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Spatial transcriptomics and messenger RNA splicing encode extensive
spatiotemporal information for cell states and transitions. The current
lineage-inference methods either lack spatial dynamics for state
transition or cannot capture different dynamics associated with multiple
cell states and transition paths. Here we present spatial transition

tensor (STT), amethod that uses messenger RNA splicing and spatial
transcriptomes through a multiscale dynamical model to characterize
multistability in space. By learning a four-dimensional transition tensor
and spatial-constrained randomwalk, STT reconstructs cell-state-specific
dynamics and spatial state transitions viaboth short-time local tensor
streamlines between cells and long-time transition paths among attractors.
Benchmarking and applications of STT on several transcriptome datasets

viamultiple technologies on epithelial-mesenchymal transitions,
blood development, spatially resolved mouse brain and chicken heart
development, indicate STT’s capability in recovering cell-state-specific
dynamics and their associated genes not seen using existing methods.
Overall, STT provides a consistent multiscale description of single-cell
transcriptome data across multiple spatiotemporal scales.

The advances of single-cell gene expression profile techniques have
provided an unprecedented resolution to dissect cell-fate decisions.
Metrics such as similarity or distance on a low-dimensional manifold
are applied to single-cell RNA sequencing (scRNA-seq) data to infer
dynamic properties such as pseudotime ordering"?, network abstrac-
tion® or cellular random walk analysis**. Leveraging both unspliced and
spliced counts, the RNA velocity methods®’ explicitly model the dynam-
ics of messenger RNA (mRNA), projecting the future spliced states of
cellsonto scRNA-seq datato reveal the directionality of cell-fate deter-
mination®, and also toimprove trajectory inference’ ™, low-dimensional
embedding'?" and gene regulatory network inference'*".

Spatial transcriptomics measures additional spatialinformation
atindividual cells or spots of a small group of cells, allowing analysis
of heterogenous cell states in space'®”. To infer temporal dynamics
within spatial transcriptomics, SpaceFlow' uses proximity informa-
tion to constrain the cell embedding and pseudotime ordering for
spatial consistency. SIRV"” develops a spatially resolved RNA velocity

approach, by improving estimation of unspliced and spliced mRNA
using reference scRNA-seq counterparts to enrich the spatial tran-
scriptomics gene expression matrices.

While RNA velocity has been widely used, fundamental challenges
remain for reconstructing robust spatiotemporal dynamics®. For
example, multilineages or multiple meta-stable states® ** in complex
spatial tissues cannot be captured by the current models, as spliced
and unspliced transcript levels may diverge due to nonlinear gene
regulation or multicellular signaling. In addition, the time scale of
mRNA splicing is within minutes or hours?*?, during which the current
RNA velocity model converges to one global equilibrium, however,
cell-state transitions may span from days to weeks, (for example, in
hematopoiesis®*>*). While cell-specific gene expression rates may be
used toaccommodate a continuous cell-fate commitment process®¢,
additionalmeasurements, such as metabolic labeling” %, are needed”
and difficult to obtain, for example, in spatial transcriptomics. Last, the
current major RNA velocity methods are only focused on the velocity
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Fig.1|Overview of STT. a, Comparison between the RNA velocity (linear

and single equilibrium) versus STT tensor model (multistable and multiple
attractors). b, Definition of transition tensor and induced RNA velocity by
averaging cell’smembership in different attractors. c-f, Workflow of the STT.

¢, Theinput Uand S count matrices. d,e, Iterative scheme between kinetic
parameter estimation of transition tensor (d) and dynamics decomposition and

Dim. 2
Pathway analysis

Spatial-constrained random walk

coarse-graining (e). f, Output of STT. g, Analysis of spatial transcriptomics data

using STT where the spatial-similarity kernel based on spatial cell coordinates is
combined with the tensor-induced and gene expression-induced kernel to infer
acell’smembership in attractors. In pathway similarity graph, Dim. denotes the
coordinates in reduced dimensions.

of spliced counts, omitting the velocity of unspliced counts that are
closely linked to gene regulation®, which could provide further infor-
mation about ‘attraction force’ into certain cell state.

The multiscale cell attractor theory*° provides a natural tool to
model dynamics across different time scales and resolutions, as well
as account for the multistable states. In such a theory, the temporal
change of gene expression and their mutual regulations are modeled
as dynamical system composed of a set of differential equations. The
stable cell types correspond to multiple locally stable fixed point of
dynamical system under mild perturbation of gene regulation (that s,
multistable states) where the cell states of expression are ‘trapped’, and
the highly plastic transitional cells are modeled as ‘saddle point’ of the
system, such that the cell could make state transitions through certain
direction. Using suchan approach, MuTrans’ coarse-grains sSCRNA-seq

dataat different scalestoidentify attractors and saddle points, allowing
description of short-time fluctuations of cells around attractors locally
while capturing long-time scale transitions of cells among multiple
attractors with saddle points in between. The Gaussian-like kernel
in MuTrans confines its scope to equilibrium and ergodic systems*>.
For nonequilibrium systems, using RNA velocity as input, CellRank®
constructs a cellular random walk using a velocity kernel followed by
coarse-graining analysis and Dynamo? fits the discrete RNA velocities
using continuous functions for attractor geometry and transition
analysis. However, in these methods, the linear RNA velocity model is
incompatible with the presence of multistable attractors inherited in
the data, leading toinconsistency between the transition velocity and
downstream analysis. In addition, such approaches cannot be used
directly for spatial transcriptome data.
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Fig.2|Benchmarking of STT in simulation datasets of toggle-switch and

EMT circuits. a, Comparison between streamlines of STT and other methods

for toggle-switch dataset. The cells are colored by attractor in STT, or Leiden
clustering results in scVelo and UniTVelo. The STT, scVelo and ground-truth
results are embedded in PCA onjoint spliced and unspliced counts, and UniTVelo
result is plotted on the coordinates of spliced counts. b, The box plots across all
cells (n=10,010) of cosine similarity between calculated velocity and ground
truthin different methods. The central box represents the interquartile range,
from the 25th percentiles (bottom bounds) to 75th percentiles (top bounds), and
horizontal line within the box indicates the median (50th percentile).
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The whiskers stretch out to the values that fall within 1.5 times the interquartile
range from the lower and upper quartiles. The dots indicate outliers.

¢,d, Comparison between streamlines of STT and other methods for synthetic
EMT circuit dataset. ¢, The cells are colored with attractor assignment by STT,
and the low-dimensional embedding is the UMAP based on the joint of spliced
and unspliced counts. The streamlines are visualized using the averaged velocity
over attractors. d, The cells are colored with Leiden clustering output,

and the low-dimensional embedding is the UMAP of spliced counts only.

The streamlines are visualized using RNA velocity.

Here we presentaspatial transition tensor (STT) approach torecon-
struct cell attractors in spatial transcriptome data using unspliced and
spliced mRNA counts, to allow quantification of transition paths between
spatial attractors as well as analysis of individual transitional cells. Unlike
the linear RNA velocity model with one global equilibrium (Fig. 1a), STT
assumes the coexistence of multiple attractorsinthejoint unspliced (U)-
spliced (S) counts space, with cells making transitions between attractor
basins (Fig.1a,b). Afour-dimensional transition tensor across cells, genes,
splicing states and attractors is constructed, with attractor-specific
quantities associated with each attractor basin (Fig. 1b). By iteratively
refining the tensor estimation and decomposing the tensor-induced and
spatial-constrained cellular randomwalk (Fig.1c-e,g), STT connects the
scales between local gene expression and splicing dynamics as well as
the global state transitions among attractors. Furthermore, STT ranks
genesthatare mostly relevant to the multistable expression patterns, and
categorizes pathways with similar STT properties (Fig. 1g). By studying
both nonspatial and spatial datasets, we demonstrate STT’s unique capa-
bility to uncover multistable attractors of cells and transition properties
occurring at different spatiotemporal scales.

Results
Overview of STT
Theinputsto STT are the single-cell gene expression matrices of both S
and U counts (Fig. 1c), and the cell annotations (or membership) that
serve as initial guess on what cell state they belong to. In addition, the
spatial coordinates of each cell (or spot) are also required for spatial
transcriptomic data. Through aniteration between parameter estima-
tion and dynamics decomposition, STT constructs an attractor-wise
velocity tensor named transition tensor of shape RNcx2xkxNe where N,
denotes the number of cells, N; the number of genes and K the number
ofattractors. Other quantities of tensor-based dynamics, including the
membershipsof cellsin the attractors, transition probabilities and tran-
sition paths, are subsequently obtained in this construction (Methods).
STT uses the following stochastic model of gene expression and
splicing dynamics

dU,' = (_f, (t,Sl, ""SNG) - ﬁlU,)dt + GidW,;t,
ds; = (BU; - yiSpde + 0,dZ;,,

@
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where U;and S;are the unspliced and spiced counts for gene i. The non-
linear functionfi(t, Sy, ..., Sy, ) models how other genes regulate the
productionrate of gene i. The system can possess multiple fixed points
or attractors representing the different cell states. The parameter ;
represents the mRNA splicing rate and y;is the spliced mRNA degrada-
tionrate. Theindependent Wiener processterms W; ,and Z; . represent
the noise in gene expression. Such stochasticity may induce the
noise-induced cell-state transitions among multistable attractorsata
longer time scale than splicing dynamics.

When most cells are located within the multiple attractor basins
that correspond to the different cell states, with a small fraction of cells
making transitions across the saddle points® (a natural assumption
onthe cell distribution), the unspliced mRNA production term canbe
expanded and approximated to its linear expansion, thus introduc-
ing the attractor-dependent mRNA transcription rate (Fig. 1d and
Methods). Such expansion allows robust estimate of the parameters,
and initializes assignment of the attractor-wise velocities for each cell,
which we call transition tensors (Fig. 1d and Methods).

By constructinganinner-product velocity kernel (Fig. 1d, Methods
and Supplementary Note1), the tensors provide a cellular randomwalk
description thatis asymptotically consistent with continuous stochastic
differential equation (SDE) (that is, equation (1)). Combining with the
Gaussian kernel of gene expression similarity and cell spatial coordinates
(Fig.1gand Methods), the constructed cellular random walk equips cells
ineachattractor with consistent velocity, transition direction and similar
gene expression. Inaddition, the constructed randomwalk encourages
cells to be more likely to make transitions to other spatially adjacent
cellsin the physical space. Through coarse-graining and decomposing
the random walk on attractor levels, the cells’ membership functions
for different attractors are then obtained (Fig.1e and Methods). Ineach
iteration between the tensor model construction and the random walk
decomposition, the updated membership functionimproves the param-
eter estimation in equation (1) by incorporating attractor uncertainty
(Methods). The genes, whose dynamics are most consistent with the
attractor property inthe U-Sspace, are thenidentified duringiteration
(Methods). A monitor moduleisincluded, with regularization and early
stoppingstrategies that canimprove the robustness of iteration through
the user’s control (Methods). Finally, the tensor streamlines to describe
the attractor details, as well as the coarse-grained transition paths to
depictlong-timetransitions, are projected onalow-dimensional dynami-
cal manifold to show the cell-state transitions (Fig. 1f and Methods).

Benchmarking STT in recovering multistable cell states

Wefirstapplied STT to analyze two synthetic datasets based on simu-
lating multistable systems. In the bistable toggle-switch circuit, the
streamlines of averaged velocities over attractorsin STT demonstrate
clearer structures of the two attractors than the streamlines of RNA
velocity and other methods (Fig. 2a and Supplementary Fig. 1). While
RNA velocity streamlines computed by scVelo” and UniTVelo* tend to
diverge fromthe attractor locations, STT streamlines converge toward
the attractors, thus providing amore interpretable representation of
thetoggle-switch landscape (Fig. 2a and Supplementary Fig.1). Moreo-
ver, STT computes an entropy value to distinguish between stable
cells near fixed point and transitional cells across saddle points (Sup-
plementary Fig.1). As shownin both components of transition tensors
with streamlines (Supplementary Fig.1), only when the unspliced and
spliced quantities are considered together canboth attractor basins be

revealed. Although the spliced tensors are consistent with the standard
RNA velocity (Fig. 2a), which depicts transitions between the attractors,
the unspliced tensors naturally introduce an ‘attraction force’ that
‘pulls’ cells toward the center of each attractor, as compared to the
streamlines of cellDancer®” where the cells are attracted to the ‘ends’
within attractor (Supplementary Fig.1). The unspliced counts provide
ameasurementon thelevel of ‘attraction’in STT for anattractor of cell
state. To further benchmark the accuracy of STT, we compared the
cosine similarity between STT unspliced or spliced tensor components
and the ground-truth velocities from the model, and found that STT
ranked top in estimating both spliced and unspliced velocities (Fig. 2b).
In addition, the performance of STT shows agood level of robustness
when subsampling the dataset (Supplementary Fig.1).

Next, we analyzed the simulated gene regulation circuits during
epithelial-mesenchymal transition (EMT), where three attractors,
denoted as epithelial (E), mesenchymal (M) and intermediate cell state
(ICS), may coexist, in some parameter ranges (Methods). Compared to
the RNA velocity calculated by scVelo (Fig. 2), the STT average veloci-
ties (Fig. 2c) clearly recover these three attractors. Overall, STTis able
to reconstruct the complex multistable details in single-cell gene
expression datasets.

STT highlights ICSs in fate decision

We nextanalyzed the scRNA-seq datainthe EMT induction experiment of
humanlung A549 cell lines, including atemporal series of snapshots col-
lected from the first 7 days after TGFB1 treatment’®. STT identifies three
attractors, namely E, ICSand M, consistent with the order of timepoints
indata collection (Fig. 3a,b and Supplementary Fig. 2). Moreover, cells
nearby the ICS attractor, mainly collected at 8 h or 1 day after induc-
tion (Fig. 3b), have higher entropy values (Fig. 3c), thus indicating that
this state is more plastic than epithelial (day 0 and 8 h) and mesenchy-
mal (after day 3) states. This is in good agreement with the proposed
phenotypic plasticity of intermediate epithelial and/or mesenchymal
states in cancer®.

Using the transition vector to predict the transition paths connect-
ing attractors in the epithelial-mesenchymal landscape, we find that
the transition probability flux from E to M always goes through the ICS
(Fig. 3a). In other words, epithelial cells undergoing EMT never directly
switch to a mesenchymal state, but rather acquire intermediate traits
first. The unspliced and spliced counts often exhibit multistability of the
attractors (Fig. 3e and Supplementary Figs.2and 3). The genes with high
multistability scores possess varying expressionlevels in both unspliced
andspliced counts withinvarious attractors, and show agradual change
during E-ICS-M transitions. While the highly ranked multistable genes
suchasITGA1l, are not significantly detected by differential gene expres-
sionanalysis as top-scored marker genes for attractors (Supplementary
Fig.3), theyarefound importantin promoting EMT transitions and tumor
progression*. While the tensor streamlines of splicing dynamics dem-
onstrate the overall direction from Eto MvialCS, whichis also consistent
with the UniTVelo results (Supplementary Fig. 2), the gene expression
dynamics of unspliced counts as well asin the joint U-S space predicted
by STT as well as cellDancer both suggest that cells are ‘attracted’ to
the ICS basins during EMT (Fig. 3f and Supplementary Fig. 2). This is
also consistent with the CellRank absorption probability analysis based
on tensor-induced multistability kernel (Fig. 3d). Together, the tensor
components along with the global transition paths analysis highlight
thelCSasadistinctattractor basin, serving as the hub state during EMT.

Fig.3 | Multistability of EMT in A549 cell lines with TGFB1induction. a, The
global transition path analysis of EMT. Cells are embedded in the constructed
transition coordinates (trans. coord.) of dynamical manifold and the number
indicates fraction of transition flux. Cells are colored by STT attractor.

b, Transition coordinates with cells colored by collection time. ¢, Violin plot of
cell-membership entropy in different attractors. d, Absorption probabilities of
cellsinto different attractors using multistability kernel induced random walk

by STT. e, Top genes that are consistent with the multistability of attractorsin
EMT. f, The streamlines of various components of transition tensors, including
the attractor-averaged and attractor-specific tensors. The low-dimensional
embeddingis the UMAP of both spliced and unspliced counts. In the left panel,
the cells are colored by the attractor assignment. In the right panel, the cells
are colored by their membership in each attractor, and only the tensors of cells
whose memberships are greater than 0.2 in the attractors are shown.
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Fig. 4| Transition tensor analysis of HybISS mouse brain spatial embeddingindicating the clustering of similar biological pathways in mouse
transcriptomics dataset. a,b, The spatial annotation of data and detected brain development spatial dynamics, with the averaged tensor streamlines from
attractor by STT with cells colored by different categories: attractor (a) and various pathways displaying different transition dynamics. Pathways that have at
region (b). ¢, Local transition tensor streamlines in specific attractors 6 and least three genes overlapped with STT multistability genes are shown in the low-
3.Thecells are colored by their memberships in corresponding attractors. dimensional embeddings. The right shows the streamlines of specific pathways
d, Similarity of transition tensors across KEGG pathways. The left shows 2D from different clusters, with cells embedded in spatial coordinates.

Inaddition, we applied STT to blood* and pancreas’ development ~ STT identifies spatial attractors and pathway similarities
datasets and found its capability to resolve complex state transitions, We next applied STT to the HyblSS spatial dataset of mouse brain
and its multistability tensor kernel is consistent with CellRank analysis ~ development**. To enrich the unspliced and spliced counts for better
(Supplementary Figs.4 and 5). tensor estimation, we used the SIRV* algorithm to impute one of the
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f, Local transition tensor streamlines in specific attractors1,2,3and 4. The cells
are colored by their memberships to corresponding attractors.

original spatial data slices at 40 pm at E10 and E11. Compared with
clustering only based on cellular similarity (Supplementary Fig. 6),
STT identifies attractors consistent with spatial locations of different
cell states (Fig. 4a) and brain region annotations in original publica-
tion (Fig. 4b): the cells within the same attractor tend to have similar
spatial coordinates and belong to the same regions. In addition, the
cell assignmentis found to be robust to the weight of spatial diffusion
kernels (Supplementary Fig. 6), attractor initialization (Supplementary
Fig.7), multistability genes filtering (Supplementary Fig. 8) and num-
ber of attractors (Supplementary Fig. 9). The local transition tensors
inthe forebrain and hindbrain attractors (Fig. 4c) are consistent with
UniTVelo analysis (Supplementary Fig. 6).

To evaluate the biological significance of the tensor streamlines,
we performed pathway-specific analysis to evaluate functions associ-
ated with the cell-state transitions and pathway regulations (Fig. 4d).
We used the Kyoto Encylopedia of Genes and Genomes (KEGG) knowl-
edge database, and calculated the similarity among pathways based on
tensor correlations of multistable genes for each pathway (Methods).
Indeed, the pathway-specific tensor demonstrates distinct attractor
dynamics. The latent embedding and clustering of pathways based on
tensor correlation (Fig. 4d) reveal the functional similarity of spatial
state transitions between pathways during developmental process. The
TGF-betaand WNT pathways, known to exhibit cross-talk and cooper-
ate during embryogenesis*, are from distinct clusters in the latent
embedding, and their tensor streamlines are in opposite directions,
especially in midbrain and forebrain attractors (Fig. 4d). Two other
important pathways in brain development, the Hippo and Thyroid
hormone signaling pathways***, are also from different clusters of
pathway tensors, showing opposite streamlinesin midbrain and fore-
brain regions (Fig. 4d). Overall, STT provides dynamical information

for the spatial organizations of cell states and the relations between
pathways regulating state transitions during development.

STT reveals spatial attractors and lineage in chicken heart
We applied STT to the spatially resolved chicken heart data measured
by 10X Visium technology*‘. Our analysis is focused on the last temporal
pointatday 14 from the dataset when the four-chamber development
has finalized with completed events of cardiogenesis and explicit spa-
tial boundaries*.

Using SIRV-imputed unspliced and spliced counts™, STT identifies
five spatially resolved attractors (Fig. 5a and Supplementary Fig. 10).
Among them, attractor 2 coincides with the ‘valves’ region in the
original study, and it mainly consists of fibroblast cells (Fig. 5a,b,d,e).
Attractor O mainly consist of cells from the right ventricle region
(Fig. Se). Attractor 1 mainly localizes in the ‘atria’ region (Fig. 5Se) and
is composed of erythrocytes. While the remaining attractors (3, 4)
are distributed across several connected regions, they all include
the cells of annotated phenotype of cardiomyocytes (Fig. 5a,b,d,e).
The dynamical manifold reveals those discrete attractors (Fig. 5c)
relate to various cell lineages. The attractors 1and 2, which contain
spatially localized lineages of fibroblasts and erythrocytes, all exhibit
the ‘attraction force’ as seen in the tensor streamlines (Fig. 5f). In
comparison, the streamlines of tensors within attractors3and 4 (both
containing cardiomyocytes) indicate their transience in space and
show atendency to transit into atrial regions, which is also observed
inthe ‘attraction’ between unspliced components. This could partly
be explained by the existence of another group of myocytesin the atria
(Fig. 5b,d). Overall, the observed consistency with spatial regions or
cell type annotations indicates STT’s capability to dissect spatially
resolved attractors.
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tensor streamlines of two specific pathways (bottom) with cells colored by
attractors and embedded in spatial coordinates. Pathways that have at least eight
genes overlapped with STT multistability genes are shown in 2D embedding.

STT elucidates region-specific spatial attractors and
stabilities

We next analyzed the high-resolution Stereo-seq mouse adult coronal
hemibrain dataset* processed with bin size 60, which revealed the
complex domains of neuron cells with various biological functions.
Direct application of STT shows several region-specific spatial attrac-
tors that are very consistent with the functional annotations of brain
regions (Fig. 6a,b). The convergent streamlines of tensors (Fig. 6¢c)

suggest that the multistability of gene expression dynamics is well
maintainedin regions such as the cortical subplot (attractor 4) and the
striatum dorsal region (attractor 10). Streamlines flow outward (Fig. 6¢)
inthalamusregions (attractor 8) all tensor components, suggesting its
relatively high plasticity. The pathway embedding based on their ten-
sor dynamics showed that the previously known interacting pathways
such as cGMP-PKG and the calcium signaling pathway*® share similar
tensor dynamics (Fig. 6d). It also suggests that cGMP-PKG is different
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from the oxytocin pathway, in which the streamlines indicate the major
differences occurringin the amygdalar nucleus region (Fig. 6d). Overall,
theresultsindicated that STT can discover spatial regions and quantify
their stabilities through attractor analysis, even in mature tissues.

Discussion

Quantifying and modeling the relative abundance between unspliced
and spliced counts has enabled an effective mechanistic approach to
dissect cell-state transitions from scRNA-seq datasets. To connect
the different time scales among gene expression, mRNA splicing and
cell lineage dynamics, as well as to study the underlying attractors
of these states, we have developed the STT for (1) constructing the
attractor-wise transition tensor, (2) analyzing the probabilistic transi-
tion paths and transitional cells and (3) inferring the genes that account
for the multistability of cell states. This was done through an iterative
computation process between (1) parameter inference in transition
tensor models and (2) multiscale analysis of tensor-induced stochastic
dynamical systems.

Compared with the RNA velocity models, STT is unique in uncov-
ering attractors underlying both the gene expression and the splic-
ing dynamics, as well as quantifying the transitions among them. By
assuming multistability, STT is robust to initial state specifications or
hidden time correction”?****’, The cell-membership functions quantify
transitional cellsin estimating the transition tensors, naturally bridging
the downstream multiscale dynamical analysis.

Toidentify transitional cells and infer transition paths, STT lever-
ages the computed transition tensor, instead of direct usage of RNA
velocity such as CellRank® or Dynamo?®. The multistable transition
tensor is found to be more compatible with the attractor assumption
in downstream analysis. The iterative scheme of STT between tensor
constructionand dynamical dissectionis found to better ensure such
self-consistency. However, since the attractor assumption does not
account for oscillation dynamics, STT needs tobeimproved to capture
the nonequilibrium features of datasets with strong cell cycle effects.

The velocity kernel-based cellular random walk derived from the
transition tensor is critical for connecting the modules of tensor infer-
ence and dynamical decompositioninSTT, allowing better-connected
dynamics at different scales. Theoretical analysis has revealed that
different choices of velocity kernel lead to various continuum limits
informs of ordinary or SDEs*. InSTT, the inner-product kernel is used
to construct the cellular random walk that was shown to be consistent
with the stochastic chemical Langevin model of gene expression*>*°,
while the cosine kernel, which correctly recovers the directionality
of the velocity field*’, is adopted to visualize the local streamlines
within attractors. In addition to the differential equation models,
it may be interesting to formulate STT in the chemical master
equation framework® of RNA velocity in the future.

As a mechanistic model-based approach, STT may be improved
in several aspects. Instead of using attractor-specific zeroth order
approximation of nonlinear gene expression rate functioninequation
(1), higher-order gene interactions could be considered as proposed
recently for gene regulatory network inference®. Multimodal informa-
tionincluding single-cell epigenomics™ or proteomics data® canalso
be incorporated in the multistable dynamical system to enhance the
transition tensor calculation. The automatic detection of root and tar-
get states inmultistable models is always challenging, and the previous
knowledge or knowing the properties related to cells’ differentiation
potencies®** could be helpful.

Overall, STT provides a unified approach to extract spatiotem-
poralinformation fromsingle-cell datasets by bridging the processes
across differenttime scales and tissue regions. Our method allows for a
multiscale description of tissue spatiotemporal structures, connecting
microscopic dynamics of gene expression and splicing, and the macro-
scopic dynamics of cell-state transitions among emergent attractors.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/541592-024-02266-X.
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Methods

Multistability in gene expression and splicing model

We use a simple dynamical model with different parameters around
each steady-state to approximate the mRNA splicing dynamics for
genei:

du;
— =a.; - B,

o = BiUi—viS:.

Here, a.;is the state-dependent unspliced mRNA transcriptionratein
attractorc, B;isthe mRNA splicing rate and y;isthe mRNA degradation
rate. Assuming that the system is close to steady-state, we have
€ = a; — iU, n; = B;U; — y:Swhere €;and n;areindependent and identi-
cally distributed zero-mean Gaussian variables. Due to the invariance
of scales in parameters®®, we set y; = 1 and the maximum likelihood
estimation could be expressed as

K Ne

mm Z Z (af ﬁUk lkeQ + Z ﬁUk - Sk

e c=1k=1

Since the parameters of different genes are estimated independently,
for simplicity of notations, here we omit gene subscriptiandintroduce
the subscript k to denote the cell index. The indicator function of
attractors Iiq_isinitialized using user-provided cell labels or standard
Leiden or Louvain clustering algorithm output, anditisupdated using
membership functioniniterations (described below). The estimation
yields the solution:

N,
Zkil UrSk
N K .
kil (Ulf + Zc:l(Uk - mc)zlkeﬂc>

a‘(:*) - mcﬁ(*)’ﬁ(*) =

ZiG Ueliene

where m, = Uklke"‘ .Compared with steady-steady parameter estima-

tionin the standard RNA velocity model, the splicing rate parameter
Binthe multistable model is not only attractor-type specific, but also
depends onboth unspliced and spliced counts.

Foreach cell kwith counts (U, Sk), its velocity withrespecttoeach
attractor c is defined as vy, = a ) _ gy, Ukse = BPU; — S where
subscript uands corresponds to unspliced and spliced counts, respec-
tively. This estimation is repeated for each gene, therefore, leading to
afour-dimensional transition tensor vy ;. , € RNex2xKxNe,

Tensor-based and spatial-constrained transition dynamics
Next, STT constructs the Markov chain transition probabilities
amongindividual cellsbased onthe calculated tensor, gene expression
similarity and spatial coordinates if available (Fig. 1g). The
transition probability is constructed from three components:
P=wP' + w,P* + (1 —w; — w,) 5, where P, FFand P° are transition prob-
abilities induced by velocity, similarity and spatial kernels, respectively.
Here w; and w, are the hyperparameters of the algorithm to balance
the effects of different modalities of tensor dynamics, gene expression
similarity and spatial closeness. Their effect on output has been tested
inSupplementary Fig. 6.

To construct P, we first transform the attractor-specific tensor to
the attractor-independent velocity Vby averaging along the dimension
of attractors:

l/k,u,g = Zpk,cvk,u,c,g’ Vk,s,g = zpk,c’}k,s,c,g
c c

Here p, .denotes the membership function of cell kin attractor c. The
stable celljlocated around the fixed point of the attractor basin dyield
pjq = 1, whiletransitional cell Inear saddle points has multiple positive
componentsin p;, pointing toward the attractors to which the cell can
transitioninto.

Having calculated the tensor, we next construct the
velocity-induced transition probability P' using the inner-product
kernel* (Supplementary Note 1). The weight of transition propensity
fromcell kto lis wy, = eXp(V,CuAUu + VZ,SASH) where AUy, = U, — Uy and
ASy = S; — Sy Therandom walk induced by such a kernel is consistent
with the SDE model of equation (1) (ref. 49 and Supplementary Note 1).
The cell similarity induced transition probability P*is constructed from
the Gaussian kernel of the diffusion map based on gene expression
counts? Last, the spatially constrained transition probability P is
constructed from the Gaussian kernel of spatial location coordinates,
such that cells with similar spatial locations are more likely to make
transitions between each other. As a result, such cells are more likely
tobe assigned into the same attractor basins.

To calculate the membership function in attractors, we use the
GPPCA* algorithm to decompose the constructed random walk transi-
tion probability matrix Pand coarse-grain the nonequilibrium Markov
chains and obtain p, .. This algorithm allows for the factoring and
‘coarse-graining’ of nonequilibrium transition probability matrices of
cellular randomwalk, which holds true for most of the velocity-induced
dynamics, to obtain the attractor within the dataas well as cell’srelevant
position (that is, membership) in each attractor. The coarse-grained
(cg) transition probability matrix P} on the attractor level (K is the
totalnumber of attractors) is obtamed simultaneously using the GPPCA
algorithm. Giventhe cell'smembership function, its transitional entropy
canbedefinedas g; = — Zle picInp;.. The larger entropy indicates the
higher propensity of the cell to make transitions between attractors.

Iterative scheme for parameter estimation and attractor
membership quantification

After obtaining the membership function, the parameters of the tensor
model are updated toincorporate the uncertainty of the cells’ positions
inattractors. We define aloss function

K Ne

ZZ ﬂUk pkc+z ﬁUk—Sk +/IZa2+/1ﬁ2

c=1k=1 c=1

(aoﬂ pkc

where A denotes the strength of regularization term of kinetic param-
eters. Intuitively, the ‘stable cells’ in attractor c have larger weight
valuesin the regression loss function since the confidence level about
steady-state is larger. We analytically solve the optimizer

N
Zoker UnSk

() _ ) () _
ac - mcﬁ ’B - N, K B
kil (U/f + ZC=1(Uk - mc)zpk,c) +A

Zk 1UkPre

where m, =
Z Pkc+/1

Inturn, the updated tensor with the newly optimized parameters
leads to an updated membership function. In STT, we adopt an itera-
tive scheme to update tensor parameters and attractor memberships
jointly,

amt, gl = argmin,_,J (ac,ﬁ,pz’c),

pzzl = DynamicalAnalysis(a?, ")
where the superscript n denotes the number of iterations, and Dynami-
calAnalysis denotes the described procedure to update membership
function. The scheme stops once the membership function does not
improve within certain threshold, or the iteration exceeds the allowed
maximum number of iterations.

To dissect the multistable dynamics accurately, we also filter the
genes in each iteration based on their goodness of fit to model that
includes the genes showing multistability. The metric of goodness, or

gene multistability score, is defined as 1 — — 292l _ where N,
Nc(Var(U)+Var(S))
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denotes the number of cells. Only the tensor of filtered genes, whose
multistability scores are larger than certain threshold, are used to
calculate velocity kernel and therefore update the membership func-
tion. The hyperparameters of STT and their values chosen in datasets
analyzed are presented in Supplementary Tables 1and 2.

To allow robust control of the iteration scheme, we incorporated
a monitor module that outputs the multistability scores of genes in
bothtraining (by default 80% of all sample sizes) and test dataset (20%
ofallsamples). The training dataset was used to fit kinetic parameters
(a.,B), and the multistability scores of genes are calculated on test
dataset. The monitor module outputs the multistability scores and
number of genes pass the threshold. Given the output, the user may
choosetointeractively (1) modify the threshold set for filtering multi-
stability genes, (2) adjust the weight of tensor-induced kernel against
gene expression similarity or spatial kernels to encourage the
high-quality transition matrices or (3) determine whether to stop the
iteration, therefore facilitating the adaptive accuracy. The interface of
monitor module is demonstrated in Supplementary Fig. 1f. We also
demonstrate the efficiency and scalability of STT algorithm in Sup-
plementary Table 3 and Supplementary Fig. 10.

Initialization of iteration

To start the iteration, STT requests the input of existing clustering
results to create attractor membership by one-hot encoding. The previ-
ousbiological annotation of the dataset or spatial region segmentation
results were recommended as the input. When such information is
unavailable, users may adopt clustering algorithms such as Leiden or
Louvainto cluster the cellsbased on expression counts (spliced only or
spliced and unspliced jointly) or spatial location of the cells. The robust-
ness to initialization of STT was investigated (Supplementary Fig. 7).
Whenever the user prefers alternative clustering methods and/or more
systematic analysis, STT provides an option to feed a user-generated
clustering output as the input for the initializations of STT.

Visualization of dynamical manifold and transition paths
Tovisualize the low-dimensional embeddings of cells, STT uses the join
state x; = (U, Sx) € R?Na for each cell k as the input of dimensionality
reduction algorithms such as principal component analysis (PCA) or
uniform manifold approximation and projection (UMAP). To visualize
the dynamical manifold, we define the cell’s position in the
two-dimensional (2D) plane as y; = Zle PicHc, Where g is the center
of PCA or UMAP embeddings of each attractor and K is the number of
attractors. Then, a Gaussian mixture density estimation P(y) is con-
structed forall y, using an expectation-maximization algorithm, where
the initial weights for K components are the stationary distributions
of attractor-level, coarse-grained random walk transition probability
matrix P derived in the previous section. The surface of dynamical
manifold was calculated as ¢ (y) = —In?(y). The streamlines of the veloc-
ity Vi = (Viw» Vis) € R?%ein the 2D plane are calculated using the linear
(PCA) or nonlinear (UMAP) projection approach in scVelo with the
cosine kernel. Given initial and final states, the transition paths and
their proportion of the total transition probability flux are calculated
using the transition path theory*® with the PYEMMA package™.

Synthetic datasets and benchmarking

Thesimulation data (n=10,010 cells) for the toggle-switch system were
generated by the SDE model of amutually inhibited two-gene circuits
withnonlinear gene regulation and/or splicing dynamics and stochastic
noise (Supplementary Note 2). Two attractors are present in the system
withasaddle pointin between. The synthetic dataset (n = 5,000 cells) of
EMTswas generated by the SDE model of aseven-gene core circuit dur-
ing EMT adapted to include mRNA splicing™>°°. With different levels of
extrinsic signal TGFB, the system has saddle-node bifurcations withina
certain parameter range and three attractors may coexist, representing
epithelial state, ICS and mesenchymal state (Supplementary Note 2).

We simulated different levels of TGFB to model the EMT process. For
both datasets, the Euler-Maruyama method was used to simulate the
SDE trajectories, with negative gene expression values adjusted to zero
during each time step of the trajectory simulation.

Pathway analysis

To analyze the similarities between tensor dynamics in various path-
ways, we first downloaded the pathway databases, suchas KEGG, using
the GSEApy package®'. Next, for each pathway we identified the genes
shared by the pathway databases and the STT multistability analysis.
For any selected gene sets that contain a sufficient number of genes, we
calculatedtheir cosine-kernel velocity graph using the averaged tensor
of both spliced counts and unspliced counts, and then computed the
Pearson’s correlation coefficients between pathway-specific velocity
graphs. The UMAP dimensionality reduction of pathways was then
performed on the principal components of the correlation matrix,
and clustering was performed on UMAP with K-means algorithm by
silhouette score to choose the optimal number of clusters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All the datasets used in this paper are publicly available. The detailed
preprocessing of datasets is described in Supplementary Notes.
The simulation datasets of synthetic circuits are available at https://
github.com/cliffzhou92/STT/tree/release/data. The EMT dataset of
human lung A549 cell lines is available at GSE147405. The pancreas
dataset (originally available at GSE132188) and adult human bone
marrow datasets (originally available at https://data.humancellat-
las.org/explore/projects/091cf39b-01bc-42e5-9437-f419a66c8a45)
can be downloaded from the built-in datasets of the scvelo==0.2.4
package (https://scvelo.readthedocs.io/en/stable/api.html). The spa-
tial datasets of mouse brain and chicken heart as well as sScRNA-seq
datasets used for imputation can be downloaded from https://doi.
org/10.5281/zenodo0.6798658 (ref. 62). The Stereo-seq mouse brain
dataset with unspliced and spliced counts was downloaded from the
Spateo package (https://github.com/aristoteleo/spateo-tutorials,
https://www.dropbox.com/s/c5tu4drxdaO1mOu/mousebrain_bin60.
h5ad?dI=0). The KEGG database was originally available on the Enri-
chr webpage (https://maayanlab.cloud/Enrichr/#librariesdownlo
aded) and downloaded using gseapy==1.0.4. The processed data-
sets for analysis are also stored at https://disk.pku.edu.cn/link/
AAD1681DAD531D47699D459BB46C4651DS8.

Code availability

STT isimplemented as a Python package available at https://github.
com/cliffzhou92/STT/tree/release. The source code for simulation
and the notebook files to reproduce all analysis in the paper are
also available at https://github.com/cliffzhou92/STT/tree/release/
example_notebooks.
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