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Pretraining a foundation model 
for generalizable fluorescence 
microscopy-based image restoration

Chenxi Ma1,2, Weimin Tan    1,2, Ruian He1 & Bo Yan    1 

Fluorescence microscopy-based image restoration has received widespread 
attention in the life sciences and has led to significant progress, benefiting 
from deep learning technology. However, most current task-specific 
methods have limited generalizability to different fluorescence 
microscopy-based image restoration problems. Here, we seek to improve 
generalizability and explore the potential of applying a pretrained 
foundation model to fluorescence microscopy-based image restoration. 
We provide a universal fluorescence microscopy-based image restoration 
(UniFMIR) model to address different restoration problems, and show that 
UniFMIR offers higher image restoration precision, better generalization 
and increased versatility. Demonstrations on five tasks and 14 datasets 
covering a wide range of microscopy imaging modalities and biological 
samples demonstrate that the pretrained UniFMIR can effectively transfer 
knowledge to a specific situation via fine-tuning, uncover clear nanoscale 
biomolecular structures and facilitate high-quality imaging. This work has 
the potential to inspire and trigger new research highlights for fluorescence 
microscopy-based image restoration.

Fluorescence microscopy image restoration (FMIR), which aims to 
provide images with high signal-to-noise ratios (SNRs) from low-SNR 
images, has received significant attention from the research commu-
nity, as it helps reveal important nanoscale imaging information for the 
accurate observation and scientific analysis of biological structures 
and processes1–3. Currently, benefiting from the rapid development 
of deep learning, the literature is experiencing a large influx of con-
tributions in this direction. Much deep learning-based fluorescence 
microscopy-based image restoration works4–15 (Supplementary Note 1)  
have pushed the physical limits of fluorescence microscopy through 
computations and have achieved significant improvements over the 
classic deconvolution algorithms1,16.

Although significant progress has been achieved, these deep 
learning-based fluorescence microscopy-based image restoration 
methods are still affected by several weaknesses, limiting the further 
development of biological processes. First, the prevailing models 

address specific fluorescence microscopy-based image restoration 
problems, such as denoising, super-resolution (SR) and isotropic 
reconstruction, by training a specific deep model (for example, 
U-Net-inspired models4,7–9,14 and RCAN-inspired models5,6,10,13) with 
limited parameters (no more than a few million) on a specific dataset 
from scratch (Supplementary Table 1b). In addition, these models have 
poor generalization, as significant performance degradations can be 
observed when facing large domain gaps between different datasets 
and different fluorescence microscopy-based image restoration prob-
lems. Achieving promising results across different imaging modalities, 
biological samples and image restoration tasks requires training multi-
ple specific models. Last, the common data dependence problem in the 
deep learning field also affects most fluorescence microscopy-based 
image restoration models, the performance of which highly depends 
on the quality and quantity of the training data due to the data-driven 
characteristics of deep learning-based methods. Consequently, 
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We collected a large training dataset (~30 GB) from 14 public datasets, 
covering a wide range of imaging modalities, biological samples and 
image restoration tasks. Furthermore, the UniFMIR is pretrained on this 
large-scale dataset and fine-tuned on different subdatasets, covering 
various degradation conditions, imaging modalities and biological 
samples. We also created a baseline by training models, which have the 
same architecture as UniFMIR, from scratch on specific datasets for dif-
ferent tasks to enable better comparison. We showcased that efficient 
fine-tuning can feasibly transfer the prior knowledge learned during 
pretraining to handle different problems (Supplementary Figs. 15–17). 
We demonstrated the effectiveness of the UniFMIR model on a set of 
high-impact applications and compared its performance with that of 
SOTA methods for solving specific problems.

Results
SR
The lack of high-resolution (HR) microscopy images has impeded the 
further exploration of the life science phenomena of related struc-
tures or cellular tissues. To overcome the theoretical spatial resolution 
limitation in live-cell imaging, SR, aiming to enhance the resolution of 
scientific microscopy images, has been widely studied in the field of 
fluorescence microscopy imaging. Deep learning-based SR models 
have greatly promoted the development of conventional SR micros-
copy approaches by reconstructing HR microscopy images from their 
low-resolution (LR) versions.

We first determined the potential of our UniFMIR approach to deal 
with the SR problem (×2 upscaling) involving images with increasing 
structural complexity levels from the BioSR dataset5 obtained via mul-
timodal structured illumination microscopy (SIM) system, including 
clathrin-coated pits (CCPs), endoplasmic reticula (ERs), microtubules 
(MTs) and F-actin filaments. Our UniFMIR successfully inferred SR 
SIM images from wide-field (WF) images at a diffraction-limited scale 
with a high fluorescence level and revealed clear structural details. 
Compared with two deep learning-based fluorescence microscopy 
SR models (XTC15 and DFCAN5) and a single-image super-resolution 
model (ENLCN36) for macroscale photographs, UniFMIR could cor-
rectly reconstruct most MTs without losing or merging them, even if 
the MTs were densely distributed and were close to each other. The 
baselines for different datasets were obtained by training a model of 
the same network structure as UniFMIR from scratch on the specific 
training dataset. For diverse subcellular structures, UniFMIR also 
restored hollow, ring-shaped CCPs and crisscrossing F-actin with high 
fidelity (Fig. 1b).

We also quantified the attained SR accuracy with the peak SNR 
(PSNR), structural similarity index measure (SSIM), normalized root 
mean square error (NRMSE), resolution estimate of a decorrelation 
analysis37, Fourier ring correlation (FRC)38, SQUIRREL analysis39 and 
segmentation metrics (Fig. 1c, Supplementary Figs. 2–4 and 10). Higher 
PSNR/SSIM values and lower NRMSE values denote better SR when 
assessing SR SIM images in terms of their fluorescence intensities and 
structures, which signify images that are closer to the ground-truth 
(GT) SIM images.

Isotropic reconstruction
Volumetric fluorescence microscopy methods, such as three- 
dimensional (3D) SIM, are generally limited by the anisotropic spatial 
resolution, where the axial resolution of 300 nm is inferior to the lateral 
resolution. Such an anisotropy, which is caused by the inherent opti-
cal point spread function of microscopy or a low axial sampling rate, 
compromises the imaging quality of the volumes of interest. Therefore, 
isotropic reconstruction is also a common problem encountered in 
fluorescence microscopy when restoring isotropic image resolutions.

We applied our UniFMIR approach on anisotropic raw data (with 
up to tenfold lower axial resolutions) from volumetric mouse liver 
imaging4 to predict isotropic axial slices and compared it with two 

the realistic difficulty of experimentally acquiring low-quality and 
high-quality training image pairs makes the practical application of 
deep learning-based fluorescence microscopy-based image restoration 
methods complicated4. Therefore, the main purpose of this paper is to 
overcome the above weaknesses and explore the performance upper 
limit of deep models while inspiring and fostering subsequent research.

As the latest generation of artificial intelligence models, founda-
tion models17,18, which can be applied to a diverse set of downstream 
tasks by training them on massive and diverse datasets, have pro-
foundly advanced the development of deep learning and have exhibited 
remarkable domain transfer capabilities, particularly in the fields of 
natural language processing19,20, computer vision21,22 and multimodal 
learning23–25. Recently, the concept of foundation models has been uti-
lized in diverse life science applications, and foundation models have 
also demonstrated their impressive capabilities for clinical cases26–30, 
biotechnology31,32 and so on (Supplementary Note 1).

As stated by Moor et al.30, foundation models will offer amazing 
abilities through dataset size and model size increases, in addition to 
model architecture advances, in agreement with observations32,33 that 
large-scale pretraining with larger and more diverse data consistently 
improved the model’s predictive potential. We observed a similar 
phenomenon in the fluorescence microscopy-based image restoration 
field, which has never been studied before (Supplementary Note 2).  
Pretraining also enables better generalization ability and efficient 
training on new datasets with limited training data, by transferring 
knowledge in a pretrained model to a specific task or data modality. 
This claim can be supported by Zamir et al.34, who explored the idea 
of transfer learning between many visual learning tasks and showed 
that the amount of training data required for solving multiple tasks 
together can be greatly reduced compared to the amount of train-
ing data required for independent training. In addition, assembling 
multiple image restoration processes in a foundation model is a more 
practical and convenient strategy, as it is difficult to directly determine 
which type of image restoration operation is needed for the realistic 
fluorescence microscopy images at hand.

However, task-specific or modality-specific deep models are 
still the main deep learning-based approaches for fluorescence 
microscopy-based image restoration. Although individual models 
can now achieve state-of-the-art (SOTA) performance, foundation 
models have the merit of versatility. Instead of training a new model 
from scratch for each task, the above approaches have demonstrated 
that a foundation model can democratize the fundamental knowledge, 
learned during the pretraining phase, in general datasets and can 
transfer this knowledge to a multitude of tasks through fine-tuning32. 
The enormous progress made by pretrained large-scale models brings 
new momentum to the development of fluorescence microscopy-based 
image restoration approaches.

Here, we first presented a UniFMIR solution to handle diverse 
image degradations and imaging modalities simultaneously. We 
took inspiration from the existing foundation models, where large 
pretrained models can be flexibly transferred to solve diverse 
tasks and achieve significant performance improvements via effi-
cient fine-tuning. Specifically, we constructed the UniFMIR model, 
which adopted a multihead and multitail network structure (Fig. 1a 
and Extended Data Figs. 1 and 2). Specifically, UniFMIR consists of 
a multihead module, a feature enhancement module and a multi-
tail module, where the multihead module and the multitail module 
adopt different branches to extract task-specific shallow features 
and yield accurate results for different image restoration problems, 
respectively. The feature enhancement module uses an advanced Swin 
transformer structure35 to enhance the feature representations and 
to reconstruct general and effective features for high-quality fluores-
cence microscopy-based image restoration. Different fluorescence 
microscopy-based image restoration operations cover different head 
and tail branches, but share the same feature enhancement module. 
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Fig. 1 | Applying the proposed UniFMIR approach to reconstruct SR SIM 
images from diffraction-limited WF images. a, Architecture of UniFMIR, 
which comprises multihead, multitail and Swin transformer-based feature 
enhancement modules. b, Shown are the LR inputs; the SR results obtained by the 
SOTA methods (XTC15, DFCAN5 and ENLCN36), baseline (same network structure 

as UniFMIR trained from scratch) and our fine-tuned UniFMIR approach; and the 
GT SIM images. The NRMSE↓ (lower is better) values are shown on the residual 
images under the SR results. c, PSNR↑/SSIM↑ (higher is better)/NRMSE↓ 
comparisons for ×2 upscaling on different datasets (MTs, CCPs, F-actin and ERs), 
n = 100. Scale bar, 0.75 μm for CCPs; 3 μm for other specimens.
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deep learning-based isotropic reconstruction models, CARE4 and the 
3D U-Net model proposed by Li et al.40. The proposed UniFMIR method 
could offer near-isotropic imaging by enhancing the axial resolution, 

facilitating the subsequent quantification of the shapes and volumes 
of biological samples (Fig. 2a and Supplementary Fig. 5). Our UniFMIR 
method yielded isotropic reconstruction results with more accurate 
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Fig. 2 | Applying UniFMIR to the isotropic reconstruction of 3D volumes. 
 a, XZ and XY slices of anisotropic raw LR data (with a subsampling rate of 10); the 
GTs; and the reconstruction results of CARE4, Li et al.40, baseline (same network 
structure as UniFMIR trained from scratch) and our fine-tuned UniFMIR model. 
Magnified images of the regions of interest (red boxes) are displayed to the right 

of the corresponding images. The NRMSE is shown on each residual image.  
b, The line plots show the pixel intensities along the dashed lines for the images  
in a. c, FRC curves38 for resolution estimation. d, Statistical comparison on the 
liver dataset in terms of PSNR↑/SSIM↑/NRMSE↓/FWHM↓ across n = 7 slices. 
Scale bar, 50 μm.
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pixel distributions, and the pixel intensities along the columns of our 
axial outputs were closer to those of the GTs (Fig. 2b). The same conclu-
sion could also be drawn from the average PSNR/SSIM/NRMSE results 
obtained on data from the liver dataset (Fig. 2c).

3D image denoising
High-SNR fluorescence microscopy imaging always requires high laser 
power or long exposure times, which are accompanied by bleaching, 
phototoxicity and other side effects that are detrimental to the sam-
ple. Deep learning-based denoising methods4,6,7 can computationally 
restore acquired low-SNR fluorescence microscopy images by leverag-
ing the available knowledge about the data at hand.

We further benchmarked the performance of our UniFMIR 
approach in a live-cell image denoising task conducted on the Planaria 
and Tribolium datasets4, each of which contains well-registered high-/
low-SNR 3D images captured by a spinning-disk confocal microscope 
and a multiphoton laser-scanning microscope, for training and test-
ing. Compared with two U-Net-based denoising models, CARE4 and 
GVTNets7, our UniFMIR model considerably suppressed the noise of the 

low-SNR fluorescence microscopy images under different laser powers/
exposure time (C1–C3) and clearly depicted the planarian Schmidtea 
mediterranea and Tribolium castaneum volumes with labeled nuclei, 
helping to observe embryonic development (Fig. 3a and Supplemen-
tary Figs. 6 and 7). UniFMIR resulted in higher statistical accuracy 
(PSNR/SSIM/NRMSE values) between the denoised images and the 
well-registered high-SNR images (GTs; Fig. 3b).

Surface projection
To better analyze and study the cell behavior in developing epithelia of 
the Drosophila melanogaster fruit fly, surface projection helps project 
a 3D volume into a two-dimensional (2D) surface image. The current 
deep learning models (CARE4 and GVTNets7) formulate this image 
restoration problem as two subproblems, 3D-to-2D surface projection 
and 2D image denoising, and use two task-specific networks, following 
the same encoder–decoder framework as that of U-Net, to solve them.

We further examined UniFMIR in a more complex composite fluo-
rescence microscopy-based image restoration task and adopted the 
public Flywing dataset4, which contains 3D–2D image pairs for training 
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Fig. 3 | Applying UniFMIR to content-aware 3D image denoising. a, Visual 
results of a 3D image denoising task conducted on flatworm (S. mediterranea). 
Comparison among CARE4, GVTNets7, baseline (same network structure as 
UniFMIR trained from scratch) and our fine-tuned UniFMIR model. The line plots 

show the pixel intensities along the dashed lines for the images. b, Box plots of the 
PSNR↑/SSIM↑/NRMSE↓ results obtained on the Planaria (n = 20) and Tribolium 
(n = 6) datasets4 under three imaging conditions (C1–C3). Scale bar, 50 μm.
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and testing. Similarly to the Planaria and Tribolium datasets, the Fly-
wing dataset also covers different laser power conditions (C1–C3). To 
project each 3D volume onto a 2D plane, we adopted a U-Net-shaped 
head for UniFMIR, which achieved promising results with end-to-end 
network calculations on the 3D D. melanogaster Flywing imaging task 
and yielded higher reconstruction accuracy in terms of the PSNR/SSIM/
NRMSE metrics; meanwhile, the pixel intensities were closer to those 
of the GT (Fig. 4 and Supplementary Fig. 8).

Volumetric reconstruction
The volumetric reconstruction of light-field microscopy images, 
permitting the acquisition of artifact-free 3D image sequences with 
uniform spatial resolutions from 2D information, is significant for 
instantaneously imaging fast biological processes. As a demonstration, 
we verified the volumetric reconstruction ability of UniFMIR on the 

data provided by VCD-Net8. Each view of a reconstructed 3D volume 
can identify the motion trajectory of the imaging object (Fig. 5 and 
Supplementary Fig. 9), which is beneficial for revealing the underlying 
mechanisms of many complicated live-cell dynamics involving various 
subcellular structures. Since no GT was available for calculating more 
quantitative metrics, such as the PSNR/SSIM/NRMSE, to quantify the 
accuracy of the volumetric reconstruction results, we adopted decor-
relation analysis37 to measure the nanometer resolution of each recon-
structed image sequence (Fig. 5 and Supplementary Fig. 9).

Generalization ability analysis
To demonstrate the generalization ability of our pretrained UniFMIR 
approach, we validated its image restoration performance on unseen 
data from DeepBacs41 for bacterial image analysis purposes, including 
two denoising datasets (E. coli_H-NS-mScarlet-I, E. coli_MreB) and two SR 
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datasets (Escherichia coli, Staphylococcus aureus). We fine-tuned UniFMIR 
on the new bacterial microscopy images and then conducted denoising 
and SR experiments. In addition to the denoising and SR models devel-
oped on DeepBacs, we also compared our results with those of a baseline 
model trained from scratch, which had the same structure as UniFMIR, and 
the pretrained UniFMIR model without fine-tuning. Our UniFMIR method 
restored clear prokaryote structures to enhance the low-phototoxicity 
live-cell microscopy data and predict accurate mappings of biological 
target shapes, obtaining higher PSNR/SSIM values (Fig. 6). Compared 
with the model trained from scratch, our UniFMIR approach achieved 
better performance on new datasets (Supplementary Fig. 13).

We also analyzed whether UniFMIR could be generalized to other 
SR modalities in addition to the SIM images used in the pretraining stage. 
First, we adopted single-molecule localization microscopy data from 
the Shareloc platform42 and applied our model to direct stochastic opti-
cal reconstruction microscopy (dSTORM) images of MTs stained with 
Alexa Fluor 647 in U2OS cells incubated with nocodazole. Since the input 
WF images and GT were not well matched, we fine-tuned our UniFMIR 
model with the contextual bilateral (CoBi) loss43 instead of the L1 or L2 
loss, which requires pixel-wise alignment between the input and GT. We 
compared a U-Net-based SR single-molecule microscopy model (Deep-
STORM44), a baseline model and a pretrained UniFMIR model without 
fine-tuning. In addition to the pretrained UniFMIR model, all compet-
ing models were trained with the CoBi loss on the same training data as 
those used by our method. Our UniFMIR model could restore accurate 
structures that were similar to the GTs, and the other models failed to 
learn mappings between the unaligned images (Extended Data Fig. 3).

Discussion
The focus of this paper was to present a UniFMIR solution for maximiz-
ing the potential of deep learning-based methods and circumventing 
the limitations exhibited by the existing fluorescence microscopy-based 

image restoration deep models. Here, we outlined how recent advances 
in foundation model research enable the development of FMIR. Inspired 
by the success of pretrained large-scale models in artificial intelli-
gence, we developed a unified foundation model for fluorescence 
microscopy-based image restoration, facilitating high-quality image 
restoration in different fluorescence microscopy-based image resto-
ration tasks with various imaging modalities by extending the strong 
transfer capabilities of large-scale pretrained models to fluorescence 
microscopy-based image restoration. We also collected 14 public fluo-
rescence microscopy-based image restoration datasets with 196,418 
training pairs covering various biological samples, microscopes and 
degradation conditions. The UniFMIR model pretrained on the col-
lected data could be easily applied to different tasks and new image 
distributions through efficient fine-tuning, transferring the knowledge 
of a foundation model to a specific one.

The experimental results obtained in different fluorescence 
microscopy-based image restoration tasks suggested the excellent 
performance of UniFMIR in restoring high-fidelity microscopy images. 
The HR results obtained for the SR and isotropic resolution reconstruc-
tion problems could clearly resolve diffraction-limited image details 
to improve the resolutions of images by uncovering subtle biological 
structures (Figs. 1 and 2 and Supplementary Fig. 5). The denoising and 
projection results restored clean signals from the noisy inputs, achiev-
ing accurate reconstruction quality (Figs. 3 and 4 and Supplementary 
Figs. 6–8). The volume reconstruction results showed transient biologi-
cal image dynamics with minimal artifacts (Fig. 5 and Supplementary 
Fig. 9). The generalization ability of the pretrained UniFMIR was also 
shown (Fig. 6 and Extended Data Fig. 3).

Key capabilities
We outline three key capabilities that distinguish UniFMIR from 
conventional FMIR models. (1) Higher restoration quality. UniFMIR 
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Fig. 5 | Applying UniFMIR to volumetric reconstruction. a, The image sequences 
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achieved the highest restoration precision and was often superior to 
the task-specific FMIR models. (2) Better generalization ability. UniFMIR 
displayed an impressive generalization ability and enabled efficient 
training processes on new FMIR datasets by transferring knowledge 
from the available datasets to the new data. (3) Unifying FMIR tasks. 
UniFMIR possessed applicability to handle multiple FMIR problems 
with one model and unified the restoration processes concerning dif-
ferent data modalities for different fluorescence microscopes. Our 
work also identified that publicly shared fluorescence images can be 
considered a tremendous resource that can be harnessed to develop 
foundation models for enhancing fluorescence microscopy images.

We demonstrated the ability of UniFMIR to achieve high precision 
with promising generalization performance. The key intuition behind 
this idea is that the foundation model, pretrained on more diverse data 
distributions, could learn more generalized representations29 of differ-
ent high-quality image modalities and biological structures. Existing 
works32,33 have found that large-scale pretraining allows the training of 
deeper models with greater predictive potential and even promotes 
robustness by gaining a fundamental understanding of the knowledge 
in training data. As stated by Guo et al.45, the foundation model may be 
effective in terms of acquiring informative global patterns that can 
improve the robustness of task-specific models.

Different fluorescence microscopy-based image restoration 
operations pushed the distribution spaces of the low-quality images 
to the distribution spaces of high-quality images. During pretraining, 

the UniFMIR gained a fundamental understanding of the high-quality 
images and regularized optimization direction for different tasks, 
unlike the task-specific models that learned a path from low quality to 
high quality. Thus, the pretraining knowledge benefits the fine-tuning 
toward diverse tasks, facilitating faster and better convergence and 
enabling the model to perform better than a model trained from scratch 
(Supplementary Fig. 15).

Limitations and future work
Despite the impressive results of UniFMIR, it is noteworthy that this 
paper is an exploratory and inspiring work that demonstrates the fea-
sibility of foundation models in fluorescence microscopy-based image 
restoration. We hope that this work, accompanied by a brief review 
of the current deep learning-based fluorescence microscopy-based 
image restoration approaches (Supplementary Table 1), will pro-
vide new insights for more researchers. Looking to the future, much 
room remains for further improvement and evaluation to advance 
the frontiers of fluorescence microscopy-based image restoration. 
We discuss some limitations and future research directions as fol-
lows. First, a large model (>100 MB or even 1 TB) often requires a 
considerable number of training images (millions or even billions), 
a time-consuming pretraining process (weeks or even months) and 
costly calculation resources (graphics processing units, GPUs). To 
reduce the deployment cost and make UniFMIR more energy efficient, 
we optimized UniFMIR models by applying two model compression 
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methods (pruning and quantization). The UniFMIR model still takes 
a long calculation time, especially for those 3D image-related tasks. 
Therefore, faster inference and higher efficiency require further 
exploration. Second, we utilized existing public datasets for pre-
training and found that the current data have not yet saturated the 
model’s performance (Supplementary Fig. 14). Theodoris et al.32 
outlined that as the amount of publicly available data continues to 
expand, pretraining on larger-scale data may further enhance the 
model’s performance, especially for tasks with increasingly limited 
task-specific data. Therefore, efforts are expected to contribute to a 
more diverse and larger dataset. In future work, we will continuously 
train the foundation model with new data to make the fluorescence 
microscopy-based image restoration foundation model stronger and 
share it with the community timely and freely.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Data preparation process
To cover as many imaging modalities and fluorescence microscopy- 
based image restoration tasks as possible, we collected datasets from 
the literature (Supplementary Table 2) and grouped numerous datasets 
for different fluorescence microscopy-based image restoration tasks 
and imaging modalities. As these datasets vary significantly in terms 
of formats, domains and numerical ranges, we processed the images 
for convenient training and cross-dataset validation.

First, we wrote the input and GT images of existing datasets 
with different storage formats, including ‘TIF’, ‘npz’, ‘png’ and ‘nii.
gz’, into an ‘.npz’ file. In addition, we normalized the images to unify 
the numerical distributions of different datasets by following the 
data processing method in CARE4. Because the spatial sizes of the 
features in a deep neural network are fixed during training, we fur-
ther cropped the training images into multiple patches with the 
same spatial size to facilitate simultaneous training on images from 
different datasets.

Network architectures
We designed a multihead and multitail network architecture for  
the UniFMIR model, which included three components, including 
multiple feature extraction modules, a Swin transformer-based 
feature enhancement module and multiple image reconstruc-
tion modules (Fig. 1a and Extended Data Fig. 1). More specifically, 
the multihead and multitail branches for different fluorescence 
microscopy-based image restoration tasks adopted different feature 
extraction and image reconstruction modules to extract task-specific 
shallow features and reconstruct images, respectively (Supplemen-
tary Note 3).

Different fluorescence microscopy-based image restoration cal-
culations shared the same feature enhancement module. Inspired by 
SwinIR46, a SOTA model for natural image restoration, the Swin trans-
former35-based feature enhancement module adopted several vision 
transformer-based blocks to enhance the feature representations and 
to restore the final features for high-quality image reconstruction. 
As shown in Extended Data Fig. 2, the feature enhancement module 
consisted of convolutional layers and a series of Swin transformer 
blocks, each of which included several Swin transformer layers, a 
convolutional layer and a residual connection. The Swin transformer 
layer was composed of layer normalization operations, a multihead 
self-attention mechanism and a multilayer perceptron. In the multi-
head self-attention mechanism, the input features fin were first divided 
into multiple small patches with a moving window operation, and 
then the self-attention in each patch was calculated with the function 
in equation (1).

Q = ConvQ( fin),K = ConvK( fin),V = ConvV( fin),

fout = Softmax ( QK
T

√dk
)V,

(1)

where Q, K and V represent the query, key and value, respectively, 
which were separately obtained by three convolutional layers. dk is the 
dimensionality of K. SoftMax(⋅) normalized the similarity between Q 
and K, and the output feature fout was obtained by multiplying V. The 
multilayer perceptron was composed of two fully connected layers and 
Gaussian-error linear unit activation.

Training losses
We used a combination of the ℒ1 and ℒ2 losses during the pretraining 
stage to exploit the robustness of the ℒ1 loss and the stability of the ℒ
2 loss. During fine-tuning, ℒ1 is adopted to pursue a higher quantitative 
metric (PSNR). Suppose that (xi, yi)i=1∶N denotes N pairs of input and GT 
training data and that fθ denotes the UniFMIR model with a parameter 
θ (equation (2)).

ℒ = 0.5 × ℒ1 + 0.5 × ℒ2,

ℒ1 =
N
∑
i=1
| yi − fθ(xi)|,

ℒ2 =
N
∑
i=1
( yi − fθ(xi))

2.

(2)

To apply our UniFMIR model to unmatched data, in which the input 
WF images and the GT single-molecule localization microscopy data42 
were not well aligned in a pixel-wise manner, we fine-tuned our model 
with the CoBi loss43, which improved its robustness to mild misalign-
ment in the input–output image pairs (equation (3)).

CoBi( y, ̃y) = 1
N

N
∑
i
minj=1,…,M(Dpi ,qj +wsD′pi ,qj ),

Dpi ,qj = Distance(pi,qj),

D′pi ,qj = ||(hi,wi) − (hj,wj)||2,

(3)

where ( ̃y, y) denotes a pair of restored and GT images and pi=1,…,N, qj=1,…,M 
are the features of X and Y extracted by the pretrained Visual Geometry 
Group 19 (VGG-19)47 network, respectively. ‘Distance(⋅)’ denotes a 
distance function for calculating the cosine similarity between features 
pi, qj, (hi, wi), (hj, wj), are the spatial coordinates of features pi, qj and 
ws = 0.1 denotes a weight that is flexible to the degree of 
misalignment.

Training details
The UniFMIR model was based on a PyTorch implementation and 
optimized by adaptive moment estimation (Adam)48 with β1 = 0.9 and 
β2 = 0.999 for 500 epochs. The initial learning rate started at 5 × 10−5 
and was halved after 200 epochs. All experiments were conducted on 
a machine with an Nvidia GeForce RTX 3090 GPU (with 24 GB of RAM).

In the pretraining stage, we set the batch size to 1 and the patch size 
to 64 × 64. We fed all training data to the model and optimized different 
head and tail branches for different tasks with the corresponding data. 
The middle feature enhancement branch was optimized using all train-
ing data. During the fine-tuning stage, we set the batch size/patch size to 
4/128, 32/64, 32/64, 4/64 and 1/16 for the SR, isotropic reconstruction, 
denoising, projection and volume reconstruction tasks, respectively, 
to produce a better learning effect (Extended Data Table 1).

Evaluation metrics
To evaluate the quantitative accuracy of the fluorescence microscopy- 
based image restoration results, we adopted common image quality 
assessment metrics as follows (Supplementary Note 4).

The PSNR, NRMSE and SSIM49 are proposed to measure the 
pixel-level and structure-level similarities between a restored image ̃y  
and a GT image y.

The resolution evaluation with decorrelation analysis37, a com-
prehensive measurement of the resolution and SNR, was performed to 
estimate the highest frequency from the local maxima of the decorrela-
tion functions rather than the theoretical resolution stated by Abbe50. 
NanoJ-SQUIRREL, an ImageJ-based analytical approach, was proposed 
to quantitatively assess SR quality by comparing diffraction-limited 
reference images and SR equivalents of the same acquisition volume.

FRC. FRC-based resolution measures38,51 can estimate image resolu-
tion without a reference image. We adopt the public GitHub codes 
and microscope image processing library (MIPLIB), a Python-based 
software library, for FRC-based image resolution analysis of fluores-
cence microscopy images.

Giga floating-point operation (GFLOPs), a common computa-
tional complexity measure, refers to the number of FLOPs, including 
the addition, subtraction, multiplication and division of floating-point 
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numbers, that the model requires to process the input data. GFLOPs 
can reflect the processing power needed to execute the model and can 
vary depending on the number of convolutional layers, the types of 
operations performed within each layer, and the size of the input. The 
GFLOPs of a deep model are composed of operations contained in all 
convolution layers. The number of calculations (FLOPs) of a convolu-
tional layer with a kernel size of K × K is 2K2 − 1, and the total number of 
FLOPs for conducting a convolutional calculation on an input with a 
size of H × W can be calculated according to equation (4):

FLOP = (H − K + P
S + 1) × (W − K + P

S + 1) , (4)

where P and S denote the pooling and stride parameters of a convolu-
tion, respectively.

BOP (bit operations)52, which stands for number of bits times 
FLOPs, is considered to quantify the computational complexity of a 
deep model on a GPU that supports 32-bit, 16-bit or lower arithmetic. 
Since GFLOPs cannot well measure the computational complexity of 
low-precision and high-precision networks composed of integer or 
float operations, we also calculated the BOPs by the following func-
tion in equation (5):

BOPs = FLOP × bw × ba, (5)

where bw and ba denote the weight and activation bit-width and are set 
to 32 and 16 for the 32-bit and 16-bit models, respectively.

Image restoration and segmentation. To explore whether perform-
ing image restoration with UniFMIR could improve the downstream 
image analysis and segmentation tasks in live-cell imaging, we applied 
a common segmentation pipeline (trainable Weka segmentation53) 
to the raw and restored images in the CCP, ER, Tribolium and Flywing 
datasets. The resulting UniFMIR model improved the segmentation 
effect by performing denoising and increasing the image resolution 
(Supplementary Note 5 and Supplementary Figs. 10–12).

Optimization of memory and complexity
To make UniFMIR more energy efficient, we produced optimized 
models by adopting two model compression methods (pruning and 
quantization). First, we adopted structure pruning to cut some useless 
branches out of the original model. Specifically, we removed the redun-
dant head and tail branches and only kept the head and tail branches for 
fine-tuning a task-specific model to reduce the number of redundant 
parameters, resulting in ‘prune-UniFMIR’. Inspired by Jacob et al.54, we 
also conducted model quantization, converting floating-point weights 
(float32) and activation values to low-precision numbers, to reduce the 
storage requirements and calculation time of the model; for this task, 
we adopted float16 quantization (Extended Data Tables 2–6).

Pixel size correction
As the features learned by deep models depend on the scale and resolu-
tion of the training data, the performance of the well-trained models is 
influenced by the pixel-wise scale of input images. Given input images 
with varying pixel sizes, to make the outputs of the UniFMIR consistent, 
we equipped the UniFMIR software platform with a pixel size correction 
option for the input images, enabling an automatic pixel size calibra-
tion feature. Specifically, the input image is resized into different scales 
and input into the model, and then the multiscale outputs of the model 
are fused to obtain the final result.

Competing methods
All competing models, accompanied by their quantitative results, 
are listed in Extended Data Tables 3–6. To conduct a fair comparison, 
we downloaded the codes and the saved model checkpoints of all 

competing approaches from their GitHub repositories (ENLCN, CARE, 
DFCAN, GVTNets, VCD-Net and XTC). We retrained the ENLCN and XTC 
methods on the BioSR dataset5. Because DFCAN, CARE and VCD-Net 
do not provide well-trained models, we also retrained these models 
using their codes on the datasets used in our experiments for differ-
ent tasks. The results of GVTNets were obtained by directly using their 
public models and codes. All experiments were conducted on the same 
machine with Nvidia GeForce RTX 3090 GPU (24 GB of RAM).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All training and testing data involved in the experiments come from 
existing literature and can be downloaded from the corresponding 
links provided in Supplementary Table 2 or via Zenodo at https://doi.
org/10.5281/zenodo.8401470 (ref. 55).

Code availability
The PyTorch code of our UniFMIR, together with trained models, 
as well as some example images for inference are publicly avail-
able at https://github.com/cxm12/UNiFMIR (https://doi.org/10.5281/
zenodo.10117581)56. Furthermore, We also provide a live demo for 
UniFMIR at http://unifmir.fdudml.cn/. Users can also access the colab 
at https://colab.research.google.com/github/cxm12/UNiFMIR/blob/
main/UniFMIR.ipynb or use the steps in our GitHub documentation 
to run the demo locally. This newly built interactive software platform 
facilitates users to freely and easily use the pretrained foundation 
model. It also makes it easy for us to continuously train the founda-
tion model with new data and share it with the community. Finally, 
we shared all models on BioImage.IO at https://bioimage.io/#/. Data 
are available via Zenodo at https://doi.org/10.5281/zenodo.10577218, 
https://doi.org/10.5281/zenodo.10579778, https://doi.org/10.5281/
zenodo.10579822, https://doi.org/10.5281/zenodo.10595428, 
https://doi.org/10.5281/zenodo.10595460, https://doi.org/10.5281/
zenodo.8420081 and https://doi.org/10.5281/zenodo.8420100  
(refs. 57–63). We used the Pycharm software for code development.
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Extended Data Fig. 1 | Overall architecture of the UniFMIR. The proposed 
UniFMIR approach is composed of three submodules: a multihead module,  
a Swin transformer-based feature enhancement module, and a multitail module. 
The numbers of parameters (M) and calculations (GFLOPs) required for the head, 

feature enhancement and tail modules for different tasks are marked below the 
structures of the respective modules. The input sizes and output sizes of training 
batches for different tasks are also marked below the images.
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Extended Data Fig. 2 | Network architecture of the Swin transformer-based 
feature enhancement module46. The feature enhancement module consists  
of convolutional layers and a series of Swin transformer blocks (STB), each of 
which includes several Swin transformer layers (STL), a convolutional layer and  
a residual connection. The STL is composed of layer normalization operations,  

a multihead self-attention (MSA) mechanism and a multilayer perceptron (MLP). 
In the MSA mechanism, the input features are first divided into multiple small 
patches with a moving window operation, and then the self-attention in each 
patch is calculated to output features fout. The MLP is composed of two fully 
connected layers (FCs) and Gaussian-error linear unit (GELU) activation.
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Extended Data Fig. 3 | Generalization ability analysis of super-resolution on 
unseen modality of single-molecule localization microscopy data from the 
Shareloc platform52. a, SR results obtained by the SOTA model (DeepSTORM54), 
the pretrained UniFMIR model without fine-tuning, Baseline (same network 
structure as UniFMIR trained from scratch), and our fine-tuned UniFMIR model. 
The GT dSTORM images of microtubules stained with Alexa 647 in U2OS cells 
incubated with nocodazole and the input synthesized LR images are also shown. 
The PSNR/NRMSE results of the SR outputs obtained on n = 16 synthetic inputs 

are shown on the right. b, SR results obtained on the real-world wide-field images. 
The NRMSE values are depicted on the residual images under different SR results 
and the raw input images. The PSNR/NRMSE results on n = 9 real-world inputs 
are shown on the right. Box-plot elements are defined as follows: center line 
(median); box limits (upper and lower quartiles); whiskers (1.5x interquartile 
range). The line plots show the pixel intensities along the dashed lines in the 
corresponding images. Scale bar: 6.5 μm.
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Extended Data Table 1 | Comparison between the training costs of the SOTA models and that of our model on different tasks

The number of parameters (M), the model size (MB), the number of calculations (GFLOPs), and the running time on a CPU/GPU required by each model in each training iteration are shown.
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Extended Data Table 2 | Comparison between the prediction costs of the SOTA models and that of our model on different tasks

The number of parameters (M), the model size (MB), the number of calculations (GFLOPs/BOPs), and the running time on a CPU/GPU required by different models for a low-quality image input 
are shown.
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Extended Data Table 3 | Quantitative comparison among different models for the x2 SR task

The number of parameters (M), the model size (MB), the number of calculations (GFLOPs/BOPs), and the running time required on a CPU/GPU for a given LR image input are shown, as are the 
accuracies (PSNR/SSIM values) achieved on the BioSR dataset.
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Extended Data Table 4 | Quantitative comparison among different models for the isotropic reconstruction task

The number of parameters (M), the model size (MB), the number of calculations (GFLOPs/BOPs), and the running time required on a CPU/GPU for an anisotropic image are shown, as are the 
accuracies (PSNR/SSIM values) achieved on the Liver dataset.
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Extended Data Table 5 | Quantitative comparison among different models for the 3D image denoising task

The number of parameters (M), the model size (MB), the number of calculations (GFLOPs/BOPs), and the running time required on a CPU/GPU for a noisy image are shown, as are the 
accuracies (PSNR/SSIM values) achieved on the Planaria and Tribolium datasets.
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Extended Data Table 6 | Quantitative comparison among different models for the 3D-to-2D projection task

The number of parameters (M), the model size (MB), the number of calculations (GFLOPs/BOPs), and the running time required on a CPU/GPU for a volumetric input are shown, as are the 
accuracies (PSNR/SSIM values) achieved on the Flywing dataset.
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