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Spatial transition tensor of single cells

Peijie Zhou    1,4,5,6, Federico Bocci1, Tiejun Li2 & Qing Nie    1,3 

Spatial transcriptomics and messenger RNA splicing encode extensive 
spatiotemporal information for cell states and transitions. The current 
lineage-inference methods either lack spatial dynamics for state 
transition or cannot capture different dynamics associated with multiple 
cell states and transition paths. Here we present spatial transition 
tensor (STT), a method that uses messenger RNA splicing and spatial 
transcriptomes through a multiscale dynamical model to characterize 
multistability in space. By learning a four-dimensional transition tensor 
and spatial-constrained random walk, STT reconstructs cell-state-specific 
dynamics and spatial state transitions via both short-time local tensor 
streamlines between cells and long-time transition paths among attractors. 
Benchmarking and applications of STT on several transcriptome datasets 
via multiple technologies on epithelial–mesenchymal transitions, 
blood development, spatially resolved mouse brain and chicken heart 
development, indicate STT’s capability in recovering cell-state-specific 
dynamics and their associated genes not seen using existing methods. 
Overall, STT provides a consistent multiscale description of single-cell 
transcriptome data across multiple spatiotemporal scales.

The advances of single-cell gene expression profile techniques have 
provided an unprecedented resolution to dissect cell-fate decisions. 
Metrics such as similarity or distance on a low-dimensional manifold 
are applied to single-cell RNA sequencing (scRNA-seq) data to infer 
dynamic properties such as pseudotime ordering1,2, network abstrac-
tion3 or cellular random walk analysis4,5. Leveraging both unspliced and 
spliced counts, the RNA velocity methods6,7 explicitly model the dynam-
ics of messenger RNA (mRNA), projecting the future spliced states of 
cells onto scRNA-seq data to reveal the directionality of cell-fate deter-
mination8, and also to improve trajectory inference9–11, low-dimensional 
embedding12,13 and gene regulatory network inference14,15.

Spatial transcriptomics measures additional spatial information 
at individual cells or spots of a small group of cells, allowing analysis 
of heterogenous cell states in space16,17. To infer temporal dynamics 
within spatial transcriptomics, SpaceFlow18 uses proximity informa-
tion to constrain the cell embedding and pseudotime ordering for 
spatial consistency. SIRV19 develops a spatially resolved RNA velocity 

approach, by improving estimation of unspliced and spliced mRNA 
using reference scRNA-seq counterparts to enrich the spatial tran-
scriptomics gene expression matrices.

While RNA velocity has been widely used, fundamental challenges 
remain for reconstructing robust spatiotemporal dynamics20. For 
example, multilineages or multiple meta-stable states21–23 in complex 
spatial tissues cannot be captured by the current models, as spliced 
and unspliced transcript levels may diverge due to nonlinear gene 
regulation or multicellular signaling. In addition, the time scale of 
mRNA splicing is within minutes or hours24,25, during which the current 
RNA velocity model converges to one global equilibrium, however, 
cell-state transitions may span from days to weeks, (for example, in 
hematopoiesis8,20,25). While cell-specific gene expression rates may be 
used to accommodate a continuous cell-fate commitment process25,26, 
additional measurements, such as metabolic labeling27–29, are needed25 
and difficult to obtain, for example, in spatial transcriptomics. Last, the 
current major RNA velocity methods are only focused on the velocity 
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data at different scales to identify attractors and saddle points, allowing 
description of short-time fluctuations of cells around attractors locally 
while capturing long-time scale transitions of cells among multiple 
attractors with saddle points in between. The Gaussian-like kernel 
in MuTrans confines its scope to equilibrium and ergodic systems4,5. 
For nonequilibrium systems, using RNA velocity as input, CellRank8 
constructs a cellular random walk using a velocity kernel followed by 
coarse-graining analysis and Dynamo25 fits the discrete RNA velocities 
using continuous functions for attractor geometry and transition 
analysis. However, in these methods, the linear RNA velocity model is 
incompatible with the presence of multistable attractors inherited in 
the data, leading to inconsistency between the transition velocity and 
downstream analysis. In addition, such approaches cannot be used 
directly for spatial transcriptome data.

of spliced counts, omitting the velocity of unspliced counts that are 
closely linked to gene regulation15, which could provide further infor-
mation about ‘attraction force’ into certain cell state.

The multiscale cell attractor theory30–35 provides a natural tool to 
model dynamics across different time scales and resolutions, as well 
as account for the multistable states. In such a theory, the temporal 
change of gene expression and their mutual regulations are modeled 
as dynamical system composed of a set of differential equations. The 
stable cell types correspond to multiple locally stable fixed point of 
dynamical system under mild perturbation of gene regulation (that is, 
multistable states) where the cell states of expression are ‘trapped’, and 
the highly plastic transitional cells are modeled as ‘saddle point’ of the 
system, such that the cell could make state transitions through certain 
direction. Using such an approach, MuTrans5 coarse-grains scRNA-seq 
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Fig. 1 | Overview of STT. a, Comparison between the RNA velocity (linear 
and single equilibrium) versus STT tensor model (multistable and multiple 
attractors). b, Definition of transition tensor and induced RNA velocity by 
averaging cell’s membership in different attractors. c–f, Workflow of the STT. 
c, The input U and S count matrices. d,e, Iterative scheme between kinetic 
parameter estimation of transition tensor (d) and dynamics decomposition and 

coarse-graining (e). f, Output of STT. g, Analysis of spatial transcriptomics data 
using STT where the spatial-similarity kernel based on spatial cell coordinates is 
combined with the tensor-induced and gene expression-induced kernel to infer 
a cell’s membership in attractors. In pathway similarity graph, Dim. denotes the 
coordinates in reduced dimensions.
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Here we present a spatial transition tensor (STT) approach to recon-
struct cell attractors in spatial transcriptome data using unspliced and 
spliced mRNA counts, to allow quantification of transition paths between 
spatial attractors as well as analysis of individual transitional cells. Unlike 
the linear RNA velocity model with one global equilibrium (Fig. 1a), STT 
assumes the coexistence of multiple attractors in the joint unspliced (U)–
spliced (S) counts space, with cells making transitions between attractor 
basins (Fig. 1a,b). A four-dimensional transition tensor across cells, genes, 
splicing states and attractors is constructed, with attractor-specific 
quantities associated with each attractor basin (Fig. 1b). By iteratively 
refining the tensor estimation and decomposing the tensor-induced and 
spatial-constrained cellular random walk (Fig. 1c–e,g), STT connects the 
scales between local gene expression and splicing dynamics as well as 
the global state transitions among attractors. Furthermore, STT ranks 
genes that are mostly relevant to the multistable expression patterns, and 
categorizes pathways with similar STT properties (Fig. 1g). By studying 
both nonspatial and spatial datasets, we demonstrate STT’s unique capa-
bility to uncover multistable attractors of cells and transition properties 
occurring at different spatiotemporal scales.

Results
Overview of STT
The inputs to STT are the single-cell gene expression matrices of both S 
and U counts (Fig. 1c), and the cell annotations (or membership) that 
serve as initial guess on what cell state they belong to. In addition, the 
spatial coordinates of each cell (or spot) are also required for spatial 
transcriptomic data. Through an iteration between parameter estima-
tion and dynamics decomposition, STT constructs an attractor-wise 
velocity tensor named transition tensor of shape ℝNC×2×K×NG, where NC 
denotes the number of cells, NG the number of genes and K the number 
of attractors. Other quantities of tensor-based dynamics, including the 
memberships of cells in the attractors, transition probabilities and tran-
sition paths, are subsequently obtained in this construction (Methods).

STT uses the following stochastic model of gene expression and 
splicing dynamics

{
dUi = ( fi (t, S1,…, SNG ) − βiUi)dt + σidWi,t,

dSi = (βiUi − γiSi)dt + σidZi,t,
(1)
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Fig. 2 | Benchmarking of STT in simulation datasets of toggle-switch and 
EMT circuits. a, Comparison between streamlines of STT and other methods 
for toggle-switch dataset. The cells are colored by attractor in STT, or Leiden 
clustering results in scVelo and UniTVelo. The STT, scVelo and ground-truth 
results are embedded in PCA on joint spliced and unspliced counts, and UniTVelo 
result is plotted on the coordinates of spliced counts. b, The box plots across all 
cells (n = 10,010) of cosine similarity between calculated velocity and ground 
truth in different methods. The central box represents the interquartile range, 
from the 25th percentiles (bottom bounds) to 75th percentiles (top bounds), and 
horizontal line within the box indicates the median (50th percentile).  

The whiskers stretch out to the values that fall within 1.5 times the interquartile  
range from the lower and upper quartiles. The dots indicate outliers.  
c,d, Comparison between streamlines of STT and other methods for synthetic 
EMT circuit dataset. c, The cells are colored with attractor assignment by STT,  
and the low-dimensional embedding is the UMAP based on the joint of spliced 
and unspliced counts. The streamlines are visualized using the averaged velocity 
over attractors. d, The cells are colored with Leiden clustering output,  
and the low-dimensional embedding is the UMAP of spliced counts only.  
The streamlines are visualized using RNA velocity.
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where Ui and Si are the unspliced and spiced counts for gene i. The non-
linear function fi(t, S1,…, SNG )  models how other genes regulate the 
production rate of gene i. The system can possess multiple fixed points 
or attractors representing the different cell states. The parameter βi 
represents the mRNA splicing rate and γi is the spliced mRNA degrada-
tion rate. The independent Wiener process terms Wi,t and Zi,t represent 
the noise in gene expression. Such stochasticity may induce the 
noise-induced cell-state transitions among multistable attractors at a 
longer time scale than splicing dynamics.

When most cells are located within the multiple attractor basins 
that correspond to the different cell states, with a small fraction of cells 
making transitions across the saddle points5 (a natural assumption 
on the cell distribution), the unspliced mRNA production term can be 
expanded and approximated to its linear expansion, thus introduc-
ing the attractor-dependent mRNA transcription rate (Fig. 1d and 
Methods). Such expansion allows robust estimate of the parameters, 
and initializes assignment of the attractor-wise velocities for each cell, 
which we call transition tensors (Fig. 1d and Methods).

By constructing an inner-product velocity kernel (Fig. 1d, Methods 
and Supplementary Note 1), the tensors provide a cellular random walk 
description that is asymptotically consistent with continuous stochastic 
differential equation (SDE) (that is, equation (1)). Combining with the 
Gaussian kernel of gene expression similarity and cell spatial coordinates 
(Fig. 1g and Methods), the constructed cellular random walk equips cells 
in each attractor with consistent velocity, transition direction and similar 
gene expression. In addition, the constructed random walk encourages 
cells to be more likely to make transitions to other spatially adjacent 
cells in the physical space. Through coarse-graining and decomposing 
the random walk on attractor levels, the cells’ membership functions 
for different attractors are then obtained (Fig. 1e and Methods). In each 
iteration between the tensor model construction and the random walk 
decomposition, the updated membership function improves the param-
eter estimation in equation (1) by incorporating attractor uncertainty 
(Methods). The genes, whose dynamics are most consistent with the 
attractor property in the U–S space, are then identified during iteration 
(Methods). A monitor module is included, with regularization and early 
stopping strategies that can improve the robustness of iteration through 
the user’s control (Methods). Finally, the tensor streamlines to describe 
the attractor details, as well as the coarse-grained transition paths to 
depict long-time transitions, are projected on a low-dimensional dynami-
cal manifold to show the cell-state transitions (Fig. 1f and Methods).

Benchmarking STT in recovering multistable cell states
We first applied STT to analyze two synthetic datasets based on simu-
lating multistable systems. In the bistable toggle-switch circuit, the 
streamlines of averaged velocities over attractors in STT demonstrate 
clearer structures of the two attractors than the streamlines of RNA 
velocity and other methods (Fig. 2a and Supplementary Fig. 1). While 
RNA velocity streamlines computed by scVelo7 and UniTVelo36 tend to 
diverge from the attractor locations, STT streamlines converge toward 
the attractors, thus providing a more interpretable representation of 
the toggle-switch landscape (Fig. 2a and Supplementary Fig. 1). Moreo-
ver, STT computes an entropy value to distinguish between stable 
cells near fixed point and transitional cells across saddle points (Sup-
plementary Fig. 1). As shown in both components of transition tensors 
with streamlines (Supplementary Fig. 1), only when the unspliced and 
spliced quantities are considered together can both attractor basins be 

revealed. Although the spliced tensors are consistent with the standard 
RNA velocity (Fig. 2a), which depicts transitions between the attractors, 
the unspliced tensors naturally introduce an ‘attraction force’ that 
‘pulls’ cells toward the center of each attractor, as compared to the 
streamlines of cellDancer37 where the cells are attracted to the ‘ends’ 
within attractor (Supplementary Fig. 1). The unspliced counts provide 
a measurement on the level of ‘attraction’ in STT for an attractor of cell 
state. To further benchmark the accuracy of STT, we compared the 
cosine similarity between STT unspliced or spliced tensor components 
and the ground-truth velocities from the model, and found that STT 
ranked top in estimating both spliced and unspliced velocities (Fig. 2b). 
In addition, the performance of STT shows a good level of robustness 
when subsampling the dataset (Supplementary Fig. 1).

Next, we analyzed the simulated gene regulation circuits during 
epithelial–mesenchymal transition (EMT), where three attractors, 
denoted as epithelial (E), mesenchymal (M) and intermediate cell state 
(ICS), may coexist, in some parameter ranges (Methods). Compared to 
the RNA velocity calculated by scVelo (Fig. 2), the STT average veloci-
ties (Fig. 2c) clearly recover these three attractors. Overall, STT is able 
to reconstruct the complex multistable details in single-cell gene 
expression datasets.

STT highlights ICSs in fate decision
We next analyzed the scRNA-seq data in the EMT induction experiment of 
human lung A549 cell lines, including a temporal series of snapshots col-
lected from the first 7 days after TGFB1 treatment38. STT identifies three 
attractors, namely E, ICS and M, consistent with the order of timepoints 
in data collection (Fig. 3a,b and Supplementary Fig. 2). Moreover, cells 
nearby the ICS attractor, mainly collected at 8 h or 1 day after induc-
tion (Fig. 3b), have higher entropy values (Fig. 3c), thus indicating that 
this state is more plastic than epithelial (day 0 and 8 h) and mesenchy-
mal (after day 3) states. This is in good agreement with the proposed 
phenotypic plasticity of intermediate epithelial and/or mesenchymal  
states in cancer39.

Using the transition vector to predict the transition paths connect-
ing attractors in the epithelial–mesenchymal landscape, we find that 
the transition probability flux from E to M always goes through the ICS 
(Fig. 3a). In other words, epithelial cells undergoing EMT never directly 
switch to a mesenchymal state, but rather acquire intermediate traits 
first. The unspliced and spliced counts often exhibit multistability of the 
attractors (Fig. 3e and Supplementary Figs. 2 and 3). The genes with high 
multistability scores possess varying expression levels in both unspliced 
and spliced counts within various attractors, and show a gradual change 
during E–ICS–M transitions. While the highly ranked multistable genes 
such as ITGA11, are not significantly detected by differential gene expres-
sion analysis as top-scored marker genes for attractors (Supplementary 
Fig. 3), they are found important in promoting EMT transitions and tumor 
progression40. While the tensor streamlines of splicing dynamics dem-
onstrate the overall direction from E to M via ICS, which is also consistent 
with the UniTVelo results (Supplementary Fig. 2), the gene expression 
dynamics of unspliced counts as well as in the joint U–S space predicted 
by STT as well as cellDancer both suggest that cells are ‘attracted’ to 
the ICS basins during EMT (Fig. 3f and Supplementary Fig. 2). This is 
also consistent with the CellRank absorption probability analysis based 
on tensor-induced multistability kernel (Fig. 3d). Together, the tensor 
components along with the global transition paths analysis highlight 
the ICS as a distinct attractor basin, serving as the hub state during EMT.

Fig. 3 | Multistability of EMT in A549 cell lines with TGFB1 induction. a, The 
global transition path analysis of EMT. Cells are embedded in the constructed 
transition coordinates (trans. coord.) of dynamical manifold and the number 
indicates fraction of transition flux. Cells are colored by STT attractor.  
b, Transition coordinates with cells colored by collection time. c, Violin plot of 
cell-membership entropy in different attractors. d, Absorption probabilities of 
cells into different attractors using multistability kernel induced random walk 

by STT. e, Top genes that are consistent with the multistability of attractors in 
EMT. f, The streamlines of various components of transition tensors, including 
the attractor-averaged and attractor-specific tensors. The low-dimensional 
embedding is the UMAP of both spliced and unspliced counts. In the left panel, 
the cells are colored by the attractor assignment. In the right panel, the cells 
are colored by their membership in each attractor, and only the tensors of cells 
whose memberships are greater than 0.2 in the attractors are shown.
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In addition, we applied STT to blood41 and pancreas7 development 
datasets and found its capability to resolve complex state transitions, 
and its multistability tensor kernel is consistent with CellRank analysis 
(Supplementary Figs. 4 and 5).

STT identifies spatial attractors and pathway similarities
We next applied STT to the HybISS spatial dataset of mouse brain 
development42. To enrich the unspliced and spliced counts for better 
tensor estimation, we used the SIRV19 algorithm to impute one of the 
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Fig. 4 | Transition tensor analysis of HybISS mouse brain spatial 
transcriptomics dataset. a,b, The spatial annotation of data and detected 
attractor by STT with cells colored by different categories: attractor (a) and 
region (b). c, Local transition tensor streamlines in specific attractors 6 and 
3. The cells are colored by their memberships in corresponding attractors. 
d, Similarity of transition tensors across KEGG pathways. The left shows 2D 

embedding indicating the clustering of similar biological pathways in mouse 
brain development spatial dynamics, with the averaged tensor streamlines from 
various pathways displaying different transition dynamics. Pathways that have at 
least three genes overlapped with STT multistability genes are shown in the low-
dimensional embeddings. The right shows the streamlines of specific pathways 
from different clusters, with cells embedded in spatial coordinates.
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original spatial data slices at 40 μm at E10 and E11. Compared with 
clustering only based on cellular similarity (Supplementary Fig. 6), 
STT identifies attractors consistent with spatial locations of different 
cell states (Fig. 4a) and brain region annotations in original publica-
tion (Fig. 4b): the cells within the same attractor tend to have similar 
spatial coordinates and belong to the same regions. In addition, the 
cell assignment is found to be robust to the weight of spatial diffusion 
kernels (Supplementary Fig. 6), attractor initialization (Supplementary 
Fig. 7), multistability genes filtering (Supplementary Fig. 8) and num-
ber of attractors (Supplementary Fig. 9). The local transition tensors 
in the forebrain and hindbrain attractors (Fig. 4c) are consistent with 
UniTVelo analysis (Supplementary Fig. 6).

To evaluate the biological significance of the tensor streamlines, 
we performed pathway-specific analysis to evaluate functions associ-
ated with the cell-state transitions and pathway regulations (Fig. 4d). 
We used the Kyoto Encylopedia of Genes and Genomes (KEGG) knowl-
edge database, and calculated the similarity among pathways based on 
tensor correlations of multistable genes for each pathway (Methods). 
Indeed, the pathway-specific tensor demonstrates distinct attractor 
dynamics. The latent embedding and clustering of pathways based on 
tensor correlation (Fig. 4d) reveal the functional similarity of spatial 
state transitions between pathways during developmental process. The 
TGF-beta and WNT pathways, known to exhibit cross-talk and cooper-
ate during embryogenesis43, are from distinct clusters in the latent 
embedding, and their tensor streamlines are in opposite directions, 
especially in midbrain and forebrain attractors (Fig. 4d). Two other 
important pathways in brain development, the Hippo and Thyroid 
hormone signaling pathways44,45, are also from different clusters of 
pathway tensors, showing opposite streamlines in midbrain and fore-
brain regions (Fig. 4d). Overall, STT provides dynamical information 

for the spatial organizations of cell states and the relations between 
pathways regulating state transitions during development.

STT reveals spatial attractors and lineage in chicken heart
We applied STT to the spatially resolved chicken heart data measured 
by 10X Visium technology46. Our analysis is focused on the last temporal 
point at day 14 from the dataset when the four-chamber development 
has finalized with completed events of cardiogenesis and explicit spa-
tial boundaries46.

Using SIRV-imputed unspliced and spliced counts19, STT identifies 
five spatially resolved attractors (Fig. 5a and Supplementary Fig. 10). 
Among them, attractor 2 coincides with the ‘valves’ region in the 
original study, and it mainly consists of fibroblast cells (Fig. 5a,b,d,e). 
Attractor 0 mainly consist of cells from the right ventricle region 
(Fig. 5e). Attractor 1 mainly localizes in the ‘atria’ region (Fig. 5e) and 
is composed of erythrocytes. While the remaining attractors (3, 4) 
are distributed across several connected regions, they all include 
the cells of annotated phenotype of cardiomyocytes (Fig. 5a,b,d,e). 
The dynamical manifold reveals those discrete attractors (Fig. 5c) 
relate to various cell lineages. The attractors 1 and 2, which contain 
spatially localized lineages of fibroblasts and erythrocytes, all exhibit 
the ‘attraction force’ as seen in the tensor streamlines (Fig. 5f). In 
comparison, the streamlines of tensors within attractors 3 and 4 (both 
containing cardiomyocytes) indicate their transience in space and 
show a tendency to transit into atrial regions, which is also observed 
in the ‘attraction’ between unspliced components. This could partly 
be explained by the existence of another group of myocytes in the atria 
(Fig. 5b,d). Overall, the observed consistency with spatial regions or 
cell type annotations indicates STT’s capability to dissect spatially 
resolved attractors.
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STT elucidates region-specific spatial attractors and 
stabilities
We next analyzed the high-resolution Stereo-seq mouse adult coronal 
hemibrain dataset47 processed with bin size 60, which revealed the 
complex domains of neuron cells with various biological functions. 
Direct application of STT shows several region-specific spatial attrac-
tors that are very consistent with the functional annotations of brain 
regions (Fig. 6a,b). The convergent streamlines of tensors (Fig. 6c) 

suggest that the multistability of gene expression dynamics is well 
maintained in regions such as the cortical subplot (attractor 4) and the 
striatum dorsal region (attractor 10). Streamlines flow outward (Fig. 6c) 
in thalamus regions (attractor 8) all tensor components, suggesting its 
relatively high plasticity. The pathway embedding based on their ten-
sor dynamics showed that the previously known interacting pathways 
such as cGMP–PKG and the calcium signaling pathway48 share similar 
tensor dynamics (Fig. 6d). It also suggests that cGMP–PKG is different 
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from the oxytocin pathway, in which the streamlines indicate the major 
differences occurring in the amygdalar nucleus region (Fig. 6d). Overall, 
the results indicated that STT can discover spatial regions and quantify 
their stabilities through attractor analysis, even in mature tissues.

Discussion
Quantifying and modeling the relative abundance between unspliced 
and spliced counts has enabled an effective mechanistic approach to 
dissect cell-state transitions from scRNA-seq datasets. To connect 
the different time scales among gene expression, mRNA splicing and 
cell lineage dynamics, as well as to study the underlying attractors 
of these states, we have developed the STT for (1) constructing the 
attractor-wise transition tensor, (2) analyzing the probabilistic transi-
tion paths and transitional cells and (3) inferring the genes that account 
for the multistability of cell states. This was done through an iterative 
computation process between (1) parameter inference in transition 
tensor models and (2) multiscale analysis of tensor-induced stochastic 
dynamical systems.

Compared with the RNA velocity models, STT is unique in uncov-
ering attractors underlying both the gene expression and the splic-
ing dynamics, as well as quantifying the transitions among them. By 
assuming multistability, STT is robust to initial state specifications or 
hidden time correction7,26,36,49. The cell-membership functions quantify 
transitional cells in estimating the transition tensors, naturally bridging 
the downstream multiscale dynamical analysis.

To identify transitional cells and infer transition paths, STT lever-
ages the computed transition tensor, instead of direct usage of RNA 
velocity such as CellRank8 or Dynamo25. The multistable transition 
tensor is found to be more compatible with the attractor assumption 
in downstream analysis. The iterative scheme of STT between tensor 
construction and dynamical dissection is found to better ensure such 
self-consistency. However, since the attractor assumption does not 
account for oscillation dynamics, STT needs to be improved to capture 
the nonequilibrium features of datasets with strong cell cycle effects.

The velocity kernel-based cellular random walk derived from the 
transition tensor is critical for connecting the modules of tensor infer-
ence and dynamical decomposition in STT, allowing better-connected 
dynamics at different scales. Theoretical analysis has revealed that 
different choices of velocity kernel lead to various continuum limits 
in forms of ordinary or SDEs49. In STT, the inner-product kernel is used 
to construct the cellular random walk that was shown to be consistent 
with the stochastic chemical Langevin model of gene expression49,50, 
while the cosine kernel, which correctly recovers the directionality 
of the velocity field49, is adopted to visualize the local streamlines 
within attractors. In addition to the differential equation models, 
it may be interesting to formulate STT in the chemical master 
equation framework51 of RNA velocity in the future.

As a mechanistic model-based approach, STT may be improved 
in several aspects. Instead of using attractor-specific zeroth order 
approximation of nonlinear gene expression rate function in equation 
(1), higher-order gene interactions could be considered as proposed 
recently for gene regulatory network inference15. Multimodal informa-
tion including single-cell epigenomics52 or proteomics data53 can also 
be incorporated in the multistable dynamical system to enhance the 
transition tensor calculation. The automatic detection of root and tar-
get states in multistable models is always challenging, and the previous 
knowledge or knowing the properties related to cells’ differentiation 
potencies54,55 could be helpful.

Overall, STT provides a unified approach to extract spatiotem-
poral information from single-cell datasets by bridging the processes 
across different time scales and tissue regions. Our method allows for a 
multiscale description of tissue spatiotemporal structures, connecting 
microscopic dynamics of gene expression and splicing, and the macro-
scopic dynamics of cell-state transitions among emergent attractors.
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Methods
Multistability in gene expression and splicing model
We use a simple dynamical model with different parameters around 
each steady-state to approximate the mRNA splicing dynamics for 
gene i:

⎧
⎨
⎩

dUi

dt
= αc,i − βiUi,

dSi
dt

= βiUi − γiSi.

Here, αc,i is the state-dependent unspliced mRNA transcription rate in 
attractor c, βi is the mRNA splicing rate and γi is the mRNA degradation 
rate. Assuming that the system is close to steady-state, we have 
ϵi = αc,i − βiUi,ηi = βiUi − γiSi where ϵi and ηi are independent and identi-
cally distributed zero-mean Gaussian variables. Due to the invariance 
of scales in parameters56, we set γi = 1 and the maximum likelihood 
estimation could be expressed as

min
αc ,β

K
∑
c=1

NC
∑
k=1

(αc − βUk)
21k∈Ωc +

NC
∑
k=1

(βUk − Sk)
2.

Since the parameters of different genes are estimated independently, 
for simplicity of notations, here we omit gene subscript i and introduce 
the subscript k to denote the cell index. The indicator function of 
attractors 1k∈Ωc is initialized using user-provided cell labels or standard 
Leiden or Louvain clustering algorithm output, and it is updated using 
membership function in iterations (described below). The estimation 
yields the solution:

α(∗)c = mcβ(∗),β(∗) =
∑NC

k=1 UkSk
∑NC

k=1 (U
2
k +∑K

c=1(Uk −mc)21k∈Ωc )
.

where mc =
∑NC

k=1Uk1k∈Ωc
Nc

. Compared with steady-steady parameter estima-

tion in the standard RNA velocity model, the splicing rate parameter 
β in the multistable model is not only attractor-type specific, but also 
depends on both unspliced and spliced counts.

For each cell k with counts (Uk, Sk), its velocity with respect to each 
attractor c is defined as vk,u,c = α(∗)c − β(∗)Uk, vk,s,c = β(∗)Uk − Sk  where 
subscript u and s corresponds to unspliced and spliced counts, respec-
tively. This estimation is repeated for each gene, therefore, leading to 
a four-dimensional transition tensor vk,l,c,g ∈ ℝNC×2×K×NG.

Tensor-based and spatial-constrained transition dynamics
Next, STT constructs the Markov chain transition probabilities  
among individual cells based on the calculated tensor, gene expression 
similarity and spatial coordinates if available (Fig. 1g). The  
transition probability is constructed from three components: 
P = w1Pv +w2Pc + (1 −w1 −w2)Ps, where Pv, Pc and Ps are transition prob-
abilities induced by velocity, similarity and spatial kernels, respectively. 
Here w1 and w2 are the hyperparameters of the algorithm to balance 
the effects of different modalities of tensor dynamics, gene expression 
similarity and spatial closeness. Their effect on output has been tested 
in Supplementary Fig. 6.

To construct Pv, we first transform the attractor-specific tensor to 
the attractor-independent velocity V by averaging along the dimension 
of attractors:

Vk,u,g = ∑
c
ρk,cvk,u,c,g,Vk,s,g = ∑

c
ρk,cvk,s,c,g.

Here ρk,c denotes the membership function of cell k in attractor c. The 
stable cell j located around the fixed point of the attractor basin d yield 
ρj,d = 1, while transitional cell l near saddle points has multiple positive 
components in ρl, pointing toward the attractors to which the cell can 
transition into.

Having calculated the tensor, we next construct the 
velocity-induced transition probability Pv using the inner-product 
kernel49 (Supplementary Note 1). The weight of transition propensity 
from cell k to l is wkl = exp(VT

k,uΔUkl + VT
k,sΔSkl) where ΔUkl = Ul − Uk  and 

ΔSkl = Sl − Sk. The random walk induced by such a kernel is consistent 
with the SDE model of equation (1) (ref. 49 and Supplementary Note 1). 
The cell similarity induced transition probability Pc is constructed from 
the Gaussian kernel of the diffusion map based on gene expression 
counts2. Last, the spatially constrained transition probability Ps is 
constructed from the Gaussian kernel of spatial location coordinates, 
such that cells with similar spatial locations are more likely to make 
transitions between each other. As a result, such cells are more likely 
to be assigned into the same attractor basins.

To calculate the membership function in attractors, we use the 
GPPCA57 algorithm to decompose the constructed random walk transi-
tion probability matrix P and coarse-grain the nonequilibrium Markov 
chains and obtain ρk,c. This algorithm allows for the factoring and 
‘coarse-graining’ of nonequilibrium transition probability matrices of 
cellular random walk, which holds true for most of the velocity-induced 
dynamics, to obtain the attractor within the data as well as cell’s relevant 
position (that is, membership) in each attractor. The coarse-grained 
(cg) transition probability matrix PK×K

cg  on the attractor level (K is the 
total number of attractors) is obtained simultaneously using the GPPCA 
algorithm. Given the cell’s membership function, its transitional entropy 
can be defined as εi = −∑K

c=1 ρi,clnρi,c. The larger entropy indicates the 
higher propensity of the cell to make transitions between attractors.

Iterative scheme for parameter estimation and attractor 
membership quantification
After obtaining the membership function, the parameters of the tensor 
model are updated to incorporate the uncertainty of the cells’ positions 
in attractors. We define a loss function

𝒥𝒥 (αc,β,ρk,c) =
K
∑
c=1

NC
∑
k=1

(αc − βUk)
2ρk,c +

NC
∑
k=1

(βUk − Sk)
2 + λ

NC
∑
c=1

a2c + λβ2,

where λ denotes the strength of regularization term of kinetic param-
eters. Intuitively, the ‘stable cells’ in attractor c have larger weight 
values in the regression loss function since the confidence level about 
steady-state is larger. We analytically solve the optimizer

α(∗)c = mcβ(∗),β
(∗) =

∑NC
k=1 UkSk

∑NC
k=1 (U

2
k +∑K

c=1(Uk −mc)2ρk,c) + λ
,

where mc =
∑NC

k=1Ukρk,c

∑NC
k=1ρk,c+λ

.

In turn, the updated tensor with the newly optimized parameters 
leads to an updated membership function. In STT, we adopt an itera-
tive scheme to update tensor parameters and attractor memberships 
jointly,

αn+1
c ,βn+1 = argminαc ,β𝒥𝒥 (αc,β,ρn

k,c) ,

ρn+1
k,c = DynamicalAnalysis(αn

c ,βn)

where the superscript n denotes the number of iterations, and Dynami-
calAnalysis denotes the described procedure to update membership 
function. The scheme stops once the membership function does not 
improve within certain threshold, or the iteration exceeds the allowed 
maximum number of iterations.

To dissect the multistable dynamics accurately, we also filter the 
genes in each iteration based on their goodness of fit to model that 
includes the genes showing multistability. The metric of goodness, or 
gene multistability score, is defined as 1 − J(αc ,β,ρk,c)

NC(Var(U)+Var(S))
 where NC 
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denotes the number of cells. Only the tensor of filtered genes, whose 
multistability scores are larger than certain threshold, are used to 
calculate velocity kernel and therefore update the membership func-
tion. The hyperparameters of STT and their values chosen in datasets 
analyzed are presented in Supplementary Tables 1 and 2.

To allow robust control of the iteration scheme, we incorporated 
a monitor module that outputs the multistability scores of genes in 
both training (by default 80% of all sample sizes) and test dataset (20% 
of all samples). The training dataset was used to fit kinetic parameters 
(αc,β), and the multistability scores of genes are calculated on test 
dataset. The monitor module outputs the multistability scores and 
number of genes pass the threshold. Given the output, the user may 
choose to interactively (1) modify the threshold set for filtering multi-
stability genes, (2) adjust the weight of tensor-induced kernel against 
gene expression similarity or spatial kernels to encourage the 
high-quality transition matrices or (3) determine whether to stop the 
iteration, therefore facilitating the adaptive accuracy. The interface of 
monitor module is demonstrated in Supplementary Fig. 1f. We also 
demonstrate the efficiency and scalability of STT algorithm in Sup-
plementary Table 3 and Supplementary Fig. 10.

Initialization of iteration
To start the iteration, STT requests the input of existing clustering 
results to create attractor membership by one-hot encoding. The previ-
ous biological annotation of the dataset or spatial region segmentation 
results were recommended as the input. When such information is 
unavailable, users may adopt clustering algorithms such as Leiden or 
Louvain to cluster the cells based on expression counts (spliced only or 
spliced and unspliced jointly) or spatial location of the cells. The robust-
ness to initialization of STT was investigated (Supplementary Fig. 7). 
Whenever the user prefers alternative clustering methods and/or more 
systematic analysis, STT provides an option to feed a user-generated 
clustering output as the input for the initializations of STT.

Visualization of dynamical manifold and transition paths
To visualize the low-dimensional embeddings of cells, STT uses the join 
state xk = (Uk, Sk) ∈ ℝ2NG  for each cell k as the input of dimensionality 
reduction algorithms such as principal component analysis (PCA) or 
uniform manifold approximation and projection (UMAP). To visualize 
the dynamical manifold, we define the cell’s position in the 
two-dimensional (2D) plane as yk = ∑K

c=1 ρk,cμc, where μc is the center 
of PCA or UMAP embeddings of each attractor and K  is the number of 
attractors. Then, a Gaussian mixture density estimation 𝒫𝒫(y) is con-
structed for all yk using an expectation–maximization algorithm, where 
the initial weights for K components are the stationary distributions 
of attractor-level, coarse-grained random walk transition probability 
matrix P derived in the previous section. The surface of dynamical 
manifold was calculated as ϕ (y) = −ln𝒫𝒫(y). The streamlines of the veloc-
ity Vk = (Vk,u,Vk,s) ∈ ℝ2NG in the 2D plane are calculated using the linear 
(PCA) or nonlinear (UMAP) projection approach in scVelo with the 
cosine kernel. Given initial and final states, the transition paths and 
their proportion of the total transition probability flux are calculated 
using the transition path theory58 with the PyEMMA package59.

Synthetic datasets and benchmarking
The simulation data (n = 10,010 cells) for the toggle-switch system were 
generated by the SDE model of a mutually inhibited two-gene circuits 
with nonlinear gene regulation and/or splicing dynamics and stochastic 
noise (Supplementary Note 2). Two attractors are present in the system 
with a saddle point in between. The synthetic dataset (n = 5,000 cells) of 
EMTs was generated by the SDE model of a seven-gene core circuit dur-
ing EMT adapted to include mRNA splicing15,60. With different levels of 
extrinsic signal TGFB, the system has saddle-node bifurcations within a 
certain parameter range and three attractors may coexist, representing 
epithelial state, ICS and mesenchymal state (Supplementary Note 2).  

We simulated different levels of TGFB to model the EMT process. For 
both datasets, the Euler–Maruyama method was used to simulate the 
SDE trajectories, with negative gene expression values adjusted to zero 
during each time step of the trajectory simulation.

Pathway analysis
To analyze the similarities between tensor dynamics in various path-
ways, we first downloaded the pathway databases, such as KEGG, using 
the GSEApy package61. Next, for each pathway we identified the genes 
shared by the pathway databases and the STT multistability analysis. 
For any selected gene sets that contain a sufficient number of genes, we 
calculated their cosine-kernel velocity graph using the averaged tensor 
of both spliced counts and unspliced counts, and then computed the 
Pearson’s correlation coefficients between pathway-specific velocity 
graphs. The UMAP dimensionality reduction of pathways was then 
performed on the principal components of the correlation matrix, 
and clustering was performed on UMAP with K-means algorithm by 
silhouette score to choose the optimal number of clusters.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All the datasets used in this paper are publicly available. The detailed 
preprocessing of datasets is described in Supplementary Notes. 
The simulation datasets of synthetic circuits are available at https://
github.com/cliffzhou92/STT/tree/release/data. The EMT dataset of 
human lung A549 cell lines is available at GSE147405. The pancreas 
dataset (originally available at GSE132188) and adult human bone 
marrow datasets (originally available at https://data.humancellat-
las.org/explore/projects/091cf39b-01bc-42e5-9437-f419a66c8a45) 
can be downloaded from the built-in datasets of the scvelo==0.2.4 
package (https://scvelo.readthedocs.io/en/stable/api.html). The spa-
tial datasets of mouse brain and chicken heart as well as scRNA-seq 
datasets used for imputation can be downloaded from https://doi.
org/10.5281/zenodo.6798658 (ref. 62). The Stereo-seq mouse brain 
dataset with unspliced and spliced counts was downloaded from the 
Spateo package (https://github.com/aristoteleo/spateo-tutorials, 
https://www.dropbox.com/s/c5tu4drxda01m0u/mousebrain_bin60.
h5ad?dl=0). The KEGG database was originally available on the Enri-
chr webpage (https://maayanlab.cloud/Enrichr/#librariesdownlo
aded) and downloaded using gseapy==1.0.4. The processed data-
sets for analysis are also stored at https://disk.pku.edu.cn/link/
AAD1681DAD531D47699D459BB46C4651D8.

Code availability
STT is implemented as a Python package available at https://github.
com/cliffzhou92/STT/tree/release. The source code for simulation 
and the notebook files to reproduce all analysis in the paper are 
also available at https://github.com/cliffzhou92/STT/tree/release/
example_notebooks.
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