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Spatial landmark detection and tissue 
registration with deep learning

Markus Ekvall    1 , Ludvig Bergenstråhle    1, Alma Andersson    1, 
Paulo Czarnewski1, Johannes Olegård    2, Lukas Käll    1 & Joakim Lundeberg    1 

Spatial landmarks are crucial in describing histological features between 
samples or sites, tracking regions of interest in microscopy, and registering 
tissue samples within a common coordinate framework. Although other 
studies have explored unsupervised landmark detection, existing methods 
are not well-suited for histological image data as they often require a 
large number of images to converge, are unable to handle nonlinear 
deformations between tissue sections and are ineffective for z-stack 
alignment, other modalities beyond image data or multimodal data. We 
address these challenges by introducing effortless landmark detection, 
a new unsupervised landmark detection and registration method using 
neural-network-guided thin-plate splines. Our proposed method is 
evaluated on a diverse range of datasets including histology and spatially 
resolved transcriptomics, demonstrating superior performance in both 
accuracy and stability compared to existing approaches.

Spatial landmarks are helpful in various areas of biotechnology. For 
instance, they are valuable when comparing histological heteroge-
neity between sites or samples1, keeping track of regions of interest 
in microscopy2 or registering tissue samples and transferring them 
to a common coordinate framework (CCF)3. One can obtain spatial 
landmarks with, for example, experimental labeling4, microscopy2 
techniques and software-based manual or semimanual5 annotation. 
However, the labor-intensive nature of locating spatial landmarks 
presents a bottleneck in spatial omics data analysis. Automating this 
process could boost the scalability of sizable spatial omics experiments 
while obviating the reliance on manually curated annotations.

Researchers have explored automating spatial landmark detection 
using deep learning techniques in computer vision, with successful 
results in both supervised6,7 and unsupervised settings8,9. Unsupervised 
methods hold greater promise as they can address the general shortage 
of labeled landmark datasets, particularly in the diverse field of spatial 
omics. These unsupervised algorithms typically consist of a landmark 
detector network that identifies landmarks in images and a generative 
model that uses landmarks to guide image registration.

While these models have shown promise in specific tasks and bio-
logical applications10, their broad adaptation for tissue-related datasets 

necessitates overcoming three main challenges: (1) limited datasets: 
deep learning techniques often necessitate vast datasets, sometimes 
in the order of 100,000 training examples, to discern general patterns 
and avoid overfitting. However, multi-omics studies often include 
fewer than ten training samples. (2) Nonlinear transformations: current 
methods predominantly focus on datasets involving more straightfor-
ward affine transformations, such as rotation, scaling and translation. 
However, researchers often encounter images that require a combina-
tion of elastic and rigid transformations to integrate multiple images 
in biological contexts11. (3) Multimodal data handling: the methods 
must handle data from different modalities, such as histology stains, 
spatially resolved transcriptomics and mass spectrometry imaging 
(MSI), and process these modalities concurrently.

Building on the work of Sanchez et al.8 we introduce ELD (effortless 
landmark detection) to address these challenges, using a landmark 
detector network for identification and leveraging thin-plate splines 
(TPSs) for precise image registration without the need for generative 
modeling. In this study, we highlight the performance of ELD across 
a range of applications, including single-modality data registration, 
three-dimensional (3D) modeling and multimodal data alignment. 
For single-modality data registration, we demonstrate ELD’s enhanced 
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The error is determined by comparing the point-to-point distances 
between the two sets of landmarks. ELD exhibits superior consistency 
compared to other methods (Fig. 2a). A closer examination of the 
results reveals that the performance difference is largely attributed to 
the other methods’ tendency to identify landmarks that are sometimes 
significantly misaligned (Fig. 2b). While most landmarks are consist-
ent, these outliers contribute to a much higher mean error than ELD.

The forward error is calculated by training a linear regression 
model using a set of manually annotated points and the detected land-
marks. The trained regressor predicts the annotated points based on 
the detected landmarks. Conversely, the backward error is computed 
using a linear regression model trained in reverse order: that is, using 
the annotated landmarks to predict the detected landmarks. This error 
serves as a measure of the stability of the detected landmarks. A model 
with a low forward error but a high backward error will likely detect a 
low number of stable landmarks. On the other hand, a model that has 
a low backward error but high forward error is likely to converge to a 
fixed set of points independent of the input image.

ELD exhibits significantly better backward error than other meth-
ods (Fig. 2c), which can be attributed to the inconsistent landmarks 
found by the other methods. Although all models show better per-
formance in forward error than backward error, ELD displays margin-
ally worse performance in forward error (Fig. 2d). This indicates that 
ELD sacrifices some generalization in favor of significantly improved 
consistency.

We conducted two tests to evaluate ELD’s runtime requirements: 
one with varying numbers of genes or image channels (Fig. 3a) and 
another with varying numbers of landmarks (Fig. 3b). As detailed in the 
Methods section, the convergence criterion is stringent; however, con-
vergence is typically achieved more quickly in real-world applications.

Performance evaluation on single-modality data
An effective registration method for Visium data, Eggplant13, is cur-
rently openly available. One limitation of Eggplant, however, is its reli-
ance on manual spatial landmark annotation. Therefore, we next sought 
to test whether the spatial landmarks generated by ELD can supplant 
manual annotation and improve the performance of Eggplant. Using 
Eggplant to transfer the gene expression of three target genes with 
distinct expression patterns (Nrgn, Apoe and Omp) in the mouse olfac-
tory bulb to a reference section using either manually or automatically 
detected landmarks, we find that the landmarks produced by ELD yield 
results that are at least as accurate as those obtained using manual 
annotation (Fig. 4a,b). For this experiment, we used 12 mouse olfactory 
bulb samples, the same reference as used in Eggplant13. Our results 
are consistent whether landmarks were identified using histology or 
expression data from three or 100 genes.

We used three mouse brain coronal sections from Salas et al.14 to 
demonstrate ELD’s compatibility with ISS data. In this experiment, we use 
RGB (red, green, blue) images of the clustering on the ISS data (Fig. 4e)  
and use TPS for the final registration. To evaluate the effectiveness of 
the registration, we assess how well a simple k-nearest neighbor model 
trained on the reference could predict the correct anatomical region on 
the registered samples. Comparing ELD to STAlign15, which has shown 
promising results for aligning data from ISS experiments, we find that 
ELD attains a higher accuracy in both replicates (Fig. 4d).

3D modeling
To make it possible to align a stack of multiple tissue sections, whose 
morphology may change drastically along the stacking axis, we modify 
ELD to generate anchor points instead of landmarks. The general pro-
cedure is illustrated in Fig. 5a. Briefly, the most significant difference 
for z-stack alignment involves controlling how the area changes of the 
transformed tissue. This forces the landmarks to act more like anchor 
points with fixed xy coordinates instead of identifying common mor-
phology, as demonstrated in Fig. 5c.

stability and efficiency across modalities such as Visium, hematoxylin 
and eosin stain (H&E) images and in situ sequencing (ISS). We also show 
that it outperforms other landmark detection models in numerous 
tests. Regarding 3D modeling, ELD’s proficiency was underscored by its 
notable improvement in registration metrics compared to eight other 
registration models on a mouse prostate dataset. Finally, we show that 
ELD can successfully model Visium and H&E or Visium and MSI data 
simultaneously, demonstrating its ability to learn modality-agnostic 
landmarks for integrating multimodal datasets. Moreover, ELD accom-
plishes this in an unsupervised manner, eliminating the need for man-
ual annotation and requiring minimal to no parameter tuning, thereby 
streamlining the process significantly.

Results
Benchmarking ELD against existing methods
One can design a deep neural network to better generalize for small 
training datasets by adding constraints to the model, such as reducing 
the neuron count per layer, decreasing the number of layers, imple-
menting drop-out or adding a regularizer to the loss function10. In ELD, 
we constrain the solution space by removing the generative network 
while retaining the landmark-detecting network, as suggested by 
Sanchez et al.8. With the image landmarks identified, registration can 
be easily performed using landmark-based methods, such as homogra-
phy11 or TPSs12. However, given the elastic nature of the transformations 
in our data, we here use TPS for registration purposes. These methods 
offer several advantages, including having fewer unlearnable param-
eters (hard constraints) and being more computationally efficient than 
large deep neural networks.

The fundamental distinction between ELD and previous meth-
odologies lies in their approach to alignment. Traditional methods 
use a generative deep neural network for alignment, which, in the 
context of small datasets, leads to the generation of seemingly random 
and inconsistent landmarks. These landmarks, essentially serving as 
identifiers, can be memorized by the generative network, enabling it 
to align images, but with landmarks that lack meaningful correspond-
ence or consistency. ELD, on the other hand, employs the analytically 
solvable TPS. This approach prevents the landmark detector from 
creating image-specific identifications as TPS lacks memorization 
capabilities. Consequently, this compels the landmark detector to iden-
tify consistent landmarks across tissue sections. Additionally, while 
previous methods are typically limited to pairwise image alignment 
with linear noise, ELD expands these capabilities. It can handle more 
complex scenarios such as high-dimensional data (such as Visium), 3D 
alignment and multimodal data, all of which necessitate new and more 
sophisticated optimization heuristics that are thoroughly explained 
in the Methods section.

The process of aligning tissue slices to a CCF can be outlined as fol-
lows (Fig. 1): to begin, the ELD system uses an unsupervised trained spa-
tial landmark detection network to pinpoint landmarks on the desired 
tissue slices or manual annotations can be used. Once these critical 
points have been established across all slices, ELD uses landmark-centric 
alignment techniques, such as TPS or homography, to align the regions. 
As a final step, ELD projects all the aligned tissue regions onto a CCF, 
facilitating comparative studies across various slices.

In this study, we use standard error metrics to assess the per-
formance of ELD and two other state-of-the-art landmark detection 
methods. These metrics include forward error, backward error and 
consistency error8. Performance benchmarks are conducted using 
the CelebA dataset for training, and the MAFL and AFLW datasets for 
evaluation, which are frequently used for tasks of this nature.

Consistency error evaluates landmark stability through geometric 
consistency. To calculate the consistency error, one must: (1) detect 
the landmarks in the image, apply an affine transformation to the 
landmarks and (2) apply the same affine transformation to the image 
and then detect the landmarks again but on the transformed image. 

http://www.nature.com/naturemethods
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To assess ELD’s 3D alignment performance, we use a mouse pros-
tate dataset containing 260 slices from Kartasalo et al.16. The dataset 
contains annotations from two different annotators of four correspond-
ing landmarks in each pair of consecutive sections. Additionally, we use 
their published code to generate the results. Since most benchmarks 

were similar across all methods and different processing was done on 
the images, the root-mean-square error (r.m.s.e.) is difficult to com-
pare fairly. Therefore, we chose to only present the landmark-related 
benchmarks target to registration error (TRE) and accumulated TRE 
(ATRE). The TRE is calculated as the Euclidean distance between the  
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Fig. 1 | Overview of ELD framework. Proposed workflow of acquiring spatial 
landmarks and aligning sections within a CCF. The process can be divided into 
steps as follows. a, Obtain two different sections, A and B, for which we want to 
identify landmarks. b,c, Use a trained unsupervised spatial landmark detection 
network (b) or manually annotate the sections to obtain landmarks for both 

sections (c). d, After acquiring landmarks for both samples, register Section 
B to Section A using various landmark-based alignment methods, such as TPS 
or homography. e, Obtain the registered sample, which aligns Section B with 
Section A. f, Map the samples to a CCF, allowing cross-section comparisons and 
analysis.
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actual and predicted locations of points. Specifically, these points are 
not used in the registration process (also known as target points), and 
this calculation is performed for each consecutive pair. The ATRE is a 
cumulative TRE over all the tissue sections. This measurement provides 
an overall indication of the total error in the registration task across 
all target points. The mean of TRE and ATRE is used, and it is normal-
ized by the score obtained when registering with manually annotated 
landmarks, as depicted in Fig. 5d. While the performance of ELD is 
comparable to the other methods in terms of TRE, ELD significantly 
outperforms them in terms of ATRE, suggesting that the alignment is 
more consistent across the entire tissue volume. We compared eight 
other registration models, seven of which come from Kartasalo et al.16 
and CODA17. The final 3D alignment is illustrated in Fig. 5b.

Performance evaluation on multimodal data
ELD can detect landmarks and align tissue data from different modali-
ties. To optimize the alignment between two distinct modalities, sepa-
rate landmark detectors are used for each modality. During training, 

random samples from both modalities are selected, one sample is 
registered to the other and their alignment is assessed in the latent 
space obtained from the landmark detector (Fig. 6a).

We used the Human Developing Heart dataset13, which consists 
of four samples, to demonstrate ELD’s ability to align tissues from two 
different modalities. Histology images were used for the first two sam-
ples, while the genes MYH6, ELN and MYH7 from Visium expression data 
were used to construct an image for the other samples. The detected 
landmarks for the two modalities are displayed (Fig. 6b).

To benchmark ELD’s performance, we randomly selected one 
of the samples as reference. Then we calculated the correlation of 
the source sample to the reference with Eggplant, using both ELD’s 
landmarks and manually annotated landmarks. The programmati-
cally detected landmarks perform comparably to manually annotated 
landmarks (Fig. 6b,c).

To further demonstrate the flexibility of ELD to model data of 
diverse modalities, we apply it to principal component analysis (PCA) 
embeddings of MSI and Visium data. This data was extracted from 
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three mouse striatum samples as per the study conducted by Vicari 
et al.18. For each of these samples, we used a combination of both MSI 
and Visium methodologies. We find the generated landmarks to be 
qualitatively consistent across sections and to mark out biologically 
relevant anatomical features (Fig. 6d).

Discussion
In this study, we have introduced ELD, a method for unsupervised spatial 
landmark detection and registration that addresses the challenges of 
small datasets and nonlinear transformations typically found in spatial 
omics and histological image data. ELD employs neural-network-guided 
TPSs and outperforms existing approaches in terms of both accuracy 
and stability.

By removing the generative network and retaining the 
landmark-detecting network, ELD effectively addresses the issue of 
overfitting in small training datasets by removing the generative net-
work and retaining the landmark-detecting network. We have dem-
onstrated that ELD achieves superior consistency and backward error 
performance compared to competing methods while showing margin-
ally worse performance in forward error. Our runtime tests indicate that 
ELD is computationally efficient, and we have empirically observed 
convergence to be even quicker in many real-world applications.

By tweaking the optimization function, we have demonstrated 
the effectiveness of ELD in a wide range of applications, such as 
single-modality data registration, 3D modeling and multimodal data 
alignment. Regarding single-modality data registration, ELD outper-
formed existing methods such as manual annotation with Eggplant 
and STAlign. For 3D modeling, ELD was adapted to produce anchor 
points rather than landmarks, leading to successful z-stack alignment. 
Moreover, ELD significantly improved the ATRE metric for the mouse 
prostate dataset compared to eight competing models.

Finally, we have shown that ELD can align tissues from diverse 
modalities by using distinct landmark detectors for each modality and 
comparing the registration similarity in a latent tissue space.

ELD’s capability to learn landmark detection across different 
modalities, both in unimodal and multimodal settings, effectively 
addresses the challenges of homogeneity often encountered in H&E 
tissues with limited anatomical structure. In such cases, ELD often 
identifies landmarks predominantly around the tissue borders. 
While this leads to satisfactory registration results, the identified 
landmarks might lack significance or interest. To enhance the land-
mark detection and achieve more meaningful landmarks, introduc-
ing additional modalities such as MSI or Visium is beneficial. These 
modalities usually exhibit more heterogeneous textures, providing  
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Fig. 5 | 3D tissue reconstruction with ELD. a, Illustration of the 3D modeling 
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to map onto the reference. This step involves generating a deformed version of 
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version. Finally, map the deformed source image to the reference using TPS, 
and then align the original source image with the reference using both TPS and 
a rigid transformation technique. (iii) Compute the similarity loss between 
the mapped noisy source and the original source image, and compare the area 

change between the source image mapped with TPS and rigid transformation. 
Repeat this process for all tissues in the stack until convergence. (iv) Finally, map 
all tissues to the reference. b, Demonstration of final registration using ELD, 
and with the manual annotations for 260 prostate samples. c, Display of aligned 
tissues with their anchors from the tissue stack. A total of 20 landmarks were used 
for the alignment. d, Performance comparison of ELD and other models based 
on the 260 prostate samples. All results are normalized using the value obtained 
when aligning with manual landmarks (corresponding to a score of 1). e, Absolute 
error between manual alignment and alignment using ELD across four sections 
in the z-stack.
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a richer context for ELD to detect varied and significant landmarks. 
In scenarios where only a single modality with very homogene-
ous structures is accessible, and there is a desire to identify more 
intriguing landmarks, investigating alternative landmark detec-
tion techniques can be advantageous. Approaches such as the ori-
ented fast and rotated BRIEF, developed by Maric et al.19, may offer 
potential improvements. However, it is important to note that in 
our experiments, oriented fast and rotated BRIEF-based methods 
did not yield satisfactory results with our datasets, leading us to not 
include them. This shows the variability in the effectiveness of dif-
ferent techniques depending on the specific characteristics of the  
analyzed data.

The primary objective of ELD is landmark detection, while reg-
istration serves as an added benefit. In this regard, relatively simple 
registration models, such as TPS, have been used. We believe that 
ELD has the potential to improve other models with more advanced 
registration approaches, such as STAlign and CODA, similar to how it 
enhances Eggplant, by supplying ELD’s landmarks as a ground truth 
during the training phase.

Overall, ELD demonstrates a notable improvement over existing 
unsupervised landmark detection and registration methods in spatial 
omics and histological image data. Its versatility in addressing different 
data types and modalities makes it a promising tool for researchers in 
spatial biology.
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Methods
Hardware
We used an NVIDIA A100-SXM 81GB graphics card and 12 AMD EPYC 
7742 64-core processors for all model training.

Cost function from MS-SSIM
In all the experiments detailed in the subsequent sections, we use a 
cost function rooted in the multiscale structural similarity (MS-SSIM) 
method. This approach allows for a comprehensive assessment of 
image quality by considering image details across a range of resolu-
tions. This method extends the single-scale SSIM index, which com-
pares luminance, contrast and structure of two aligned signals, such as 
image patches20. MS-SSIM has been very useful in our experiments since 
we have due to the presence of significant batch effects, and MS-SSIM 
have demonstrated more robustness than, for instance, mean squared 
error in our experiments.

The MS-SSIM procedure involves an iterative process of applying 
a low-pass filter to the image and downsampling the filtered image. 
Each iteration defines a new scale, culminating in the highest scale. 
Contrast and structure comparisons are computed at every scale, while 
luminance comparison is reserved for the highest scale20.

The overall quality assessment in MS-SSIM combines these meas-
urements from all scales, using adjustable parameters for accounting 
for the relative importance of each component at every scale. The 
method yields a detailed image quality map, with the mean MS-SSIM 
index offering an overall evaluation of image quality. For a compre-
hensive understanding of MS-SSIM, refer to the work of Wang et al.20.

For the calculation of MS-SSIM, we used the PyTorch Image Quality 
Assessment package, using its default parameters along with a window 
size of five. This configuration was chosen based on our preliminary 
trials, which indicated its effectiveness in our context.

Landmark drop-out
When training ELD landmarks, they can become trapped in a local 
minimum, which often results in many landmarks occupying similar 
positions. To counteract this, we use a technique known as landmark 
drop-out. This process involves the probabilistic removal of detected 
landmarks, with each landmark having a probability P of being dropped 
out. Empirical observations have demonstrated that this method allows 
the landmarks to escape local minima more rapidly, leading to a more 
diverse and satisfactory distribution of landmarks in a shorter time. 
Throughout all our experiments, we used a drop-out probability of 
10%. Empirically, this has proven to work well in practice.

Cropping
During training, data augmentation can occasionally cause images 
to be cut off or contain missing regions due to batch effects. This can 
complicate the process when registering two images, as the missing 
portions can confuse the model. To mitigate this issue, we perform a 
cropping procedure on the registered and mapped images based on the 
black-colored background, which is represented by a zero value across 
all channels. Specifically, we identify the masks for all black channels in 
both images and then crop both images according to these masks. To 
ensure precision, we implement a threshold of 0.1. This means any pix-
els in which all channels fall below this threshold are considered black.

Registration using TPSs
In all the experiments outlined in the following sections, we use TPS 
for image registration. TPS is a widely used method known for its capac-
ity to effectively handle image registration and deformation, primarily 
by interpolating scattered data points. TPS creates a smooth and flex-
ible mapping between two sets of landmarks while minimizing bending 
energy. Formally, consider a set of n source points pi and their corre-
sponding target points qi in a two-dimensional space. The objective is 
to determine the bias parameter a1, the affine parameters ax  and ay, 

and the nonlinear parameters wi for each of the x and y coordinates. 
These parameters should be optimized such that the mapping function 
f(x, y) minimizes the following energy function.

U(r) = r2log2(r)

fx(x, y) = a1 + axx + ayy +
N
∑
i=1

wiU(||(xi, yi) − (x, y)||)

fy(x, y) = a1 + axx + ayy +
N
∑
i=1

wiU(||(xi, yi) − (x, y)||)

The TPS function, f(x, y), can be solved analytically to obtain the 
weights. Once these weights are acquired, the source image can be 
mapped to the reference. For a more in-depth understanding, we rec-
ommend referring to the study by Keller et al.12.

TPS is of significant utility in scenarios demanding smooth and 
continuous transformations, such as shape morphing in computer 
graphics. Within the context of ELD training, TPS is leveraged to guide 
the learning of high-quality landmarks.

Landmark detector
The landmark detector used in this article is identical to the one used 
by Sanchez et al.8, which is an hourglass network consisting of approxi-
mately 6 million parameters.

Neural-network-guided TPSs landmark detection
The ELD framework primarily consists of two components: (1) a deep 
neural network for landmark detection, and (2) TPS for image registra-
tion. The landmark detector processes the source and target images 
to identify a set of source points pi ∈ P and corresponding target points 
qi ∈ Q. We then fit the parameters of the TPSs by determining a function 
f  such that f(P) = Q. This function f  is subsequently used to warp the 

source image to align with the target image.
Initially, however, the landmark detector lacks an inherent under-

standing of what constitutes landmarks, often resulting in the gen-
eration of arbitrary points for P and Q. Consequently, the parameters 
for the TPSs, based on these random landmarks, lead to inaccurate 
registration. To address this, we refine the landmark detector using a 
training process that minimizes the loss, defined as the dissimilarity 
between the target image and the warped source image. This training 
approach encourages the detector to identify corresponding land-
marks in both the source and target images, essential for successful 
registration with the TPSs. As the training progresses, the landmark 
detector gradually improves, learning to identify more accurate and 
correspondingly relevant landmarks, thereby enhancing the overall 
registration accuracy.

General image preprocessing
Throughout all experiments, we used 128 × 128 images during training, 
achieved by using cv2.resize and applying INTER_AREA-interpolation 
(referenced in docs.opencv.org) to transform the original image dimen-
sions to the desired format. Furthermore, ELD cannot process flipped 
images, so it is crucial to ensure all images are oriented in the same way 
before training.

Data augmentation
In every experiment, we used data augmentation strategies, including 
rotation, scaling and elastic transformation. The rotation was imple-
mented with a random angle selection between −15 and 15°, paired with 
appropriate scaling to maintain the participant within the image frame. 
For the introduction of elastic noise, we employed the elasticdeform 
package. Both the control points for the deformation grid and the 
sigma for the normal distribution were randomly selected within an 
experiment-dependent range.

http://www.nature.com/naturemethods
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Visium preprocessing and filtering
For all Visium data, spots with fewer than 200 detected genes 
were removed, and genes present in fewer than three spots were 
also removed. The data were then normalized using Scanpy and 
log1p-transformed. The same genes as in Eggplant13 were chosen when 
selecting three genes. In the experiments where more genes were used, 
we performed Leiden clustering on neighborhood graphs derived from 
PCA. All methods were implemented with the default parameters pro-
vided by Scanpy. Subsequently, we used Scanpy’s rank_genes_groups 
function, using the Leiden clusters as groupings and the t-test for rank-
ing. This allowed us to select the top n-ranked genes per sample. Finally, 
the common genes across all samples were chosen for further analysis.

To adapt the Visium data for compatibility with ELD, it was neces-
sary to normalize the gene expression values to a range between 0 and 1. 
We used Scipy’s interpolate.griddata function with linear interpolation 
to convert this data into continuous images. This method allows us to 
predict the values of intermediate pixels between the spots accurately.

Regarding the visualization presented in Fig. 2b, for Visium data 
comprising three genes, we treated the data as if it were RGB images, 
using the gene expression data directly for visualization. For the Visium 
data encompassing 100 genes, a different approach was required. We 
treated all pixels as individual samples and used Scikit-learn’s PCA from 
decomposition.PCA. This enabled us to distill the data into three principal 
components. Consequently, we could transform the expression data of all 
100 genes for each pixel into these three principal components, facilitat-
ing an effective visualization of the complex gene expression patterns.

Comparative assessment of landmark quality and runtime 
requirement: evaluating existing methods
During the training of ELD on the CelebA dataset for the purpose of 
landmark quality assessment, we create two augmented variants of 
each image: Xtarget and Xsource, as elaborated in the preceding section. 
Xsource is then registered to Xtarget using the landmarks detected by the 
ELD, resulting in Xregistered. We then calculate the MS-SSIM loss between 
Xregistered and Xtarget, which is referred to as the base loss.

Lbase = MS − SSIM (Xregistered,Xtarget)

To guarantee consistency across images, we randomly select 
another sample, Xtarget, and align it to Xtarget, forming Yregistered. However, 
we only compute the MS-SSIM loss (with a window size of 3) between 
small patches surrounding the landmarks, specifically PYregistered and PXtarget. 
This is called the consistency loss and ensures that specific landmarks, 
such as the left eye, consistently target the same feature across different 
images.

Lconsistency = MS − SSIM (PYregistered ,PXtarget )

The primary loss is computed by combining the base loss and 
the consistency loss. The consistency loss is scaled by a factor of 0.1, 
determined through empirical testing, although a scalar in the range 
of 0.1 to 0.5 has been observed to yield similar performance. The final 
loss function is, therefore, a composite of these two components.

Ltotal = Lbase + 0.1 × Lconsistency

In this comparison, we evaluated our method against two other 
recently published landmark detection methods8,9, both of which rep-
resent the current state of the art in this field. We trained a total of 15 
models for each method. We ran their models using default parameters 
for 80 epochs, a batch size of 48 and also trained our models with the 
same parameters, but added elastic noise with a sigma value of 3. The 
learning rate used was 1 × 10−4, using a learning rate scheduler with a 
step size of ten epochs and a learning rate decay of 0.95. TPS was used 
to register the samples. All benchmarks were performed with the code 
from Sanchez et al.8.

In the runtime experiment, we used an initial learning rate of 
1 × 10−4, which was annealed by a learning rate scheduler with step size 3  

and a learning rate decay of 0.95. TPS was used for registration pur-
poses. Samples were perturbed by elastic noise with a sigma parameter 
of 5.5. A batch size of 48 was used, resulting in 300 iterations per epoch. 
Training was stopped when the loss improved by less than 1 × 10−4 over 
ten consecutive epochs.

Performance evaluation on single-modality data
Maintaining the same objective outlined in the preceding section, but 
we modified the calculation of Lconsistency. Instead of applying MS-SSIM 
to patches of the aligned sections, we computed it directly between 
Xtarget and Yregistered.This adjustment is justified given the presence of 
minor batch effects, which represent technical variations among the 
samples. Consequently, the consistency loss, denoted as Lconsistency, is 
calculated as the MS-SSIM between Yregistered and Xtarget:

Lconsistency = MS − SSIM (Yregistered,Xtarget)

The final loss, Ltotal, is then computed by combining the base loss, 
Lbase, with Lconsistency, where the latter is scaled by a factor of 0.1:

Ltotal = Lbase + 0.1 × Lconsistency

We adhered to the same learning rate schedule, perturbation 
parameters, batch size and stopping criteria as delineated in the sec-
tion discussing runtime experiments. All Visium data was preprocessed 
following the methodology outlined in the preceding section.

When comparing with STAlign, we use the same default param-
eters outlined in their article15. The process began with annotating 
each image with three distinct landmarks, details of which can be 
found in the Supplementary Fig. 1. Using STAlign’s L_T_from_points 
function, we calculated the affine transformation between the source 
and target images.

Subsequently, we applied STAlign’s LDDMM function, configuring 
it with the following parameters: niter (number of iterations), sigmaM, 
sigmaA, sigmaB and epV. The values assigned to these parameters were 
300, 0.15, 0.1, 0.11 and 10, respectively.

The final step involved using STAlign’s transform_points_target_
to_atlas function to execute the transformation.

3D modeling
During the training process, for each individual sample Xi drawn from 
the complete stack X1,… ,XN, where N is the total number of sections, a 
random reference point Xreference is chosen from the z-stack. Further-
more, an additional sample, Xj, is selected at random from within the 
range Xi−3 to Xi+3, with a certain amount of noise introduced. Landmarks 
are identified for each sample in this triplet: Xreference, Xi and Xj.

The nondistorted Xi is registered to Xreference using both a rigid 
transformation (using the Kabsch–Umeyama algorithm) and a TPS 
transformation, resulting in two different versions of the registered 
image, denoted as XTPS

i  and X rigid
i . The noisy variant Xj is registered to 

the reference point using TPS, referred to as XTPS
j .

Subsequent to registration, we compute the change in area, dA, 
before and after registration with TPS between Xi and XTPS

i . The loss 
function is then given as:

L = (1 − dA) ×MS − SSIM (XTPS
j ,XTPS

i ) + dA ×MS − SSIM (XTPS
j ,Xrigid

i )

In this loss function, the first part is the product of MS-SSIM calcu-
lated between XTPS

i  and XTPS
j , and (1 − dA). The second part is the product 

of MS-SSIM calculated between X rigid
i  and XTPS

j , multiplied by dA.
This means that if the area changes significantly after registration, 

Xrigid
i  contributes more to the loss function, which could lead to a less 

optimal fit. This strategy compels the landmarks to function more as 
anchor points, ensuring increased stability throughout the z-stack.

We trained the model for 80 epochs, a batch size of 258 (the whole 
z-stack), resulting in 300 iterations per epoch, and with elastic noise 
with a sigma value of 5.5. The learning rate used was 1 × 10−4, using a 

http://www.nature.com/naturemethods
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learning rate scheduler with a step size of ten epochs and a learning 
rate decay of 0.95.

All benchmark metrics were performed with the code from Kar-
tasalo et al.16.

Performance evaluation on multimodal data
In the same way as in previous sections, we calculate a base loss by 
identifying landmarks and registering a sample with a noisy variant 
of itself. However, when we deal with multimodal data alignment, 
each data modality presents unique characteristics, distributions 
and scales. This uniqueness can complicate direct comparisons using 
methods such as MS-SSIM, rendering them less meaningful. Therefore, 
for measuring the quality of alignment in this context, we need to use 
an alternative proxy, distinct from MS-SSIM.

In our multimodal consistency loss computation, we use the latent 
representations derived from the landmark detector. When aligning 
a sample from modality A with a sample from modality B, we run both 
samples through the landmark detector and obtain the activations of 
the first layer, represented as ZA and ZB. We then gauge their similarity 
using the r.m.s.e., termed the inter-consistency loss:

Linter = r.m.s.e.(ZA,ZB)

Moreover, we calculate intra-modality consistency by aligning 
samples within the same modality and leveraging MS-SSIM for loss 
computation. This intra-modality consistency mirrors the consistency 
loss outlined in the previous sections, where one section is registered 
to another within the same modality:

Lintra = MS − SSIM (Yregistered,Xtarget)

Analogous to previous sections, our base loss involves register-
ing a noisy variant of a sample with another perturbed version of the 
same sample:

Lbase = MS − SSIM (Xregistered,Xtarget)

The final cost function amalgamates the base loss, inter- 
consistency loss and intra-consistency loss. These are scaled by factors 
of 10 and 0.1, respectively, as determined empirically:

Ltotal = Lbase + 10 × Lintra + 0.1 × Linter

We followed the same protocol for the learning rate schedule, 
perturbation parameters, batch size and stopping criteria, as detailed 
in the section regarding runtime experiments. As for Visium data, we 
maintained the same preprocessing steps described in the earlier 
section.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
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