extended
Data Fig. 1b and Methods). Next, we clustered these 10-mers on the
basis of sequence composition, aligned the 10-mers in each cluster,
and computed a position weight matrix (PWM) from each alignment,
yielding 29 de novo motifs (Fig. 2e, Extended Data Fig. 1d and Methods).
A comparison with CIS-BP" motifs confirmed that the de novo motifs
were similar torelevant hematopoietic TF motifs (Fig. 2e), suggesting
the potential for learning novel motifs in systems where important
factors are unknown.

To quantify the extent towhich CellSpace implicitly corrects batch
effects while preserving biological heterogeneity and to compare to
other scATAC-seq embedding methods, we assessed the batch effect
using published metrics (k-NN batch-effect test (kBET), batch average
silhouette width (ASW) and graph connectivity)®, as well as a mutual
information-based metric (batch-normalized mutual information
(NMI)), and also evaluated clustering quality metrics (homogeneity,
adjusted Rand index, NMI and ASW)""¢ (Methods). Successful batch
integration should yield good batch correction metrics without sac-
rificing biological complexity, as assessed by the clustering metrics.
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Fig.1| CellSpace learns a sequence-informed embedding of cells from
SCATAC-seq. Overview of the CellSpace algorithm. a, CellSpace samples
sequences from accessible events (peaks or tiles) to generate training examples,
each consisting of an ordered list of overlapping k-mers from the sampled
sequence, a positive cell (where the event is open) and a sample of negative cells
(where the eventin closed). b, CellSpace learns an embedding of k-mers and
cellsinto the same latent space. For each training example, the embeddings of

the corresponding k-mers and cells are updated to pull the induced sequence
embedding towards the positive cell and away from the negative cells in the
latent space; learning contextual information, represented by N-grams of nearby
k-mers, improves the embedding. ¢, Once the embedding of cells and k-mers is
trained, TF motifs can be mapped to the latent space, allowing cells to be scored
for TF activities based on TF-cell similarities.

To statistically assess differences in performance, we used aggre-
gated scores—producing a single metric for batch, a single metric for
biological complexity and a single overall metric—and performed a

bootstrapping analysis to report 95% confidence intervals and false dis-
covery rate (FDR)-adjusted Pvalues for pairwise comparisons between
algorithms (Extended Data Fig. 2a-e, Supplementary Datasets 2 and
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Fig.2| CellSpace recovers latent structure and developmental hierarchies.
a, UMAP of CellSpace embedding for 2,154 cells from a small human
hematopoietic sSCATAC-seq dataset annotated by fluorescence-activated cell
sorting-sorted cell types. The embedding of key hematopoietic TF motifs is also
shown. b, Current model of hematopoietic differentiation, with cell labels and
colorsasin a. ¢, Palantir pseudotime analysis using CellSpace embedding, with
an HS cell starting point, identifies differentiation termini corresponding to CLP,
pDC, GMP, MEP and monocyte (Mono) fates.d, UMAP of itLSI embedding based
on cell-by-tile matrix using ArchR splits HS cell, MPP and MEP populations into
two clusters due to batch effects. e, UMAP of cells and de novo motifs discovered
based on the same trained CellSpace embedding asina. DNA 10-mers that are

UMAP1 UMAP1

frequent NNs of each cluster’s cells are identified and clustered by sequence
content; 10-mer clusters are aligned and each converted to a PWM. f, Standard
t-SNE from LSI dimensionality reduction of the cell-by-peak matrix for 7,846 cells
from a murine fetal and adult mammary epithelial scATAC-seq dataset. The cells
are annotated using CellSpace clusters (N =3), and comparison with the original
study was used to associate these clusters with cell types. g, UMAP of CellSpace
embedding for the mouse mammary epithelial dataset shows the impact of
N-gram parameter for N=1and 5. h, CellSpace with default N = 3 accurately
captures developmental relationships between cell types. The key TF motifsin
epithelial differentiation are also shownin the N =3 CellSpace embedding.

3 and Methods). We assessed CellSpace embeddings on the basis of
variable genomic tiles and on variable peaks and compared to a wide
range of existing methods: ArchR’s itLSI using variable tiles; standard
LSI using peaks; scBasset; SIMBA using either peaks alone or peaks,

k-mers, and TF motifs in the graph embedding; PeakVI1", a variational
autoencoder embedding of the cell-by-peak matrix; and chromVAR
using motifs or k-mers. For methods thatimplement an explicit batch
correction option (scBasset, SIMBA and PeakVlI), we ran both with
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and without the batch covariate. For LSI-based embedding methods,
we also evaluated metrics after batch correction with Harmony’®,
awidely-used single-cell integration method.

We found that CellSpace (variable tiles) significantly outperforms
scBasset (with and without batch correction, adjusted P< 0.05 and
0.01, respectively), all variants of SIMBA (adjusted P < 0.05 to 0.01),
PeakVI (with and without batch correction, adjusted P < 0.05and 0.01,
respectively), both variants of chromVAR (adjusted P< 0.01) and LSI
(peaks) without batch correction (adjusted P < 0.05) (Extended Data
Fig. 2d). Based on bootstrap analysis, CellSpace (variable tiles) is sig-
nificantly better than ArchR itLSI (variable tiles) in terms of batch
correction (adjusted P < 0.01), but there is no significant difference
interms of the biological complexity score and overall score between
these methods. CellSpace, which uses no knowledge of batch covari-
ates, performs comparably on this small dataset to Harmony batch
correction applied to ArchR itLSI (variable tiles) or LSI (peaks). Note
that the variants of LSl are not sequence-informed embeddings and
donot provide batch-corrected TF motif scores.

Examining individual batch metrics by cell type (Extended Data
Fig. 2e), we observed that among competing methods to CellSpace,
only those with explicit batch correctionimprove the batch scores for
HS cells and MPP, which are most affected by donor batch; in some cases
(for example, ArchR itLSI + Harmony and batch-corrected SIMBA),
improvement for HS cellsand MPP comes at the cost of poorer perfor-
mance on MEP. Overall, CellSpace (variable tiles) either ties or signifi-
cantly outperforms all competing methods on this dataset, including
methods with explicit batch correction, and notably outperforms
sequence-informed methods that provide TF motif scores.

We found that the use of N-gramsin CellSpace was oftenimportant
forrecovering well-defined latent structure in the embedding. Toillus-
trate this effect, we applied CellSpace to asecond published scATAC-seq
dataset profiling 7,846 murine fetaland adult mammary epithelial cells
using the published peak atlas”. We first reproduced the ¢t-distributed
stochastic neighbor embedding (¢-SNE) visualization from the original
study using standard processing of the cell-by-peak matrix to identify
thereported cell types: adult luminal progenitor, adult mature luminal,
adultbasal, luminal progenitor-like fetal, mature luminal-like fetal and
basal-like fetal (Fig. 2f). Next, we ran CellSpace with different choices
ofthe N-gram hyperparameter, sampling L =300 bp sequences due to
thelarger peaksize (1,000 bp) and plotted UMAPs (Fig. 2g,h). We found
that N=1(Fig. 2g, simple bag of 8-mers) yielded a diffuse embedding,
while N =3 (Fig. 2h, default) clarified the population structure and
identified correct developmental relationships between fetaland adult
celltypes. Thelarger value N=5 (Fig. 2g) began to pull cell populations
further apart in the embedding, although clustering and develop-
mental relationships were still correct. Canonical luminal (Foxal and
Pparg) and basal (Trp63 and Egr2) TFs were correctly associated with
cell populations via the CellSpace motif embeddings (N = 3; Fig. 2h).

CellSpace infers single-cell TF motif activities

Beyond visualizing TF motifs in the CellSpace UMAP, we can compute
single-cell TF activity scores via the similarity between TF motif and
cellembeddingsin the latent space (Methods). To systematically assess
CellSpace’s motif scoring, we analyzed a recent multiome dataset profil-
ing the human cortex containing 8,981 cells with both scRNA-seq and
SCATAC-seq readouts®’. Running CellSpace with default parameters on
the provided scATAC-seq cell-by-peak matrix readily captured major
developmental relationships between cell types based on reported
cluster annotations, with glutamatergic neuron (GluN) clusters group-
ing apartfrominhibitory neuron (IN) clustersinthe UMAP (Fig. 3a). For
comparison, weranscBasset onthe same scATAC-seq dataset and found
thatthemodel converged by 45epochs (before the default1,000 epochs,
Extended Data Fig. 3a) and trained efficiently when using specialized
large-memory graphics processing units (GPUs) (Supplementary
Dataset 1). Notably, scBasset applies stringent filtering to the training

data, decreasing the number of peak training examples by an order of
magnitude. scBasset found a topologically similar embedding to Cell-
Space, but unlike CellSpace and the standard LSI embedding, it failed
toseparatetheIN cluster IN3 from the glutamatergic neurons (Fig. 3a).

Moreover, compared to TF motif scores provided by other
sequence-informed embedding methods, CellSpace motif scores
for key TFs correlated better with expression of the corresponding
factors from the scRNA-seq readout (Fig. 3b). For example, CellSpace
correctly captures that the strongest PAX6 activity is in the radial glia
population, while scBasset associated PAX6 to cell populations where
itisnotexpressed. For EMX2 and MEF2C, CellSpace better captures the
overalllandscape of TF activity, while scBasset overestimates activity
inINsubpopulations. In other cases, such as NEUROD2, both methods
correctly map the region of TF activity as validated by expression.
For an overall comparison, we computed the correlation between
gene expression and TF motif scores from each method for the set of
important neurodevelopmental TFsidentified by the original authors®
whose motifs passed scBasset’s filtering steps (Methods). Extended
DataFig.3bshows that CellSpace’s motif correlation scores outperform
scBasset’s scores on these neurodevelopmental factors. In particular,
CellSpace TF motif scores yield positive correlation with expression
for almost all these factors (17/19, upper half plane of scatterplot), in
contrast with scBasset (14/19, right half plane of scatterplot), and had
similar performance as chromVAR (Fig. 3b and Extended Data Fig. 3b).
Finally, we trained a SIMBA embedding on the peak atlas using k-mers
and TF motifs. SIMBA had a significantly higher memory usage than
CellSpacebut trained faster using peaks associated with the top prin-
cipal components (Supplementary Dataset 1). The SIMBA motif scores
did not provide meaningful per-cell motif activities, yielding mostly
zero scores across the atlas (Fig. 3b) and near-zero correlations with
TF expression (Extended Data Fig. 3b), although they could find an
association with cell type via ranking (Extended Data Fig. 3c).

To compare across scCATAC-seq embedding approaches, we pro-
duced UMAPs, clustered cells, computed performance scores for
CellSpace and competing methods (Extended Data Fig. 3d,e, Sup-
plementary Datasets 2 and 4 and Methods) and performed a boot-
strapping analysis to report 95% confidence intervals for the overall
biological complexity score and FDR-adjusted P values for pairwise
comparisons as before. On this dataset, CellSpace (peaks) significantly
outperforms LSI (adjusted P < 0.01), SIMBA (peaks) (adjusted P< 0.05),
PeakVI (adjusted P < 0.01) and chromVAR (adjusted P < 0.01) but did
not significantly outperform SIMBA (peaks+kmers+motifs) or scBas-
set (adjusted P=0.087 for both) Thus, CellSpace ties or significantly
outperforms all competing methods on the human cortex dataset.

Returning to the previous hematopoietic dataset (Fig. 2a), we
can similarly compute motif scores for key blood developmental TFs
(Fig. 3¢). This analysis retrieved the correct association between TFs
and HSPC populations, including GATA1 with MEP cells, ID3 with CLP
and pDC cellsand CEBPB with GMP cells. Interestingly, a subset of cells
in the CMP population that are placed by CellSpace in cluster 1—pre-
dominantly made up of GMP cells—indeed have high CEBPB scores,
suggesting progression towards the GMP cell state. Motif scoring for
the mammary epithelial dataset (Fig. 2h) similarly identified correct
activities of key luminal and basal TFsin fetal and adult cell populations
(Extended DataFig. 3f).

CellSpace scales to large scATAC-seq atlases

Next, to assess CellSpace’s scalability and batch-mitigating capabili-
ties, weranthe model on several large-scale multisample datasets with
challenging batch effects. First, we turned to a larger human hemat-
opoietic dataset comprising 61,806 cells collected from bone marrow
and peripheral blood from 12 healthy donors?, together with 2,706
cells from the smaller hematopoietic dataset’. The cell-by-peak matrix
was originally processed in multiple steps, with LSI dimensionality
reduction followed by abatch correction procedure and variable peak
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Fig.3|Single-cell motif scoring using CellSpace accurately maps TF
activities. a, CellSpace and scBasset embeddings of the scATAC-seq readout of
ahuman cortex multiome dataset with 8,981 cells. Cyc. prog, cycling progenitor;
EC, endothelial cell; Peric., pericyte; nIPC, neuronal intermediate progenitor
cell; SP, subplane; mGPC, multipotent glial progenitor cell. b, Rows show the

TFs PAX6, EMX2, MEF2C and NEUROD2, overlaid on the CellSpace embedding,
the gene expression for the TFs, CellSpace motif scores, scBasset motif scores,
chromVAR motif deviation scores and SIMBA motif scores. ¢, CellSpace TF
motif scoring for the small human hematopoietic dataset, shown as aheatmap
(annotated as in Fig. 2a and Extended Data Fig. 1b).

selection, then recomputation of LSI”. Cells were then clustered into

31 clusters in this final lower-dimensional space; the resulting UMAP
withmajor clustersis reproduced here (Fig. 4a). While developmental
relationships canbeinferred from thisembedding, there also appears
to beartifactual structure from residual batch effects and noise.

We asked whether CellSpace’s k-mer-based embedding could over-
come batch effects and find latent structure without multiple custom
preprocessing steps. We therefore ran CellSpace on this approximately
63,000 cell dataset using the cell-by-peak matrix for the top 50,000
variable peaks and with default parameters, except for increasing the
embedding dimension and number of epochs (Methods). Here, we
exploit the fact that CellSpace is memory-efficient even for large-scale
datasets (Supplementary Dataset 1), since random training examples
aregenerated at every step of optimization and only the sparse count
matrix and its corresponding genomic sequences are indexed and
stored in memory (Methods). A UMAP visualization shows that Cell-
Space faithfully captured the hematopoietic developmental hierar-
chy within the HSPC compartment and correctly linked progenitor
populations to more mature blood cell types (Fig. 4b); for example,
the monocyte-dendritic progenitor population was embedded near
to monocytes and conventional dendritic cells, while CLP cells dis-
played a differentiation trajectory towards pro-B and pre-B cells. We
also found that batches and donors were well mixed in the embedding
(Extended Data Fig. 4a). Given the diversity of this dataset, we were
able to obtain more resolution by retraining the CellSpace embed-
ding on specific compartments, for example, to reveal detailed rela-
tionships among natural killer and T cell populations (Extended Data
Fig.4b).

We further applied CellSpace to a scATAC-seq dataset profiling
the tumor immune microenvironment (TME) in basal cell carcinoma
biopsies from seven patients”, comprising 37,818 cells. Although the
authors reported a detectable batch effect that confounded further
analyses and required attenuation®, we ran CellSpace directly on
50,000 variable peaks and recovered the identified T cell types as
well as other lymphoid, myeloid, endothelial and fibroblast popula-
tions that were well mixed over donors (Extended Data Fig. 4c). As has
been described in tumor scRNA-seq analyses, the cancer cells from
different patients retained more distinctidentitiesin theembedding.

We again assessed CellSpace’s batch mitigation properties by
comparingbiological complexity, batch correctionand overall metrics
against both sequence-informed and sequence-ignorant methods,
with and without explicit batch correction, throughbootstrap analysis
(Extended DataFig.4d, Supplementary Datasets 2 and 5and Methods).
Animportant caveat here is that the reported labels themselves are
somewhat uncertain, since the authors had to perform a difficult batch
correction and clustering to annotate their dataset. Nevertheless, for
thelarge hematopoietic dataset, CellSpace significantly outperformed
(adjusted P < 0.01) all methods except for PeakVI (batch corrected),
whichoutperformed CellSpace here (adjusted P < 0.05), even though
it was one of the poorer performers on the hematopoietic and cortex
datasets. The performance improvement was due to PeakVI's better bio-
logical complexity scorerelative toreported cell type labels (adjusted
P <0.01); the batch correction scores for CellSpace were higher than
PeakVIbut not significantly different.

For the TME dataset, CellSpace significantly outperformed all
other methods based onbatch score (adjusted P< 0.01inall cases) but
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a UMAP from Satpathy et al.
(LSI with custom batch correction)

Cell type

HS cell/MPP
MEP
CMP/BMP
LMPP

CLP

Pro-B
Pre-B

Monocyte 1

Monocyte 2

Naive B

Memory B

Plasma cell

Basophil

Immature NK

Mature NK1

Mature NK2

Naive CD4 T1

Naive CD4 T2

Naive Treg

Memory CD4 T

Treg

Naive CD8 T1

Naive CD8 T2

Naive CD8 T3

Central memory CD8 T
Effector memory CD8 T
Gamma delta T

Naive CD4 T1
" | Naive CD8 T2

UMAP2

b cellspace UMAP
(with no batch correction)

UMAP2

UMAP2

Tissue

@ Adrenal

© Cerebellum

@ Cerebrum
Eye

® Heart

@ Intestine

® Kidney

® Liver

® Lung

@® Muscle

Pancreas

Placenta

Spleen
@ Stomach
® Thymus

.

UMAP1
Cell type
@ Erythroblasts
@ HScells
Batch h ® Lymphoid cells
: g::gh 12 Lymphoid/myeloid cells
® hachs ® Megakaryocytes

® Myeloid cells

UMAP2

Variable peaks

UMAP2
UMAP2

18,200 31,800 18,200

ATAC

Multiome

UMAP1 UMAP1

Cell type
® IN

MG
® SP
GluN
nIPC/GIluN
nlPC
olPC
Cyc. prog.
Early RG
RG
Late RG
mGPC/OPC

OPC/oligo
Peric.

UMAP2

UMAP1

Fig. 4| CellSpace’s embedding implicitly mitigates donor- and assay-

specific batch effects in large-scale scATAC-seq datasets. a, UMAP of LSI
dimensionality reduction with custom batch correction from original study
ofalarge-scale multidonor human hematopoietic sScATAC-seq dataset with
63,882 cells, annotated with major reported clusters. BMP, basophil-mast

cell progenitor; MDP, monocyte-dendritic cell progenitor; cDC, conventional
dendritic cell. b, CellSpace embedding of the large human hematopoietic dataset
without any custom preprocessing recovers hematopoietic developmental
hierarchy. ¢, UMAPs for CellSpace embedding of a human fetal tissue scATAC-
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seq atlas, with approximately 720,000 cells, labeled by tissue, by batch and by
blood cell types across multiple tissues. d, CellSpace applied to human cortex
chromatin accessibility data by joint embedding of two datasets: the scATAC-seq
readout of the multiome dataset with 8,981 cells (Fig. 3a) and a (single-modal)
SsCATAC-seq with 12,675 cells, processed with respect to their own peak atlases.
The Venn diagram shows the top 50,000 most variable peaks from each assay,
with 31,800 peaks in each atlas having nonzero overlap with the other atlas. The
UMAP of the joint CellSpace embedding shows cells from each dataset, overlaid
with cell type annotations from the original study. MG, microglia.

only outperformed batch-corrected SIMBA on biological complexity
score (adjusted P< 0.01), with comparison to other methods giving ties
orlosses for this score. On overall score, CellSpace mainly gave statisti-
calties to other methods, with significant wins over Harmony-corrected
itLSI (adjusted P < 0.01), batch-corrected SIMBA (adjusted P < 0.01) and
PeakVI (adjusted P< 0.05) butalossto batch-corrected PeakVI (adjusted
P<0.05) (Extended DataFig.4d and Supplementary Datasets2 and 6).
We note, however, that PeakVI does not provide TF motif scores, and no
other sequence-informed method (that is, with the potential to com-
putebatch-corrected single-cell motif scores) outperforms CellSpace.

To demonstrate scalability up to another order of magnitude in
number of cells, we applied CellSpace to a very large, diverse and multi-
donor human fetal scATAC-seq atlas?, consisting of approximately
720,000 cells from 20 donorsin three batches. We used a latent space
of dimension 70 to accommodate the diversity of cell types, computed
variable peaks onasample of approximately 5% of cells and used these
events to train the full-scale embedding without difficulty (Methods
and Supplementary Dataset 1). Qualitative visualization with UMAP
showed proximity between more closely related tissues (Fig. 4c), and
batches were well mixed. Moreover, blood cell types from multiple
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organs clustered together, with lymphocytes from thymus and cells
labeled ‘lymphoid/myeloid’ from the placenta in the same cluster
(Fig. 4c).

Finally, we applied CellSpace to combine two distinct datasets
using different assays to profile the human cortex: the scATAC-seq
readout of the multiome dataset presented above (Fig. 3a) and a
single-modal scATAC-seq dataset from the same study?’. These two
datasets were processed independently to generate different peak
atlases. Selecting the 50,000 most variable peaks in each dataset
yielded only 31,800 peaks (‘shared’ peaks) with nonzero overlap but
not necessarily the same boundaries (Fig. 4d). Without reprocessing
these datasets to generate acombined cell-by-peak matrix relativetoa
common peakatlas, this situation would yield an ‘uncorrectable’batch
effect for standard methods. We trained a CellSpace embedding to suc-
cessfullyintegrate the two datasets, each represented with respect to
itsown peak atlas and associated with abatch covariate, whichwe used
to avoid pushing cells from different batches away from each otherin
negative sampling (Methods and Fig. 4d). The combined embedding
recovered the correct overall structure based on cell type annotations
from each dataset (Fig. 4d), with inhibitory and glutamatergic neurons
well separated and progenitor populations, such as oligodendrocyte
progenitor cells (OPCs) and radial glia (RG), placed at the apex of the
developmental manifold. Clustering on the CellSpace embedding
identified coherent clusters that mixed cells of similar types from the
two datasets (Extended Data Fig. 4e,f). This example shows the unique
and powerful ability of CellSpace to integrate independently pro-
cessed chromatinaccessibility datasets throughits sequence-informed
embedding.

Discussion

By training an embedding of both DNA k-mers and cells into a com-
mon latent space with a memory-efficient implementation, we have
shown that CellSpace learns latent structure in multisample and even
multiassay scATAC-seq datasets while mitigating batch effects. The
TF motif activities in single cells can naturally be inferred on the basis
of the similarity of TF motif and cell embeddings in the latent space,
without requiring the TF motifs to be known at training time. In the
large multibatch datasets shown here, CellSpace’s sequence-informed
embedding implicitly mitigated batch effects, even without use of a
batch covariate. In one case, where datasets were independently pro-
cessed withrespecttodistinct peak atlases, we used abatch covariate
simply to avoid pushing cells from separate batches away from each
otherintraining; this strategy allowed us to correct abatch effect that
would be ‘uncorrectable’by other methods without reprocessing from
scratch. Indeed, we have found only rare cases where a clear batch effect
persists after training CellSpace. Insuch cases, Seurat’s anchor-based
dataintegration method?, inspired by mutual NNs*, can be readily
applied to the CellSpace embedding for batch correction (Methods).

CellSpace was overall a top performer in benchmarking across
datasets, giving equal or significantly better performance compared to
standard LSI-based methods with or without Harmony batch correction
ortoothersequence-based embedding methods. Importantly, noother
sequence-informed method—that is, with the potential to compute
batch-corrected single-cell motif scores—outperforms CellSpace.
CellSpace has impressive batch mitigation properties, with only one
loss to another method in all pairwise comparisons across three data-
sets, while achieving a favorable tradeoff with biological complexity
metrics. While explicit batch correction (for example, by Harmony)
sometimes helps and sometimes hurts (it is not always clear which is
happening), CellSpace gives consistently strong performance without
the requiring an explicit consideration of batch effects.

We have found that the default parameters (Methods) work well
in most cases, but hyperparameter tuning is sometimes needed; for
example, a very large and diverse dataset typically requires a higher
dimensional embedding space and alarger number of epochs to train.

A qualitative sign that CellSpace hyperparameters need to be opti-
mized—or possibly that longer training is needed—is a ‘cloudy’ UMAP
visualization, where distinct cell types or states have not been pulled
apartenough. We have found it easier to obtainagood embedding with
minimal changes to default parameters when using variable tiles rather
than a peak atlas; the peak atlas quality may influence the amount of
parameter optimization required. Using top variable peaks or genomic
tilesidentified by itLSI markedly improves running time while preserv-
ing or possibly improving the embedding quality. We found that Seu-
rat’s SNN-based clustering on the CellSpace embedding often required
ahigher resolution to obtain the same number of clusters as compared
to a standard itLSI-based embedding. Additionally, the batch-aware
version of CellSpace, where negative cells are sampled within the same
batch as the positive cell, appears to be broadly useful for integrating
datasets, whether processed with respect to different peak atlases or
when using variable tiles.

Weforesee an extension of CellSpace to multiome datawhere cells,
genes and k-mers are embedded in the same space, and cell embed-
dings are updated both by sampling sequences from peaks and by
expression-weighted gene lists. This will entail weighting how much
sequence versus gene expression features should influence the cell
embedding. We note that StarSpace has also been reformulated as a
graph-embedding problem, where entities are vertices and (LHS, RHS)
pairs specify edges in a graph?**, and used by SIMBA for embedding
scRNA-seq, scATAC-seq and multiome data’. For scATAC-seq, cells,
peaks, k-mers and TF motifs are all explicitly embedded as vertices,
and each cell is connected by edges to its peaks. While related to our
approach, CellSpace makes important algorithmic choices that are
less naturally framed as a graph-embedding problem. In particular,
CellSpace does not explicitly embed peaks (which appears to miti-
gate batch effects in datasets analyzed here), uses negative sampling
to address the label asymmetry in scATAC-seq, employs N-grams to
capture local sequence context and uses sampling of sequences from
accessible events to improve robustness. Finally, CellSpace enables
the embedding of DNA sequences that were not explicitly introduced
during training and importantly does not rely on any a priori choice
of motifs.

There is also a connection between CellSpace and scBasset. We
can view CellSpace as implicitly embedding peak (sub)sequences to
alatent space while representing every cell as a classification model
that predicts whether the embedded sequences are accessible in that
cell,based onthe cosine similarity between the sequence and cellinthe
latent space. This view is made explicitin scBasset, whichlearns aneu-
ral network embedding of peak sequences together with cell-specific
model vectors in the latent space and minimizes classification loss
using the entire cell-by-peak matrix as output labels. The neural net-
work sequence embeddingis not only more expressive than our N-gram
of k-mers representation but also may be more prone to overfitting and
learning batch-specific technical artifacts (which are explicitly mod-
eled). Additionally, scBasset requires high-memory GPUs to train the
neural network model in a practical running time. Finally, scBasset’s
multitask classification approach may be susceptible to asymmetric
label noise in the binary cell-by-peak matrix, that is, false negatives
not capturedinthelibrary. Still, these sequence-informed embedding
methods—CellSpace, graph embedding and neural network—poten-
tially have complementary strengths that could be combinedin future
algorithmicinnovations for discovery of latent structure in single-cell
epigenomic data.

We note several current limitations of CellSpace. As described
above, CellSpace s for now restricted to embedding scATAC-seq data
and does not handle other single-cell assays or co-assays such as mul-
tiome, although such extensions are possible. Our current consensus
k-mer approach to motif embedding, which enables motif activity scor-
ing viasimilarity with cellembeddings in the latent space, is fairly sim-
ple and may not be suitable for composite motifs. More sophisticated
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approaches could be explored, such as representing the motif using
N-grams of k-mers or as a weighted ensemble of matching sequences
rather than a single consensus sequence. Finally, some amount of
parameter tuning, for example, the dimension of the latent space and
the number of training epochs, may be required to obtain a useful
embedding. Beyond the heuristics for parameter choice provided
here, wehopeinthe futureto develop intrinsic metrics of embedding
quality to enable automation of the parameter search.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
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Methods

CellSpace algorithm

CellSpace uses the StarSpace (mode 0) algorithm? to learn a co-
embedding of DNA k-mers (k = 8 by default) and cellsinto alatent vector
space R9 (d =30 dimensions by default) based on training example
sequences sampled from accessible events.

Accessible eventsare either an atlas of accessible peaks or variable
tiles, for which a cell-by-event matrix of accessibility is available. Top
variable tiles (500 bp genomic bins) can be identified using ArchR’s
itLSI method. When stated, we used top variable peaks instead of the
entire peak atlas, which were identified with an adaptation of ArchR
functions.

Starting fromabinary cell-by-event matrix, CellSpace creates mul-
tiple training examples per event (20 by default) while training during
eachepoch (50 epochs by default). To generate a training example for
anevent,anL-length (L =150 bp by default) DNA sequenceis randomly
sampled from the corresponding genomicregion. Thebagof L —k+1
consecutive overlapping k-mers, created by sliding a window of size
k across the sampled sequence by one nucleotide at a time, is used
as the ‘input’. Assuming each DNA k-mer and its reverse complement
have identical genetic information, we hash them to the same row of
the embedding matrix. The cells for which the event is accessible are
used as ‘positive labels’. The model is optimized so that the ‘input’
sequenceisembedded closer toits ‘positive labels’in the latent space
than to ‘negative labels’ (that is, K randomly sampled cells for which
theeventisnotaccessible) which are selected by K-negative sampling.

StarSpacerepresents features, whichare embedded directly, and
entities (thatis, bag of one or more features) by ad-dimensional vector.
Theinferred embedding of an entity composed of M features is given
by # Efl W, where w,,--- w,, are the vector representations of its fea-
turesand P=0.5isthe default value. CellSpace embeds cells (as ‘labels’)
and k-mers (as featuresin ‘input’) directly and infers the embedding of
any DNA sequence as a bag of k-mers, enabling the comparison of
sequences and cells in the same space.

Additionally, CellSpace learns contextual information from the
relative position of the k-mers by training StarSpace with N-grams
(window of N =3 consecutive k-mers by default), so that each pair of
k-mers within an N-gram is also considered as a feature, embedded
directly with arow in the embedding matrix and added to the ‘input’
of the training example. For N> 1, StarSpace uses a hashing trick to
retrieve the embedding vector of an N-gram. The user can control the
size of the hashing map ‘bucket’.

At step i of stochastic gradient descent optimization, StarSpace
picks one random ‘positive label’ as the right-hand side entity RHS; of
the training example and uses the ‘input’ as the left-hand side entity
LHS,. CellSpace randomly selects a positive cell for the corresponding
event as the RHS,. The ‘input’ L-length sampled sequence represents
the LHS, and itsembeddingis inferred from the embedding vectors of
its features as described above. CellSpace then samples K random
‘negative’ cells c,, ... c,,—for which the event is not accessible—and
optimizes the parameters to pull the LHS; closer to the embedding of
the positive celland away from that of the negative cells by minimizing
the margin ranking loss, as shownin

K
Loss; = % Z max (0, margin — sim(LHS;, RHS;) + sim(LHS;, Cr))-
k=1

Here, ‘sim’ is the cosine similarity in the embedding space by default.
Therefore, the loss increases unless the event is closer to the positive
cellthan the negative cell, and the difference is greater than the margin.
The embedding of a negative cell is not updated if it yields zero loss,
becauseitis already sufficiently distant to the event.

CellSpace hasbeenintegrated into the C++StarSpace implementa-
tion so that the sparse cell-by-event matrix and the DNA sequences of
theeventsareloaded, parsed, indexed and stored in memory. Training
examplebatches arerandomly created inreal time during trainingand

areonly temporarily stored, so that the running time of CellSpace will
increase linearly with the number of training examples and the memory
usageis constant. Furthermore, CellSpace utilizes the parallel training
capability of StarSpace, which enables scalability to larger single-cell
ATAC-seq datasets.

Multiple scATAC-seq datasets represented by different sets of
events (thatis, peak and tile sets) can be simultaneously embedded by
CellSpace. Alldatasetsareinitially loaded, and training examples are cre-
atedinrandom order. The event, the positive cell and the negative cells
for each training example are sampled from the same dataset. This co-
embedding utilizes the shared DNA sequence information between
events that may not have the exact same genomic region.

CellSpace visualization, clustering and motif embeddings
CellSpace outputsembedding vectors for cells and k-mers after train-
ing a StarSpace model on scATAC-seq data.

The CellSpace embedding of each TF motifis computed by creat-
ingabag of k-mers by sliding a k bp window across the consensus motif
sequence, then computingits embedding fromthe embedding vectors
ofitslength(motif) - k + 1 constituent k-mers as previously described
for aStarSpace entity. Cell-by-TF similarities (that is, cosine similarity
between CellSpace embedding vectors) are computed and z-scored
across all cells per TF to represent TF activities.

The pairwise distance matrix of cells (that is, cosine distance
between CellSpace embedding vectors) isused to build aNN and SNN
graph. Cells are visualized witha UMAP embedding and clustered using
the Louvain method on the SNN graph by Seurat (v.3 or higher)*?°.

To visualize cells and TFs in the same space, the embedding vec-
tors of selected TFs are concatenated to the embedding vectors of
cells, and their pairwise cosine distances are used to compute a UMAP
embedding as described above.

The sequence-informed embedding of CellSpace captures the
structure of scATAC-seq data across multiple samples, donors and
datasets while mitigating possible batch effects. However, if a batch
effect persistsin the CellSpace embedding, we found the problem could
be easily corrected by Seurat’s anchor-based data integration method®.
CellSpace can place multiple datasets in a shared low-dimensional
space, which can be used instead of canonical correlation analysis to
identify and score pairs of mutual NNs ‘anchors’ between datasets.
Similarly, the NN graphs used for weighting the anchors for cells within
each dataset canbe created from the CellSpace embedding, instead of
using principal component analysis dimensionality reduction. Finally,
the batch effect can be removed by correcting the CellSpace embed-
ding of ‘query’ datasets with respect to the ‘reference’ dataset, similar
to how gene expression matrices are corrected by Seurat.

Discovering de novo motifs with CellSpace
We computed the inferred embedding of all possible DNA 10-mers by
slidingan 8 bp window across each 10 bp sequence and computing the
average CellSpace embedding of its three constituent 8-mers. We built
abipartite K =50 NN graph between cells and 10-mers on the basis of
their cosine distance inthe embeddingspace, representing each10-mer
andits reverse complement as a single vertex in the graph.
Foreachgroup of cells, weidentified the 10-mers that were among
the NNs of at least 20% of its cells. These 10-mers were clustered by
kmer::cluster (v.1.1.2) in R%, using a top-down tree-building approach
and cutting the tree at height of 0.5. For each cluster of size greater than
three, we aligned the 10-mers by msa::msaClustalW (v.1.26.0) inR with
default settings®. From each alignment, we computed the PWM of a
de novo motif. The embedding of each de novo motif was computed
astheaverage embedding of the 10-mersinits corresponding cluster.

Evaluating scATAC-seq analysis results
Clustering and visualization. For each embedding, the cells were
clustered using Seurat®®v.4.3.0 (SNN-based method) and visualized by
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UMAP, with K =20 by default and the metric set to ‘cosine’ for CellSpace
andto ‘euclidean’ for other methods. We used arange of values as Lou-
vain clustering resolution and picked the value that yielded the same
number of clusters as cell types (that is, the cell labels that would be
used as ground truthin evaluation). Inafew cases where no such value
was found and there were too many clusters, we merged the smallest
clustersinto the nearest larger clusters based on their connectivity in
the SNN, using the R function CellSpace::merge_small_clusters which
was adapted from Seurat::GroupSingletons.

Biological conservation scores. To evaluate the embedding and
clustering results from each method, we used the implementation of
ASW, NMI and the adjusted Rand index by scib® v.1.1.3 in Python, as
well as the implementation of homogeneity by scikit-learn® v.1.3.0 in
Python. The biological conservation score was computed as the aver-
age of all four metrics.

Batch correction scores. To evaluate the batch effect in the embed-
ding of each method, we used batch ASW, graph connectivity and kBET
from scib. To speed-up the bootstrapping process for the large-scale
hematopoietic and tumor microenvironment datasets, we used the
implementation of KBET by scib-metrics v.0.3.3 in Python, which
approximates the method used in the original scib package and uti-
lizes GPUs. The metric batch NMI was computed as 1 - NMI (cluster
and batch) in each cell type and reported as the average over all cell
types. The batch correction score was computed as the average of all
four metrics.

Overall score. The overall score is the weighted average of the biologi-
cal conservationand batch correction scores, with 0.6 and 0.4 as their
relative weights, respectively.

Bootstrapping. For each dataset, we created B=1,000 bootstrap sam-
ples fromthe original dataset by resampling the same number of cells,
withreplacement. For eachembedding, we clustered every bootstrap
sample and computed the corresponding benchmarking scores as
described above. For confidence level 1 - a of a statistic, we reported
the percentile confidence interval, that is, the gand 1- %’ quantiles of
thebootstrap distribution. To compare the scores of two methods, we
performed atwo-sided test under the null hypothesis 8= 0, where 8is
the differenceinscores. We computed the Pvalue of the null hypothesis
using a confidence interval inversion; the P value for a two-sided test
ofthe point-null hypothesis 6 = 8, is the smallest « € [é, 1],suchthat 6,
is not contained in the 1 - a confidence interval from the bootstrap
distribution of 8. For each dataset, we performed pairwise tests
between all the methods and FDR-adjusted the Pvalues.

Dataset-specific benchmarking details. For the small hematopoietic
dataset, the ‘unknown’ cell type was included in the embedding but
excluded from benchmarking evaluations. For the TME dataset, to
reduce potential label uncertainty, we restricted the evaluation of clus-
tering and batch correction metrics to the nontumor cells, although
all cells were embedded by all methods.

Dataset-specific and method-specificembedding and benchmark-
ing details and hyperparameters are provided in the Supplementary
Note.

Cellspace and other method parameters

ArchR. We used ArchR?v.1.0.1and itsimplementation of itLSI to iden-
tify the most variable tiles (genome-wide 500-bp bins) and used the
dimensionality reduction from the last iteration of itLSI as the ArchR
embedding. For batch correction, we used Harmony™v.0.1.1.

scBasset. scBasset®v.0.1 was trained with its default Basenji-inspired
architecture and a bottleneck layer size of 32. For batch correction,

batch labels were provided as input to the scBasset-BC architecture,
which adds a fully connected layer to predict the batch-specific con-
tribution before the final sigmoid.

SIMBA. For the peak-only version, SIMBA” v.1.2 was run on peak-by-cell
matrices using default settings. Unless stated otherwise, the
embedding was trained on peaks associated with top PCs. For the
sequence-aware version, the peak set was annotated with k-mers and
motifs using the scan_for_kmers_motifs R function, and peak-motifand
peak-kmer edges were included in graph generation. To obtain motif
scores, we used the compare entities function between cell embed-
ding and motif embedding matrices, followed by subsequent softmax
transformation. For batch-corrected SIMBA, peak-by-cell matrices
were split by batch. The edges between batches were inferred using
their mutual NN implementation in the infer_edges function, and the
edges between batches were included in graph generation. For all
versions, the model was trained for the recommended ten epochs,
at which point the validation loss leveled and the embedding had
converged.

PeakVI.PeakVI” (scVI-tools v.1.0.0) was run with default settings (two
encoder layers, two decoder layers and a dropout rate of 0.1) on the
peak-by-cell matrix as input and optionally providing donor annota-
tions for explicit batch correction.

chromVAR. We used chromVAR* v.1.16.0 to compute ‘deviations’ of
JASPAR 2020 motifs® for the motif version, or that of DNA 8-mers
for the k-mer version, from the peak-by-cell count matrix, following
standard steps with default parameters. Highly correlated features
(cor>0.9) and features with low variance (s.d. <1.5) were removed
from the cell-by-motif/kmer deviation z-score matrix, and a principal
component analysis was performed on the filtered matrix. The PCs
were used as the chromVAR embedding.

CellSpace. By default, CellSpace samples L =150 bp sequences, uses
8-mers with 3-grams (k=8 bp, N =3), generates 20 training examples
per event (tile or peak) per epoch and trains for 50 epochs to learn a
d=30-dimensional latent space representation of cells and k-mers.
To extract peak and tile sequences from reference genomes, we used
GenomicRanges v.1.46.1, Biostrings v.2.62.0 and BSgenome v.1.62.0
inR.

The dataset-specific preprocessing steps and hyperparameters
for CellSpace and other methods are detailed in Supplementary
Note.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

For this study, we used only public datasets, available through the Gene
Expression Omnibus: the small human hematopoietic dataset from
GSE96769 and GSE74310; the mouse mammary epithelial dataset from
GSE125523, inadditionto processed files provided by the original study
from https://github.com/jaychungl0010/Mammary_snATAC-seq; the
human cortex multiome dataset from GSE162170; the large human
hematopoieticand TME datasets from GSE129785; and the large human
fetal dataset from GSE149683. More details about downloading the
raw and processed files for each dataset are described in the Supple-
mentary Note.

Code availability

CellSpace is freely available on Zenodo® at https://doi.org/10.5281/
zenodo.10521077 and on GitHub at https://github.com/zakieh-tayyebi/
CellSpace. Instructions for installing and using CellSpace are provided
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inthis GitHub repository, inaddition to a tutorial, scripts and required
data for training and interpreting a CellSpace model for the small
human hematopoietic dataset. For this demo dataset, we have also
provided preprocessing scripts and instructions to identify highly
variable tiles and peaks using itLSI, which canbe adapted to preprocess
other scATAC-seq datasets. Details of preprocessing other datasets,
running different methods on each dataset, all downstream analyses,
computing performance metrics and bootstrapping the scores are
providedinthe Methods and Supplementary Note, and the scripts for
reproducing these results are available upon request.
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an ‘unknown’ GMP-adjacent population, MEP, and monocytes. b. CellSpace
embedding annotated by donor (left) and by Seurat’s SNN-based clustering
(right), which largely recovers annotated cell types. c. ArchR embedding of the
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and overall score) for all methods on the small human hematopoietic dataset,

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-024-02274-x

=—Training
—\V/alidation —~1.00
8
0.37 0.70 ug;.
0.68 >= 4 ° 1
o 038 ©0.66 238 . ; A
®» 0.35 =) O~ o .3
3 < 0.64 < p
—0.34 o) .
. 0.62 S 725
0.33 0.60 29 0.004 S5 L L
8 E AN - f
0 10_20 30 40 6 10_2 3 40 &3 e wmy .
Epochs Epochs & e A
c : -
PAX6 3
% 0.015 a 575 ! ! !
20.010 -0.75 0.00 1.00 -0.75 0.00 1.00°-0.75 0.00 1.00
£0.005 IMN Expression-Activity Expression-Activity Expression-Activity
®0.000 :&,m—ﬂﬂmm: Pearson Correlation (chromVAR) Pearson Correlation (scBasset)  Pearson Correlation (SIMBA)
0 100 200 300 400 500
EMX2 d CellSpace (peaks) LS| (peaks) scBasset (peaks) e
x 0.20
S )
* adjusted p <0.05
% 0.10 \ Cell type ol 4 R o £ ** adjusted p <0.01
@ - Cyc. Prog. g i g g i
0.00 S ————————————— ] ®Cyc. Prog. o \\1q s - s S| * Win for CellSpace
0 100 200 300 400 500 .Efr:?@%ﬁN 1 OIN2 5| - S =1 * Win for other method
MEF2C ecurz T 4P I S S Y
®GIuN3 e ——
© GluN4 R 10
é 0.20 © GluN5 mGPC/OPC T ]
—k%
£ o0 sMBa  UMAPI UMAP1 UMAP1
2 0.00 (R ——— SIMBA (peaks) (peaks+kmers+motifs) PeakVI (peaks) chromVAR (peaks+motifs) 0.8+
0 100 200 300 400 500 -y < A ~ g
£ £ \% i d o
NEUROD2 ¥ ) G 0.6+
04 g . A BT e e e
s 03 < S ; E: o /! o
é 92 = =) “ =) S04
0.1 X o0
a Y e ————— 5
0 100 200 300 400 500 ,qs i
R 0.2+
f 1 8 7 6 4 3 5 UMAP1 UMAP1 UMAP1 UMAP1
ﬁ CellSpace (peaks) LSl (peaks) scBasset (peaks) 0.0+
clusterﬁi\ ’/ *
L IRV livaz o Clster * ) PO S A
Foxat 1 « N g R )
Similarity et & o N & R
| Pparg .3. %”‘1 w : . o o 0o ® 2 o 2
2-score | Sox10 .4 E - : : e E ceee ket
[ K 5.11 > b e > © s 3 < &= b
05 Ehf ®5 912 % S 835z %
Elf5 06 g3 5 s -4 832 23 S
o7 / 2 T = 3 8
!'?5 H \“ Egr2 . & §5 388
(2]
Il Trp63 ompa  UMAPT UMAP1 UMAP1 8 @ £ c
SIMBA (peaks) (peaks+kmers+motifs) PeakVI (peaks) chromVAR (peaks+motifs) a E
- p 9]
o <
' (&}
A g - g §
$ o3 oo 3 E v
5 % =5 E'__fg S 5
. 4
- RV %
UMAP1 UMAP1 UMAP1 UMAP1

Extended Data Fig. 3| Single cell motif scoring using CellSpace accurately
maps TF activities. a. The scBasset model training converges after 40 epochs on
the human cortex multiome dataset. b. Comparison of CellSpace vs. scBasset TF
motifactivity scores, CellSpace vs. SIMBA scores, and CellSpace vs. chromVAR
scores based on correlation with gene expression in the human cortex multiome
dataset. Important neurodevelopmental TFs shownin red. c. SIMBA motif scores

for PAX6, EMX2, MEF2C, and NEUROD2 can be used to rank cells and learn an

association with the top-ranked cell type. d. UMAP embedding and Seurat’s

SNN-based clustering of the human cortex multiome dataset using multiple
SscATAC-seq embedding methods. e. Overall biological conservation score for

allmethods on the human cortex dataset (single batch), with 95% confidence
intervals over 1000 bootstrap samples. For each metric, all methods were
compared in pairwise, two-sided tests on the bootstrapping samples, under the

null hypothesis that the score difference is zero. The p-value for each comparison
was computed using confidence interval inversion, and the values were
FDR-adjusted across all comparisons. Only FDR-adjusted p-values comparing

CellSpace to other methods are shown; *: adjusted p < 0.05; **: adjusted p < 0.01.
f. TF motif scores from the CellSpace embedding for the mammary epithelial
dataset (embedding and clusters visualized in Fig. 2h).
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Extended Data Fig. 4 | CellSpace’s embedding implicitly mitigates donor- and
assay-specific batch effects in large-scale scATAC-seq datasets. a. Batches and
humandonors are well mixed in the CellSpace embedding of the large human
hematopoietic dataset (visualized in Fig. 4b). b. CellSpace embedding of the
large human hematopoietic dataset restricted to 30,211 natural killer and T cells.
c. CellSpace embedding of 37,818 cells from a basal cell carcinoma TME scATAC-
seq dataset from 7 patients, annotated by cell type and by donor, recovers
immune and stromal cell types with no evident donor batch effect.

d. Performance metrics (aggregated biological conservation score, aggregated
batch correction score, and overall score) for all methods on the large human
hematopoietic and TME datasets, excluding the tumor clusters, with 95%
confidence intervals over 1000 bootstrap samples. For each metric, all methods

were compared in pairwise, two-sided tests on the bootstrapping samples,
under the null hypothesis that the score difference is zero. The p-value for
each comparison was computed using confidence interval inversion, and

the values were FDR-adjusted across all comparisons. Only FDR-adjusted
p-values comparing CellSpace to other methods are shown; *: adjusted
p<0.05;*: adjusted p < 0.01. e. Seurat’s SNN-based clustering after CellSpace
jointembedding of the (single-modal) scATAC-seq and the scATAC-seq readout
of the multiome human cortex datasets. f. Membership of annotated cell
types from multiome and (single-modal) scATAC-seq human cortex datasets
in CellSpace clusters asshownin e, after joint embedding, showing coherent
clusters with membership from both assays.
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The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX [0 0 XX [OOOS

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Gelimages and autoradiographs of membranes in binding assays were captured using FLA-7000 image analyzer (Fuijifilm).
MS data were obtained by Xcalibur for LTQ Orbitrap XL (Thermo Fisher Scientific) and Q Exactive hybrid Quadrupole-Orbitrap mass
spectrometer (Thermo Fisher Scientific).
Cryo-EM grids were prepared using Vitrobot Mark IV (Thermo Fisher Scientific).
Automated cryo-EM data acquisition was performed by EPU 2.9 software (Thermo Fisher Scientific) on a Krios G4 transmission electron
microscope (FEI) equipped with a K3 direct electron detector (Gatan).
BioDrop resolution software version 3.3.6.0 (Biochrom) was used for UV data collection.
MassHunter Workstation Qualitative Analysis (Agilent)
SH800S Cell Sorter (Sony Biiotechnology)
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Data analysis Canvas X (version 20) and ChemDraw (20.1 and 22.2) were used to create figures.
UCSF Chimera (version 1.15) and UCSF ChimeraX (version 1.2) were used to analyze and prepare figures of cryo-EM maps and atomic models.
Microsoft Excel for Microsoft 365 MSO and R(3.4.3) was used for statistical analysis.
GraphPad Prism ver 7.04 and 9.3.1 were used to draw bar graphs of binding assay results.
Multi Gauge Version 3.0 was used to quantify the radioactivity in binding assays.
Qual Browser in Xcalibur 4.4 was used to analyze LC/MS data.
Phenix (1. 19. 2) and Coot (version 0.9.4) were used for model building.
RELION 3.1.2 and crYOLO (1.9.1) were used for cryo-EM image processing.
MassHunter Qualitative Analysis Navigator (Agilent, B.08.00)
SH800S software (Sony Biiotechnology)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Publicly available datasets from Protein Data Bank (7K00, 4V8N, and 4V5R) were used for atomic model building and comparison.

Cryo-EM maps and atomic coordinates of the reported structures were deposited in Electron Microscopy Data Bank (EMDB) and Protein Data Bank, respectively,
with the following accession codes; EMD-39577 and 8YUO (A-, P- site P.putida tRNAlle2 on AUAU mRNA); EMD-39578 and 8YUP (A-site P.putida tRNAlle2 on A4
mMRNA); EMD-39579 and 8YUQ (A-site P.putida tRNAlle2 on dA4 mRNA); EMD-39580 and 8YUR (A-site P.putida tRNAlle2 on Am4 mRNA); and EMD-39581 and 8YUS
(A-site P.putida tRNAIle2 on A(F)4 mRNA).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender This study does not involve human research.

Reporting on race, ethnicity, or  This study does not involve human research.
other socially relevant

groupings

Population characteristics This study does not involve human research.
Recruitment This study does not involve human research.
Ethics oversight This study does not involve human research.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was conducted. The sample size for cryo-EM analysis was determined on the basis of a overnight data collection to
obtain sufficient number of particles and achieve high resolution of the complex.

Data exclusions  Particles in the poorly resolved classes after classification were excluded as is the standard practice in cryo-EM analysis. The particles showing
low level of GFP or mCherry expression were excluded from the analysis in reporter assay.

Replication A-site binding assay was performed in quintuplicate (n=3 or 5) to confirm the exact values of the binding ratio and all attempts were
successful with consistent results as shown in the figures. Although cryo-EM analysis was not replicated, the atomic models were generated
from thousands of micrographs. Fluorescent reporter assay was conducted with three replicates derived from different culture (n=3).
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Randomization  Randomization is not relevant to this study since samples were not allocated into experimental groups in this study.

Blinding Blinding is not relevant to this study since the results cannot be affected by whether sample identities were disclosed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

X Plants
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Nicotiana tabacum BY-2 cell line was obtained from Riken BioResource Research Center.

Authentication BY-2 cells are the suspension culture cells that are most widely used in plant science as a model plant system. BY-2 cells
obtained from RIKEN BRC was directly used.

Mycoplasma contamination Not applicable.

Commonly misidentified lines  None.
(See ICLAC register)

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[ ] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:

Yes

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents
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Plants

Seed stocks Arabidopsis thaliana Col-0 was cultivated by Inplanta Innovations Inc. Their seed stock was used.

Novel plant genotypes No novel plant genotypes were produced.

Authentication n/a
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