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Genome-scale pan-cancer interrogation of 
lncRNA dependencies using CasRx

Juan J. Montero    1,2,7 , Riccardo Trozzo    1,2,7, Maya Sugden    1,2, 
Rupert Öllinger    1,2, Alexander Belka1,2, Ekaterina Zhigalova    1,2, 
Paul Waetzig1,2, Thomas Engleitner1,2, Marc Schmidt-Supprian2,3,4, 
Dieter Saur    2,3,5,6 & Roland Rad    1,2,3 

Although long noncoding RNAs (lncRNAs) dominate the transcriptome, 
their functions are largely unexplored. The extensive overlap of lncRNAs 
with coding and regulatory sequences restricts their systematic 
interrogation by DNA-directed perturbation. Here we developed 
genome-scale lncRNA transcriptome screening using Cas13d/CasRx. 
We show that RNA targeting overcomes limitations inherent to other 
screening methods, thereby considerably expanding the explorable space 
of the lncRNAome. By evolving the screening system toward pan-cancer 
applicability, it supports molecular and phenotypic data integration 
to contextualize screening hits or infer lncRNA function. We thereby 
addressed challenges posed by the enormous transcriptome size and 
tissue specificity through a size-reduced multiplexed gRNA library termed 
Albarossa, targeting 24,171 lncRNA genes. Its rational design incorporates 
target prioritization based on expression, evolutionary conservation and 
tissue specificity, thereby reconciling high discovery power and pan-cancer 
representation with scalable experimental throughput. Applied across 
entities, the screening platform identified numerous context-specific 
and common essential lncRNAs. Our work sets the stage for systematic 
exploration of lncRNA biology in health and disease.

Deep characterization of the human transcriptome revealed that 
protein-coding sequence accounts for only a minority of the transcrip-
tional output1–5. Among the most abundant RNA species are lncRNAs6,7, 
which display highly cell-type-specific expression patterns8,9. The total 
number of annotated lncRNAs is roughly 4.5 times higher than that of 
protein-coding genes6,10, yet only a few have been studied mechanisti-
cally so far. This highlights the need for approaches to systematically 
functionalize the lncRNAome.

Genome-scale perturbation of the protein-coding genome has 
been achieved through indel/frame-shift causation by DNA-targeting 
clustered regularly interspaced short palindromic repeats (CRISPR) 
systems11–14. However, these cannot be used to interrogate lncRNAs, 
as they lack an open reading frame. Creating large lncRNA deletions 
by CRISPR-associated protein 9 (Cas9) can address this problem15 
but suffers from limitations, such as low efficiency and extensive col-
lateral perturbation of overlapping coding and regulatory sequence. 
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(LN-18, LN-119), nonsmall cell lung cancer (A549, NCI-H460) and pan-
creatic ductal adenocarcinoma (MIA PaCa-2, KP-4). We expanded 
single-cell clones from the original cell pools to identify clones with 
the highest CasRx expression and to minimize screening noise and 
artefacts linked to cellular heterogeneity14. CasRx clones are highly 
similar to their parental lines (Fig. 1c and Supplementary Fig. 1a) 
and are transposition-incompetent as nonautoreplicative episomal 
transposase vector gets lost during clonal expansion (Supplementary  
Fig. 1b). Quantitative insertion site sequencing (QiSeq)39,40 detected 
1–17 CasRx insertions per cell clone (Supplementary Fig. 1c).

To quantify CasRx activity in blasticidin-resistant cells, we 
expressed an unstable version of green fluorescent protein (GFP) 
and transduced cells with either GFP-targeting gRNA or control NT 
gRNA (Fig. 1d,e). GFP fluorescence (as measured by flow cytometry) 
decreased by 70–90% in cells receiving the GFP-targeting gRNA, con-
firming efficient RNA knockdown across these cell lines (Fig. 1f).

RNA targeting without indiscriminate off-target cleavage
When first described in bacteria, Cas13 systems displayed off-target 
effects due to indiscriminate RNA degradation41,42. Such effects had not 
been observed in initial reports using CasRx in mammalian cells34,43, 
but have been described recently in connection with very high episo-
mal CasRx expression37,38. Indiscriminate off-target cleavage happens 
after on-target RNA degradation, during which Cas13 undergoes con-
formational changes, exposing its catalytic domain44. To interrogate 
whether our system suffers from such a problem, we performed three 
types of experiments.

First, we used fluorescent ‘sensors,’ as described previously37. We 
delivered GFP and tRFP657 to our cell lines and used CasRx to target 
GFP. Whereas the GFP signal decreased substantially, there no change 
in tRFP657 fluorescence was detectable in any of our cell lines, suggest-
ing that our system does not display indiscriminate off-target cleavage 
(Fig. 1g). Second, we performed knockdown experiments targeting GFP 
or an endogenous protein-coding gene, followed by transcriptome 
sequencing. Differential expression analysis between targeting and NT 
conditions showed a lack of global gene dysregulation, which would be 
expected in scenarios of indiscriminate off-target cleavage (Fig. 1h,i). 
Third, we performed fitness screens using a control library including 
1,634 NT gRNA pairs as well as gRNAs targeting 300 always-essential 
(AE) genes and 300 never-essential (NE) genes (1,200 gRNA pairs each). 
The NE genes display robust expression (Supplementary Fig. 1d) but 
no fitness phenotypes in corresponding CRISPR or RNAi screens45 
(Supplementary Fig. 1e). Since indiscriminate off-target cleavage is 
coupled to on-target cleavage, it would be expected in cells harbor-
ing NE-gRNAs, but not in cells carrying NT gRNAs. Importantly, we 
observed no differences in logarithmic fold change (LFC) distributions 
between NE and NT gRNAs (Fig. 1j). Altogether, these results provide 
evidence for a lack of indiscriminate collateral cleavage in our system.

Target selection for lncRNA screens across solid tumors
We aimed to create a genome-scale sgRNA library for screening appli-
cations across solid tumors. Challenges toward this goal are: (1) the 
incomplete survey and annotation of the human lncRNA transcrip-
tome (a critical hurdle for new discoveries and library design), (2) its 
large size (the number of lncRNA genes vastly exceeds the number 
of protein-coding genes, causing screening scalability issues) and  
(3) tissue-specific expression of lncRNAs (which complicates the design 
of a screening library for pan-cancer studies).

To address these challenges, we used human lncRNAs annotated 
in RNAcentral7,46, the most comprehensive database for noncoding 
RNA sequences. We complemented this collection with evolutionarily 
conserved lncRNAs47–52, resulting in 577,475 human transcripts (Fig. 2a).  
Transcripts and transcript isoforms in RNAcentral are not linked to 
individual lncRNA genes. To classify lncRNA species into lncRNA genes 
consisting of highly similar isoforms, we developed a computational 

These issues can be partly addressed through Cas9-based targeting of 
lncRNA splice sites16, which, however, is applicable only to multiexonic 
transcripts and requires availability of a protospacer adjacent motif 
(PAM) sequence close to splice sites. Finally, as discussed later in detail, 
double-strand break (DSB) causation by Cas9 and related ‘toxicity’17–25, 
is a confounding factor that is particularly detrimental for the analysis 
of lncRNA screens26.

Another method used for lncRNA screening is CRISPR inter-
ference (CRISPRi)27, which acts through the recruitment of tran-
scriptional repressors to regulatory sequence28. For single guide 
RNA (sgRNA) design, identification of transcription start sites 
(TSSs) is imperative but often challenging due to incomplete/inac-
curate lncRNA annotation29. Moreover, a main challenge to CRISPRi 
screening is created by repressive effects on neighboring regulatory 
sequences27,30,31, making a substantial part of the lncRNAome inacces-
sible to CRISPRi-based interrogation.

These issues can be potentially overcome by direct RNA targeting. 
RNA interference (RNAi) is one option, but is limited by high off-target 
rates32 and low lncRNA targeting efficacy. The latter is due to the nuclear 
localization of most lncRNAs, whereas the RNA-induced silencing com-
plex exerts mainly cytoplasmic activity33. Antisense oligonucleotides, 
which function in the nucleus, cannot be encoded genetically as they 
are DNA-based.

An attractive solution to these drawbacks is offered by type VI 
CRISPR–Cas (Cas13) RNAases. Among them, CasRx displays the strong-
est efficiency34. CasRx has been used for small-scale perturbations35,36, 
but genome-wide screening has not been achieved. Continuous RNA 
degradation requires permanent CasRx expression, which can be 
achieved by genome integration. However, the amount of protein 
produced is lower compared with that produced by episomal vec-
tors. High CasRx amounts are needed to degrade the numerous RNA 
molecules. This differs from Cas9-based DNA cleavage, which relies on 
(permanent) editing of only two DNA molecules per cell. At the same 
time, too high CasRx activity can be detrimental to a screen, due to 
potentially increased risk of indiscriminate off-target RNA cleavage37,38.

Another challenge is the incomplete annotation of the lncRNA 
transcriptome, which affects library design and target discovery29. 
In addition, the large number and tissue-specific expression of lncR-
NAs hamper the design of a cross-entity screening approach1,8,9. 
Indeed, Cas9–CRISPRi-based lncRNA screens used cell-line-specific 
libraries15,16,27.

Here we developed a CasRX-based platform for genome-scale 
screening. Applied to the lncRNA transcriptome, we show that this 
approach overcomes limitations inherent to other modes of perturba-
tion. We developed a screening strategy supporting high-throughput 
mapping of lncRNA dependencies across cancers. Its use identified 
known and new essential lncRNAs, including some that are common 
or cell-line specific.

Results
Optimization of a genome-integrated CasRx system
To overcome limitations of lncRNA targeting by Cas9 or CRISPRi, we 
developed a screening approach based on permanent expression of 
genome-integrated CasRx. We initially tested lentiviral systems for 
CasRx delivery but achieved only modest RNA targeting efficiencies, 
probably due to inadequate CasRx expression. We therefore cloned 
a ‘CAG-NLS-CasRx-NLS-P2A-blasticidin’ cassette flanked by Sleeping 
Beauty and PiggyBac inverted transposon repeats into an episomal 
vector (Fig. 1a), supporting plasmid-to-genome cassette mobiliza-
tion by either transposase. To achieve multicopy genome integration, 
we cotransfected this plasmid with an expression vector for the most 
active PiggyBac transposase variant (hyPBase; Fig. 1a) at a 5:1 molar 
ratio (Fig. 1b).

For downstream screening purposes, we equipped human cancer 
cell lines from three tumor types with the CasRx system: glioblastoma 

http://www.nature.com/naturemethods


Nature Methods | Volume 21 | April 2024 | 584–596 586

Article https://doi.org/10.1038/s41592-024-02190-0

pipeline that collapses transcript-based genomic occupancy, exonic 
overlap and transcript directionality (Supplementary Fig. 2a–c). These 
analyses gave rise to 97,817 lncRNA genes (Fig. 2a, b). Hence, our work-
flow allowed us to define and discriminate independent putative func-
tional units, thereby providing a basis for rational design of sgRNA 
libraries (see Fig. 2c for an example).

We used the 97,817 lncRNA genes to designate targets for a screen-
ing library that optimally combines several critical criteria: (1) screen-
ing feasibility and scalability (to enable large-scale pan-cancer studies), 
(2) comprehensive representation of functional lncRNAs and (3) appli-
cability across tumor entities. To define the library composition, we 
devised a four-step lncRNA selection process, which incorporates 

considerations on potential functional relevance (indicated by the 
level of expression and/or cross-species conservation) and context 
dependencies (tissue-, cell- and genetic-context-dependent expres-
sion patterns). First, we selected 9,300 lncRNA genes with the high-
est average expression across the 839 solid tumor cell lines. Second, 
to avoid underrepresentation of specific tumor types, we selected 
additional 9,306 lncRNA genes with the highest expression in each 
tissue type. Third, in a similar approach, we next chose 8,892 lncRNA 
genes with the highest expression in each cell line, thereby account-
ing for cell line-specific or genetic context dependencies. Fourth, we 
enriched the above selection with 3,012 evolutionary conserved lncRNA  
genes (Fig. 2a).
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Fig. 1 | Optimization of a genome-integrated CasRx system. a, Schematic 
representation of the episomal HyPBase transposase and the transposon vectors 
used to deliver CasRx into mammalian cells. b, Representative brightfield 
microscope images of KP-4 cells 2 weeks after blasticidin selection. The 
puromycin control was performed once in each of the six generated cell lines. 
c, PCA plot of the 10% most variable genes using RNA-seq data from parental 
cell lines and derivative CasRx clones used in this study. d, tRFP657 intensity 
measured by flow cytometry in KP-4 cells, stably expressing GFP, transduced  
with a NT gRNA (gNT) or a GPF-targeting gRNA (gGFP). Dashed boxes indicate  
the extent of the negative and positive populations. e, GFP intensity measured  
by flow cytometry in the same cells as in d. Left panel, GFP intensity distribution 
of the tRFP657 negative cells; right panel, GFP intensity distribution of the 
tRFP657 positive cells. f, Percentage of CasRx activity in different cells. g, Boxplot 
showing the percentage of GFP or tRFP intensity between GFP-tRFP-positive  
cells transduced with a gGFP gRNA and cells transduced with a gNT gRNA.  

The experiments were performed in all the CasRx cell lines used for screens;  
n = 6 independent cell lines. Boxplot data is presented as follows: center, median; 
box bounds, 25% and 75% percentile; whisker, 1.5× interquartile range (IQR). 
Outliers are marked as independent dots. h, Lack of global gene dysregulation 
upon on-target cleavage of stably expressed GFP. Volcano plots display whole-
transcriptome data for indicated CasRx clones transduced with gGFP or gNT. 
i, Lack of global gene dysregulation upon on-target cleavage of endogenous 
transcripts. Volcano plots display whole-transcriptome data for indicated CasRx 
clones transduced with gRNAs targeting indicated protein-coding genes or gNT. 
P values were computed with DESeq2 using the Wald test, and the FDR adjusted 
P value (Padj) was calculated with the Benjamini–Hochberg method. j, LFC 
distribution of gRNAs for three screens performed using a CasRx control library. 
The library is composed of gRNAs targeting NE expressed coding genes (dark 
blue), NT gRNAs (light blue) and gRNAs targeting AE coding genes (green). Blast, 
blasticidin; LTR, long terminal repeats; PB, PiggyBac; SB, Sleeping Beauty.
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CasRx library design
Most selected lncRNA genes have several isoforms and extensive struc-
tural heterogeneity, ranging from small 200 base pair (bp) single-exon 
lncRNAs to genes composed of 148 exons and 150 kb in length. We took 
several design decisions that account for these characteristics, thereby 
aiming to achieve high detection capacity while limiting library com-
plexity/size (which compromises screening feasibility and throughput).

First, we exploited the capacity of CasRx to mature its own gRNA 
array34 and designed each vector to encode a pair of nonredundant 
gRNAs targeting the same lncRNA gene. This ‘dual targeting’ facili-
tates effective transcript inactivation. Moreover, resulting fragments 
lack either the 5′-RNA cap or the poly-A tail, which are essential for 
RNA stability53. Second, we scaled the number of gRNAs according to 
lncRNA complexity (as defined by lncRNA lengths multiplied by the 
number of exons) by selecting between two and seven gRNA arrays 
(4–14 gRNAs) for each gene (Fig. 2d,e). Third, we developed an iterative 
gRNA design process, with each cycle having less strict requirements 
for gRNA quality43 and gRNA distribution along each lncRNA gene  
(as a proxy to capture isoform complexity). Iterations were repeated 
until design criteria were fulfilled (Fig. 2a,c). To avoid possible 
off-targets, we discarded gRNAs with at least 23 nucleotide homology 

to any coding or nonprotein-coding exonic sequence (23 nucleotides 
are necessary for optimum CasRx activity43). Based on these design 
considerations, we designed gRNAs predicted to target 24,171 lncRNA 
genes (Fig. 2a).

Quality control of selected lncRNAs
We first analyzed the expression of our 24,171 lncRNA targets across 
cancers (Supplementary Fig. 3a). When using an expression thresh-
old of >0.01 transcripts per million (TPM), which discriminates 
expressed from nonexpressed lncRNAs (Supplementary Fig. 3b), we 
found an average of 12,510 Albarossa-targeted lncRNA genes to be 
expressed in each of the 839 cancer cell lines (minimum, 7,934; maxi-
mum, 15,824) (Fig. 3a). This supports the broad applicability of the 
library. Since robustly expressed lncRNAs are potentially more rel-
evant, we also explored data using expression thresholds of >0.1 TPM 
or >1 TPM. The average number of expressed lncRNA genes targeted 
by Albarossa at these thresholds was 8,192 and 2,357, respectively  
(Supplementary Fig. 3c).

Of note, despite this high ‘cross-cancer coverage’, the library cap-
tures a large part of the interentity lncRNA transcriptional heteroge-
neity, as shown by the enrichment of lncRNAs that are differentially 
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Fig. 2 | CasRx pan-cancer library design. a, Schematic workflow for selection of 
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ac.uk/pub/databases/RNAcentral/releases/16.0/. b, Example of similar lncRNA 
transcripts clustering into genes in a complex region of chromosome 2.  
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lncRNA gene composed of seven isoforms located on chromosome 11.  
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gene length) of all 97,817 lncRNA genes. Values at the top indicate the number of 

gRNA arrays designed for lncRNA genes with different levels of complexity.  
e, Boxplot showing the gRNA sequence coverage (percentage of lncRNA 
sequence targeted by its specific gRNAs). LncRNA genes with extremely low 
complexity, characterized by an average of 1.4 exons and 573.3 bp in length, are 
targeted by only two arrays. For these genes, the gRNA sequence coverage is very 
high, making the design of additional arrays largely unfeasible. Boxplot data 
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whisker, 1.5× IQR. Outliers are marked as independent dots. n, number of 
lncRNAs for each category.
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expressed between cancer types (Fig. 3b), and the clustering of cell 
lines by tissue type in sample-to-sample distance analyses (Fig. 3c and 
Supplementary Fig. 3d).

In a second step, we examined the representation of lncRNA 
characteristics indicating functionality and biological importance.  

We found that lncRNA complexity is increased in our library (Fig. 3d). 
Indeed longer lncRNAs have a higher propensity form structured/ 
functional regions54. In addition, our library displays a 2.3-fold enrich-
ment with evolutionarily conserved lncRNAs, indicating selection 
across species (Fig. 3e). Finally, the median expression of lncRNAs 
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percentage of differentially expressed lncRNA genes between cancer cell lines 
from different tissues represented in the Albarossa library. Color code as in a.  
c, Sample-to-sample hierarchical clustering of cancer cell lines based on RNA-
seq expression values from lncRNA genes represented in the Albarossa library. 
Rand index was calculated by comparing the clustering against the ideal tissue 

clustering. Color code as in a. d,e, Barplots displaying the average lncRNA gene 
complexity (d) or the percentage of evolutionary conserved lncRNA genes (e) in 
the original (black, all 97,817 lncRNA genes), selected (red, 24,171 lncRNA genes 
represented in the Albarossa library) or nonselected (gray) sets of lncRNA genes. 
f, Density plot showing the maximum median expression (MME) in the three 
indicated lncRNA groups. MME was calculated using the maximum expression 
value for each lncRNA gene across CCLE lines. g, Characteristics of the Albarossa 
library. h, Schematic of the NGS protocol developed for sequencing of the 
Albarossa library and the screened samples. i, Lorenz curves of the cumulative 
gRNA distribution in indicated CRISPR libraries. The dotted black line indicates 
the ideal distribution. Percentages indicate library representation at 90% of 
cumulative reads. BC, barcode; Fw, forward primer; Rev, reverse primer.
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selected for our library is 7.1 times higher as compared with nonselected 
lncRNAs (Fig. 3f).

Thus, our lncRNA selection is strongly enriched with functional 
traits and displays high cross-cancer coverage while still capturing 
tissue heterogeneity.

Library generation and sequencing
For library generation, we complemented the lncRNA targets  
(24,171 lncRNA genes) with positive and negative controls. We designed 
gRNAs against 300 AE and 300 NE protein-coding genes and, in addi-
tion, included 600 NT gRNA arrays (Fig. 3g). The library, which we 
refer to as Albarossa, comprises 78,125 gRNA arrays (156,266 gRNAs).

For cost-effective detection of both gRNA sequences present in 
individual arrays, we developed a paired-end next-generation sequenc-
ing (NGS) protocol based on a two-step nested PCR reaction. We used 
custom NGS primers to initiate sequencing close to the gRNA spacers. 
Read 1 starts directly at spacer 2, which is highly diverse DNA, sup-
porting optimal cluster identification without PhiX spike-in. The use 
of a 75-cycle Illumina cartridge allows recovery of both spacers and 
the barcode (Fig. 3h) at low cost. We retrieved gRNA counts using a 
custom-made analysis script.

An even gRNA distribution in the library allows coverage reduction 
(cells per sgRNA)55, thereby diminishing costs and experimental efforts. 
Figure 3i shows that gRNA representation is more even for Albarossa 
than for widely used genome-wide CRISPR libraries.

Genome-scale CasRx screening
To map lncRNA dependencies, we used Albarossa for pooled fitness 
screens, which rely on CRISPR perturbation followed by capture 
of gRNA enrichment or depletion trends over time. We performed 
screens in glioblastoma (cell lines LN-18, LN-119), lung nonsmall cell 
cancer (A549, NCI-H460) and pancreatic ductal adenocarcinoma (KP-4,  
MIA PaCa-2). Control experiments without CasRx expression were 
conducted in one cell line per entity. For each screen, we transduced 
94 million cells with the lentiviral library at a multiplicity of infection 
(MOI) of 0.25 (supporting transduction of one gRNA array per cell) and 
a coverage of 300. After puromycin selection, two replicates (20 mil-
lion cells each) of individual lines were cultured for 21 days (Fig. 4a).

We determined gRNA frequencies for each screen by sequencing 
(Fig. 3h), yielding 15–20 million mapped counts per sample (Supple-
mentary Fig. 4a,b). LFC values were calculated by comparing gRNA 
frequencies in screened samples and the original library. Technical 
replicate correlations (Supplementary Fig. 4c) were comparable with 
those of other loss-of-function lncRNA screens15,16,27 (Supplementary 
Fig. 4d,e). As expected, positive control gRNAs targeting common 
essential protein-coding genes were depleted, whereas LFC values of 
negative control gRNAs (NT gRNAs or NE-gRNAs) remained around 
zero (Fig. 4b,c and Supplementary Fig. 5a,b). In experiments without 
CasRx activity, LFCs for positive and negative controls were centered 
around zero (Supplementary Fig. 5c).

To examine the sensitivity and specificity of our CasRx-based 
perturbation approach, we generated receiver operating character-
istic curves using controls. Area under the curve (AUC) values for our 

screens ranged between 0.84 and 0.97, which are higher than reported 
for siRNA screens and slightly smaller than for Cas9 screens56 (Sup-
plementary Fig. 5d), confirming robust detection capability of our 
screens across lines. For some AE genes, fitness defects rely on full 
inactivation, which explains some differences between CasRx and 
Cas9-based perturbation.

Importantly, the overlap of gRNA LFC distribution curves targeting 
negative controls, nonexpressed or expressed lncRNAs supports the 
lack of indiscriminate off-target cleavage (Fig. 4d and Supplementary 
Fig. 5e).

Systematic mapping of lncRNA dependencies in cancer
To identify lncRNA hits with fitness effects, we used the robust rank 
aggregation (RRA) method (from MaGeCK v.0.5.9 (ref. 57); Fig. 4e 
and Supplementary Fig. 6a). A fundamental difference between 
loss-of-function screens targeting lncRNAs and such targeting 
protein-coding genes, is the considerably higher number of true posi-
tive hits in the latter. Consequently, potential off-targets are more 
problematic for lncRNA screens than for protein-coding screens. To 
address this issue, we added another layer of filtering that ‘blacklists’ 
gRNAs, which map to common essential protein-coding genes when 
sequence homology criteria are being relaxed (23 nucleotide match, 
two mismatches allowed, exonic and intronic sequence considered). 
After removal of these ‘blacklisted’ gRNAs, we identified an average of 
46 (26–77) lncRNA hits per cell line, amounting to a total of 206 hits 
(Fig. 4f). By comparing these screening hits with hits in control condi-
tions without CasRx (false positives, n = 3) (Supplementary Fig. 6b) 
we calculated an empirical false discovery rate (FDR) of 0.022, thus 
supporting the specificity of the screen.

As another quality control, we analyzed the behavior of differ-
ent gRNA arrays targeting the same lncRNA gene. We found that, for 
lncRNA hits, most arrays contribute to the fitness defects (Supplemen-
tary Fig. 6c), supporting the functionality of the array design.

To confirm enrichment of Albarossa with functional lncRNAs, we 
designed, for LN-18 cells, a ‘Δ-library’ targeting expressed lncRNAs that 
were not included in Albarossa. A screen using this library identified 
26 lncRNA hits (Fig. 4g and Supplementary Fig. 6d,e). Subsequently, 
we calculated the discovery rate for both libraries (percentage of hits 
among targeted and expressed lncRNA genes). The discovery rate of 
Albarossa was two or three times higher for all hits or high-confidence 
hits, respectively (Fig. 4h). Thus, by targeting only one-quarter of 
all lncRNAs, Albarossa detected two-thirds of all and three-quarters 
of high-confidence lncRNA vulnerabilities. We therefore conclude 
that our approach reconciles high discovery power and broad entity 
representation with scalable experimental throughput for pan-cancer 
applications.

CasRx-based screens overcome previous approaches 
limitations
In contrast to RNAi, CasRx is expected to be functional in the nucleus. 
To examine this, we performed cytoplasmic/nuclear fractionation 
followed by deep full-length RNA sequencing (RNA-seq) for all CasRx 
clones. We found an enrichment of screening hits in both the nuclear 

Fig. 4 | Genome-scale CasRx mapping of lncRNA dependencies across 
different tumor types. a, Experimental outline of CasRx-based genome-scale 
lncRNA fitness screening developed in this study. b, Scatterplots of gRNAs LFC 
between two technical screening replicates. LFC values were calculated using 
CPM-normalized counts, with the plasmid library serving as a baseline. Three 
representative screens using the cell lines indicated are shown. gRNAs targeting 
lncRNAs are marked gray, negative control gRNAs (gRNAs targeting NE coding 
genes and NT gRNAs) are blue, and positive controls gRNAs (gRNAs targeting 
AE coding genes) are green. c, LFC distribution of negative and positive control 
gRNAs in indicated screens. d, LFC distribution of negative control gRNAs and 
gRNAs targeting expressed or nonexpressed lncRNA genes. e, Scatterplots 

displaying RRA scores of screened genes, as calculated by MAGeCK. NE coding 
genes are marked blue, and significant hits are marked red (lncRNA hits) or green 
(AE coding gene hits). Remaining genes are marked gray. Selected lncRNA hits 
are annotated. f, Summary table of significant hits in all CasRx screens. g, Scatter 
plot displaying RRA, as calculated by MAGeCK, for genes screened using a LN-18 
Δ-library. The Δ-library targets all lncRNA genes expressed in the LN-18 cell line 
(TPM > 0.01) that are not targeted by the Albarossa library. Color scheme as in 
e. h, Barplots displaying the percentage of hits (left) or high-confidence hits 
(FDR < 0.05, right) among expressed lncRNA genes in LN-18 screens deploying 
the Albarossa library (red) or Δ-library (gray).
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and the cytoplasmic fractions (Fig. 5a), showing detection of both 
types of lncRNA essentialities.

The quality of our screens is supported by comparisons to (d)
Cas9-based lncRNA perturbation methods3–5. By reanalyzing the most 
comprehensive lncRNA screen so far, which is based on CRISPRi27, we 
found several differences. First, to compensate for functional heteroge-
neity, the CRISPRi library has ten gRNAs per lncRNA. As a consequence, 
it is 2.1 times larger than Albarossa, but targets 1.5 times fewer lncRNAs 
(Supplementary Fig. 7a,b). Second, in contrast to CasRx, CRISPRi hits 
were strongly enriched for lncRNAs close to essential coding genes  
(Fig. 5b and Supplementary Fig. 7c), leading to large numbers of 
off-target hits that had to be removed27 (Fig. 5c and Supplementary 
Fig. 7d–f). Third, although CRISPRi libraries were designed individually 
for each cell line, the screens identified fewer lncRNA dependencies 
than CasRx screens, which build on the ‘pan-cancer’ Albarossa library 
(Fig. 5d and Supplementary Fig. 7g,h).

Another study used Cas9-based deletion to screen for lncRNA 
dependencies15. Application of the same statistical approach for 
data analyses as for our CasRx screen revealed between zero and 
four hits per cell line (Fig. 5c). The low number of hits in that study 
might be related to the smaller library used and the low efficiency 
of Cas9-based generation of chromosomal deletions. Finally, when 
reanalyzing data derived from a screen targeting Cas9 splicing sites16, 
we observed—in addition to the already reported issues related to 
false positives26—that the distribution of LFCs is shifted to negative 
values for all gRNAs (including such targeting nonexpressed lncRNAs) 
(Supplementary Fig. 7i). This known Cas9-related ‘toxicity,’ which is 
caused by double-strand cleavage17–25, was not controlled for. Hence, 
the data structure does not support statistical analyses for compari-
sons to our screens.

We conclude that CasRx offers a powerful alternative to other 
lncRNA screening approaches. The strengths and advantages of our 
system relate to various screening aspects, including hit discovery 
efficiency, specificity, scalability and broad library applicability.

Identification of common and context-specific vulnerabilities
To compare vulnerability profiles systematically across cell lines, for 
each significant hit we calculated a lncRNA-specific LFC value. We 
used these values for clustering based on occurrence across cell lines 
and found that 53.9%, 38.8% and 7.3% of hits were dropouts in one 
(cell-line-specific dependency), two to five (common-essentiality) or 
all cell lines (core-essentiality), respectively (Fig. 5e). We found that 
expression of hits is, on average, 4.5–8.7 times higher than of ‘non-hit’ 
lncRNAs, supporting functionality (Fig. 5f). A systematic literature 
search (Methods) revealed that 29.8% of our lncRNA hits had already 
been associated with cancer. Moreover, for 24.4% of hits, orthogonal 
lncRNA perturbation approaches identified a link to cellular prolifera-
tion. Of note, however, 70.2% of lncRNAs have not yet been associated 
with cancer or proliferation (Fig. 5e).

Among the ‘core lncRNA vulnerabilities’ are well-known structural 
lncRNAs58–61, such as NEAT1 and MALAT1, as well as two lncRNA groups 
that are processed to small RNAs. This includes the small nucleolar 
RNA host genes SNHG16, SNHG29, SNHG32, SNHG6 and ZFAS1 and the 
miRNA host genes MIR222H and MIR3648-2. Although some members 
of these genes have been associated with cancer before, others are new, 
including SNGH32 and MIR348-2.

The ‘common essential’ group also encloses miRNAs host genes, 
including MIR22HG, MIR4435-2HG and MIR30DHG. Moreover, 
LINC-PINT—a well-studied tumor suppressive lncRNA gene62,63 that 
can exert tumorigenic effects64 in some cases through isoforms host-
ing pro-oncogenic miRNAs65—lies in this group. Other examples of 
lncRNA dependencies observed in several cell lines are SNHG7 and 
SNHG5 (SNHGs with oncogenic function), CYTOR66,67 (involved in cell 
migration and cytoskeleton organization), PVT1 (ref. 68) (a MYC regula-
tor, commonly overexpressed in cancer) or FTX69,70 (a XIST regulator 
involved in DNA methylation and X chromosome inactivation).

As expected, most of our lncRNA hits are cell-line specific,  
confirming extensive context-dependency of lncRNA functionality. 
Several lncRNAs in this group, such as LINC00461, DLEU2, LINC00511, 
DLGAP1-AS1 and THORLNC (Fig. 5e), have been described previously to 
be oncogenic. Importantly, these lncRNAs display higher expression 
in cell lines in which they are a hit as compared with lines in which they 
are not causing fitness defects, supporting the notion that the screens 
recover biologically relevant targets (Fig. 5g).

Validation of lncRNA dependencies
To further validate our screening results, we first designed a library 
comprising new arrays targeting 93 of our previously identified hits. 
We performed screens for each entity and found highly significant 
correlations to the previous screens (Fig. 6a).

Second, we performed fluorescence-activated cell sorting 
(FACS)-based competition assays for 16 lncRNA hits from our ini-
tial screens, including lncRNAs enriched in the nuclear (MALAT1, 
LINC-PINT, LINC00824, lnc-UTRN-3) and cytoplasmic (CYTOR, 
SNHG16) fractions. These experiments validated both common and 
specific lncRNA vulnerabilities (Fig. 6b and Supplementary Fig. 6e).

Third, we targeted six lncRNAs with alternative sgRNAs and per-
formed clonogenic assays. As expected, targeting core-essential lncR-
NAs (NEAT1, SNHG32) reduced the fitness across cell lines, whereas 
common essential (MIR222HG and lnc-AKAP12-1) and cell-line-specific 
lncRNAs (FENDRR and HSALNG0116362) had effects only in specific 
cell lines, as predicted by the screen (Fig. 6c–e). We chose FENDRR for 
these analyses because it had been described previously as a tumor 
suppressor71,72, but was predicted by our screen and confirmed to exert 
opposite effects.

Finally, we complemented these ‘end-point’ assays with serial 
quantification of proliferation over time (Fig. 6f). Overall, the results 
were in line with our observations made in the colony formation assays. 

Fig. 5 | CasRx-based screens solve bottlenecks linked to previous 
perturbation approaches and enable the identification of common and 
context-specific lncRNA vulnerabilities. a, Cytoplasmic/nuclear expression 
LFC distributions of coding genes (gray) or for the indicated sets of lncRNAs 
(red/pink). The distributions represent average values for all cell lines used in 
this study. Genes with an LFC ≤ 0.75 or >0.75 were categorized as either nuclear-
enriched or cytoplasm-enriched, respectively. b, Distance distributions of 
indicated sets of lncRNAs to the closest essential coding gene. Data represent 
screens based on CasRx (this study) and CRISPRi27. Two-sided Wilcoxon–
Mann–Whitney test was used for statistical analyses. c, Boxplots showing the 
percentage of off-targets (left) or the percentage of off-target among the top 
hits (first quartile of the significant hits, based on FDR, right) per cell line. Data 
for our CasRx screens (red) and CRISPRi27 screens (black) are shown; n, number 
of independent cell lines. d, Boxplot showing the number of lncRNA hits per cell 
line in the CasRx (red), CRISPRi27 (black) or Cas9-based deletion15 (gray) screens; 

n, number of independent cell lines. e, Percentage of CasRx screening hits that 
have never been associated with cancer or proliferation before (black), have been 
associated with cancer (light gray) or whose fitness effects have been validated 
(light gray). The heatmap indicates unified lncRNA-specific LFC values for all 
lncRNA hits in the CasRx screens. Hits are clustered based on occurrence across 
cell lines (right panel). f, Boxplots showing the average expression of hit (red) or 
non-hit (gray) lncRNA genes per cell line. Lines connect the values for the same 
cell line; n = 6 independent cell lines. g, Boxplots showing the average expression 
of cell-line-specific hits as displayed in e. Each dot in the red box represents the 
average expression of lncRNAs in the specific cell line in which they are a hit. 
The connected dot in the gray box represents the average expression of the 
equivalent set of lncRNAs across the other cell lines; n = 6 independent cell lines. 
For all boxplots, data are presented as follows: center, median; box bounds, 25% 
and 75% percentile; whisker, 1.5× of IQR. NS, not significant.

http://www.nature.com/naturemethods


Nature Methods | Volume 21 | April 2024 | 584–596 592

Article https://doi.org/10.1038/s41592-024-02190-0

4

2

0

Av
er

ag
e 

cy
to

pl
as

m
ic

/n
uc

le
ar

ex
pr

es
si

on
 L

FC
Po

te
nt

ia
l o

ff
-t

ar
ge

ts
 p

er
ce

ll 
lin

e 
(%

)

Po
te

nt
ia

l o
ff

-t
ar

ge
ts

 a
m

on
g 

to
p

hi
ts

 p
er

 c
el

l l
in

e 
(%

)
C

or
e

es
se

nt
ia

l LN
-18

LN
-22

9

A549
NCI-H

460

KP-4
MIA PaC

a-2

C
om

m
on

es
se

nt
ia

l
C

el
l-l

in
e 

sp
ec

ifi
c

Ln
cR

N
A 

hi
ts

 L
FC

N
o.

 o
f I

nc
RN

A 
hi

ts
pe

r c
el

l l
in

e

D
is

ta
nc

e 
to

 n
ea

re
st

es
se

nt
ia

l g
en

e 
(k

b)

–2

–4

Coding
genes

Library Hits

IncRNAs

Library Hits

Albarossa

Library Hits

CRISPRi

7.4%
18%

0.6%
3.4%

80

70

60

50

40

30

1,000

NS P < 0.001a

c

e

f g

d

b

100

10

1

0.1

0.01

0

75

50

25

80

60

40

20

0

n = 5

n = 6

n = 5

n = 6

n = 5

n = 2

Albarossa

NEAT1, MALAT1
SNHG16/29/31, ZFAS1
MIR3648-2

FENDRR, ZNF649-AS1,
LINC00461, DLEU2,
MIR34AHG
LINC00511, RNF157-AS1,
EPB41L4A-AS2

LncCDH5-3, LINC02582

LINC00472, LINC00397,
IncRNA-ZNF281,
LINC01106, DLGAP-AS1

LINC02154, TLR8-AS1,
THORLNC

LncRNA-hit
cell line
Other cell lines

MIR22HG, LINC-PINT,
MIR4435-2HG, MIR30DHG,
Inc-BLID-5, FGD5-AS1,
CYTOR, PVT1, FTX,
LINC01004, FOXCUT,
SNHG7/5

CRISPRi

Cas9
deletion

n = 6

24.4%

5.4%
70.2%

New IncRNAs

LncRNAs previously
validated orthogonally

LncRNAs previously
linked to cancer

0
–1
–2
–3
–4
–5
–6

2.0

Within
cell line

Hit

Non-hit

1.5

1.0

0.5

0

3

2

1

0

C
el

l-l
in

e-
sp

ec
ifi

c 
hi

t a
ve

ra
ge

lo
g 2T

PM
 (p

er
 h

ea
tm

ap
 c

lu
st

er
)

In
cR

N
A 

av
er

ag
e 

lo
g 2T

PM
(p

er
 c

el
l l

in
e)

P < 0.001

Across
cell line
P = 0.036

http://www.nature.com/naturemethods


Nature Methods | Volume 21 | April 2024 | 584–596 593

Article https://doi.org/10.1038/s41592-024-02190-0

Likewise, RNA-seq early after sgRNA transduction/selection confirmed 
transcriptional changes for gene sets associated with proliferation and 
apoptosis in expected cell lines (Fig. 6g).

Discussion
We developed a Cas13/CasRx-based screening platform for genome- 
scale interrogation of the lncRNAome. The methodology overcomes 
limitations of other lncRNA perturbation approaches related to target-
ing efficiency, off-targets and collateral perturbation of other DNA 

elements. We evolved the system toward pan-cancer applicability,  
which will facilitate systematic exploration of lncRNA biology, identifi-
cation of related context-specificities and discovery of lncRNA vulner-
abilities for therapeutic targeting.

A critical requirement was to ascertain high nuclease expression, 
which is required for continuous RNA degradation. We achieved this 
through transposon-based multicopy delivery of ‘CAG-CasRx’ expres-
sion cassettes to the genome. Discovery of coding and noncoding 
dependencies reinforces the functionality of the system. The screening 
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Fig. 6 | Validation of lncRNA dependencies. a, Screening-based high-
throughput validation of lncRNA dependencies. Scatterplots display LFC values 
derived from screens performed using the Albarossa library and a ‘validation 
library.’ Correlation value and significance was calculated using the Pearson 
regression method. b, Individual hit validation using FACS-based competition 
assays in different cell lines. Scatterplots display LFC values for Albarossa 
screens and competition assays for indicated lncRNAs. LFC values represent 
the proportion of GFP-positive cells at day 14 versus day 0. GPF-positive cells 
transduced with NT gRNA served as controls. One-way analysis of variance with 
Dunnett’s posttest was used to compare experimental and control conditions. 
Error bars, s.e.m.; n = 4 technical replicates from two independent experiments. 
c, Validation of fitness effects linked to perturbation of indicated lncRNAs 
using colony formation assays. Representative images are shown for different 
cell lines. Cells were transduced with a vector encoding a NT gRNA or gRNAs 
against different lncRNAs. After 2 days of puromycin selection, cells were 
seeded at low confluence and stained with crystal violet after 10 days of culture. 

d, Quantification of colony formation assays. Colors indicate the different 
lncRNAs targeted; n = 2 independent experiments. e, qPCR-based quantification 
of knockdown levels for indicated lncRNAs. Data represent comparisons of 
knockdown and control conditions based on glyceraldehyde 3-phosphate 
dehydrogenase-normalized expression values; n = 2 independent experiments. 
For the boxplots, data are presented as follows: center, median; box bounds, 
minimum and maximum value. f, Proliferation curves indicating fitness 
effects linked to perturbation of indicated lncRNAs over time. LncRNAs were 
targeted as described in c. Cell numbers were normalized to day 0 (D0) and are 
indicated as fold change over controls (cells transduced with an NT gRNA); n = 2 
independent experiments. g, A fraction of cells from f were collected at day 0 
and processed for RNA-seq. The heatmaps show the expression pattern of genes 
(related to cell proliferation or apoptosis) that are significantly differentially 
expressed in at least one experimental condition against the corresponding 
control condition.
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setting thus achieves an optimal window of functionality—character-
ized by sufficiently high CasRx on-target activity but no indiscriminate 
off-target RNA degradation.

We show that CasRx-based lncRNA screening solves principal 
bottlenecks inherent to other perturbation approaches. The use of 
RNAi is limited not only by its low nuclear activity33 but also by high 
off-target rates32. CasRx, which is fused to a nuclear localization signal 
(NLS), not only displays nuclear activity but also targets lncRNAs with 
high specificity (the optimum gRNA length is 20–23 nucleotides34,35, 
whereas siRNA seeds are 2–7 nucleotides73–76).

A main confounding effect in Cas9–CRISPRi lncRNA screens is 
collateral perturbation of neighboring coding/noncoding DNA ele-
ments, which drastically limits the number of lncRNAs that can be 
interrogated. We show that CasRx does not suffer this limitation. As an 
illustration, 37% of lncRNAs targeted by Albarossa overlap with coding 
genes, and 16% have their TSS closer than 1 kb to the TSS of a coding 
gene—meaning that 43% are difficult to target specifically with Cas9–
CRISPRi. Thus, CasRx substantially expands the space of the human 
lncRNAome that can be interrogated. Another source of false positive 
hits in Cas9-based screens is DNA repair-associated ‘toxicity’17–19,21,22. 
This effect is not distributed equally across the genome but can be 
affected by chromatin structure24,25 or DNA copy number status17,18, 
and hence differs between cell lines. For screens interrogating the 
protein-coding genome such effects can be corrected statistically20. In 
Cas9-based lncRNAs screens, the magnitude of the ‘toxicity-effect’ is 
similar, but because gene essentialities are far less frequent for lncRNAs 
than for protein-coding genes (the ratio of true/false positive lncRNA 
hits is low), its statistical correction is a main hurdle. Direct RNA target-
ing solves this problem.

In silico studies addressing the incomplete survey and annotation 
of the human lncRNAome were critical prerequisites for a rational 
design of our screening strategy. By accessing different data sources, 
we assembled a comprehensive collection of human lncRNAs, mapped 
isoform complexity and tissue distribution of the lncRNA transcrip-
tome, and defined putative functional units that require independent 
interrogation.

Large-scale cross-entity mapping of lncRNA vulnerabilities is rel-
evant. For example, lncRNAs often display context-dependent effects. 
Even for the best studied lncRNAs, contradictory functions have been 
reported, depending on the cellular context77–80. This is particularly 
true in cancer, where genetic alterations rewire pathways and vulner-
abilities landscapes. Moreover, predicting cellular function is much 
more difficult for lncRNAs than for protein-coding genes, for which 
information such as domain structure and gene homology are avail-
able. Pan-cancer mapping of lncRNA dependencies combined with 
multiomic and phenotypic data integration will therefore be a decisive 
step toward systematic context-based inference of lncRNA function.

Screening the entire lncRNA transcriptome across many cell lines 
is limited by the enormous size of required libraries/experiments. Cre-
ating cell-line-specific smaller libraries targeting only expressed lncR-
NAs can address this problem, but limits both experimental throughput 
(as libraries would need to be designed, purchased, cloned and tested 
for each line) and comparative analyses. Indeed, use of different librar-
ies is the main source of batch effects in comparative screens81. Our 
size-reduced library addresses these problems. It was achieved through 
a target prioritization procedure that incorporates considerations 
on lncRNA functionality (expression level, evolutionary conserva-
tion) as well as context-specificity (tissue/cell-type). This allowed us 
to focus the screen on the biologically more relevant lncRNAs while 
maintaining broad representation. Further technical design decisions 
(gRNA-multiplexing, lncRNA complexity-adapted gRNA-coverage) 
helped to increase detection capacity whilst limiting library size.

By interrogating different cancer types, our screens identified 
larger numbers of lncRNA dependencies per cancer cell line than pre-
vious approaches, which used cell-line-specific libraries. The quality 

of the method is further supported by the discovery of an unprec-
edented number of core and common lncRNA essentialities. This not 
only includes known structural lncRNAs, small nucleolar RNA host 
genes or onco-lncRNAs, but also numerous unknown lncRNAs, of which 
some have been annotated only recently.

Our work conceptualizes an experimental approach for genome- 
scale pan-cancer interrogation of lncRNA essentialities. The genetic 
tools, experimental protocols and bioinformatics pipelines described 
here will fuel screening efforts toward a pan-cancer lncRNA depend-
ency atlas.

Material availability
The main plasmids generated in this manuscript have been deposited in 
Addgene (Addgene cat. nos. 212961–212966 and 212972), https://www. 
addgene.org/browse/article/28243713.
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Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.
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Methods
Cell culture, virus production and transfection
Cell lines (LN-18, LN-29, KP-4 and MIA PaCa-2) were cultured in DMEM- 
high glucose (Sigma) or (cat. nos. A549 and NCI-H460) with RPMI 
Medium 1640 plus l-glutamine (Gibco) in both cases supplemented 
with 10% FBS Superior (Sigma). Cell lines were tested regularly 
for mycoplasma and tested immediately before the beginning of  
the screens.

Lentiviral supernatants were produced in HEK-293T seed in 
100 mm culture plates (Falcon) at 80% confluency. HEK cells were 
transfected with the packaging plasmids psPAX2 (1.25 μg), pMD2.G 
(0.75 μg) and with the appropriate lentiviral vector (2 μg) using 
TransIT-LT1 (Mirus) according to the manufacturer’s protocol. 
The day after transfection, we added fresh medium to the cells and 
collected it the next day; 20% of total medium supplemented with 
10 μg ml−1 of polybrene (Merck) was used to transduce cell lines, 
previously seeded at 40% of confluency. In the case of the Albarossa 
library virus, cells were transduced using a spin-infection proto-
col: six million cells were resuspended in 4 ml of medium with the 
appropriate amount of virus, 10% FBS and 10 μg ml−1 polybrene. The 
mixture was seeded in a six-well plate (Falcon) and centrifuged at 
1,000g for 2 h at 33 °C.

For the generation of CasRx-engineered cell lines, we first 
seeded the cells in a well of a six-well plate (Falcon) at 60–80% con-
fluence. Cells were transfected with a mix of the EF-1a-HyPBAse and 
the PB-CAG-CasRx-Blast vector at a 1:5 molar ratio (2.24 μg in total) 
using Lipofectamine 3000 (ThermoFisher). The day after transfec-
tion, we added fresh medium to the cells; 2 days after transfection, 
cells were seeded with blasticidin and maintained in selection for 
2 weeks. After selection, single cells were seeded by limiting dilution 
in 96-well plates (Falcon). Single clones were expanded and tested for  
CasRx activity.

Quantitative transposon insertion site sequencing
Quantitative transposon insertion site sequencing (QiSeq) was 
performed as described previously39,40. Briefly, genomic DNA was 
sheared using a Covaris M220 sonicator, yielding 250 bp fragments. 
These fragments were subjected to end repair and A-tailing. Then, a 
splinkerette adapter was ligated at both ends of the fragmented DNA. 
Subsequently, the 5′ and 3′ transposon ends were processed sepa-
rately using different end-specific primers. An initial PCR amplifica-
tion step selectively amplified transposon-containing regions using 
transposon-specific primers in conjunction with splinkerette binding 
primers. The splinkerette is a Y-shaped double-stranded oligonucleo-
tide with a template strand and a hairpin strand: in the initial PCR cycle, 
the splinkerette lacks a primer-binding site because the template strand 
exclusively contains the primer-binding site template, whereas the 
hairpin cannot serve as a primer-binding site. Consequently, only the 
transposon-specific primer functions in the first cycle, ensuring selec-
tive amplification of transposon-containing fragments. Subsequently, 
a second PCR step was employed to introduce sample-specific barcodes 
and Illumina P5 and P7 adapter sequences to the amplified fragments. 
This resulted in the generation of DNA fragments comprising the P7 
adapter, the splinkerette, a segment of genomic DNA encompass-
ing the insertion site, the transposon sequence and the P5 adapter 
sequence. Each sample was then quantified with real-time quantitative 
PCR (qPCR) (using P5-specific and P7-specific primers). Subsequently, 
samples were mixed equimolarly and the library pool was again quan-
tified. Libraries were sequenced using the Illumina MiSeq sequencer 
in a paired-end configuration. Reads were subsequently aligned to 
the GRCh38 reference genome using bwa-mem algorithm82, and only 
sequences containing transposon-genome junctions were quanti-
fied. Insertions with more than 20 counts were curated manually and 
insertion sites without transposon insertion site (TTAA), or that were 
detected in several samples (common artefactual insertions), were 

classified as artifacts. Then, we calculated the normalized coverage 
per each insertion by dividing the counts of each insertion by the total 
sample count and then multiplying the result by 100. Insertions that 
were not categorized as artifacts and with a normalized coverage higher 
than two were considered reliable (Supplementary Table 1).

Flow cytometry and CasRx activity quantification
CasRx-engineered cells were transduced with the pLenti-EGFPd - 
establized-Hygro (Addgene, cat. no. 138152 (ref. 43)) lentivirus and 
selected with hygromycin for 1 week. After selection, the cell culture 
was split into two different dishes. One of the dishes was transduced 
with the pLKO5-CasRx(DR1 30)–EFS-tRFP657 containing a NT gRNA 
and the other with a GPF-targeting gRNA. Four days after transduction, 
the cells were resuspended in FACS buffer (PBS, 3% FBS, 5 mM EDTA) 
and recorded using a Beckman Coulter Cytoflex LX system. FlowJo 
v.10.7.2 was used to analyze populations. CasRx activity was calculated 
as one minus the ratio between the GFP intensity (mean B525-FITC-A) 
of cells transduced with the gGFP gRNA and cells transduced with the 
gNT gRNA. The pLKO5-CasRx(DR1 30)–EFS-tRFP657 vector was cloned 
using the pLKO5.sgRNA.EFS.tRFP (Addgene cat. no. 57823 (ref. 83)).

Assembly of a collection of human lncRNA transcripts and 
generation of lncRNA genes
Genomic coordinates of transcripts classified as lncRNAs or antisense 
were retrieved from RNAcentral Homo sapiens release 17.0. This col-
lection was complemented with human evolutionary conserved 
lncRNA transcripts from selected publications47–52. To integrate both 
collections, the coordinates from refs. 47,49–52 were converted from 
Genome build hg19 to hg38 using liftover from University of California 
Santa Cruz84. The transcript coordinates for the genes in ref. 48 were 
retrieved from ENSEMBL release v.103 (ref. 85). In total, we collected 
577,475 individual lncRNA isoforms (Supplementary Table 2).

RNAcentral is a comprehensive database that includes several 
isoforms per lncRNA locus, some of which have low abundance and 
might originate from RNA-processing errors such as intron-retention. 
We intended to remove such ‘artifacts.’ Since introns are generally 
longer than exons and the calculation of TPM considers gene length, 
we excluded nonexpressed exons from our annotation and ensure 
a fair calculation of the expression of each lncRNA gene. We down-
loaded raw FASTQ files from RNA-seq data from the cells in the Cancer 
Cell Line Encyclopedia (CCLE)86 (SRA database13, accession number 
PRJNA523380). Raw reads were processed with Trimmomatic v.0.39 
(ref. 87) to remove Illumina Adapter sequences and leading and trail-
ing bases with a Phred score lower than 25, keeping only reads with a 
minimum length of 50 bp after filtering. Trimmed reads were aligned 
to the GRCh38 human genome build using STAR v.2.7.5b (ref. 88). The 
resulting BAM files were merged together and used to retrieve the 
base-pair-wise read coverage for each of the exons using pileup from 
samtools v.1.10 (ref. 89). We excluded every exon in which 90% of its 
length was not covered by at least one read.

Following an iterative process using custom scripts along with 
bedtools90, we classified the lncRNA species into independent putative 
functional units (lncRNA genes). First, isoforms annotated in the same 
strand were processed together. Second, transcripts were grouped if 
they fulfilled two requirements: the overlap of the transcript body was 
≥60% (referred to the shortest transcript) and at least one exon between 
two transcripts shared ≥60% of the genomic coordinates of the longest 
exon. Third, monoexonic transcripts that shared ≥30% of their genomic 
localization with one of the previous groups were incorporated into the 
group. Fourth, multiexonic transcripts that shared ≥90% of their total 
exon coordinates with one of the previous groups were incorporated 
into the group. Finally, we avoided bias in expression quantification due 
to overlap with protein-coding genes and the design of gRNAs targeting 
protein-coding genes. For this reason, we removed from the annotation 
any lncRNA regions that intersected with exons of any protein-coding 
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gene (Gencode v.38 (ref. 10)) in any strand or lncRNA regions that 
overlap with introns of any protein-coding gene on the same strand. 
Transcripts that lost >70% of their genomic coordinates in this process 
were removed. After all the steps, we obtained 97,817 lncRNA genes and 
their custom coordinates (Supplementary Tables 3 and 4).

LncRNA genes expression quantification
We utilized two distinct methods to quantify our lncRNA genes expres-
sion across CCLE cell lines:

 (1) A first ‘sensitive/permissive’ approach (STAR88) in combination 
with featureCounts91), which served as the basis for selection 
of lncRNA genes for CRISPR library design. The key goal at this 
stage was to not ‘lose’ overlapping lncRNAs, for which accu-
rate quantification is very difficult (and which are—because of 
this—prone to be filtered out by more stringent approaches). 
In this approach, we first mapped reads to the genome using 
STAR v.2.7.5b (as above in ‘Assembly of a collection of  
human lncRNA transcripts and generation of lncRNA genes’). 
Subsequently, the mapped reads were fed to featureCounts 
(subread package v.1.6.3)91 to quantify lncRNA expression.  
We allowed for multioverlap of features, ensuring that if a read 
aligns to a location encoding several features (overlap of more 
than one lncRNA gene), it is counted once for each feature. 
In contrast to protein-coding genes, this scenario is very 
common for lncRNAs. In this step, we excluded multimapping 
reads, thereby avoiding inclusion of reads aligning to  
several genomic positions, such as transposable elements 
(Supplementary Table 5).

 (2) A second method for more ‘stringent’ quantification of 
lncRNA expression, which served as a basis for a ‘fair’ calcula-
tion of the number of expressed lncRNA per cell line. While 
featureCounts proved very useful for lncRNA selection to be 
considered for library design, we were aware of its potential to 
overestimate the number of expressed lncRNAs per cell line. 
Therefore, to be conservative in determining the number of 
lncRNAs expressed in each cell line and included in our library, 
we reanalyzed RNA-seq data from CCLE with Salmon v.1.5.2 
(ref. 92), using as reference our custom coordinates (Supple-
mentary Table 3) together with the protein-coding transcripts 
coordinates (Gencode v.38 (ref. 10)). Salmon employs a sophis-
ticated statistical approach to quantify overlapping regions92, 
ensuring that expression is not overestimated (individual 
reads are not being double-counted). To prevent spurious  
read mapping, particularly from transcribed repetitive 
regions, we incorporated the full GRCh38 build93 as a decoy 
(Supplementary Table 6).

For differential expression analysis of lncRNAs between tissues, 
we employed limma v.3.42.2 (ref. 94) using quantile as normalization 
method. LncRNA genes with a TPM value below 0.01 were excluded 
from the analysis.

RNA-seq analysis
Total RNA was extracted and purified with an RNeasy Mini Kit  
(Qiagen) according to the manufacturer’s instructions. RNA was quan-
tified using the QuBit v.2.0 RNA High Sensitivity kit (ThermoFisher 
Scientific). Nuclear/cytoplasmic fractions were prepared using the 
nuclear/cytosol fractionation kit from Abcam (cat. no. ab289882) and 
RNA extracts were prepared as above.

The total, nuclear and cytoplasmic RNA from the CasRx 
clones or the total RNA from the parental cell lines (Fig. 5a) was 
sent for sequencing to Novogene. mRNA was purified using poly-T 
oligonucleotide-attached magnetic beads. Following fragmentation, 
first-strand cDNA was synthesized with random hexamer primers, 
followed by second-strand cDNA synthesis. The library was subjected 

to end repair, A-tailing, adapter ligation and size selection. After 
amplification and purification, the insert size of the library library 
was verified using an Agilent 2100 bioanalyzer and quantified via qPCR. 
Subsequently, the libraries were sequenced on an Illumina NovaSeq 
6000 S4 flowcell with PE150 sequencing. Transcript quantification 
was performed using Salmon v.1.5.2 (ref. 92), as detailed in the previous 
section (Supplementary Table 7). Subsequent analysis was conducted 
using R v.3.6.3. Specifically, principal component analysis (PCA) was 
conducted by selecting the top 10% of the most variable protein- 
coding genes based on their s.d. Differential expression analysis and 
Rlog count normalization were accomplished using DESeq2 v.1.26  
(ref. 95). The log2 fold change (LFC) of transcript abundance between 
the cytoplasmic and the nuclear fractions was calculated by dividing 
the cytoplasmic expression (counts per million (CPM) + 0.5) by the 
nuclear expression (CPM + 0.5) (Supplementary Table 7).

The RNA from the lncRNA dependencies validation (Fig. 6g),  
and from the indiscriminate off-target RNA cleavage experiments  
(Fig. 1h,i) was processed as follows: library preparation for bulk 
RNA-seq was done as described previously96. Briefly, barcoded cDNA 
of each sample was generated with a Maxima reverse transcriptase  
polymerase (ThermoFisher) using an oligonucleotide-dT primer con-
taining barcodes, unique molecular identifiers (UMIs) and an adapter; 
5′-ends of the cDNAs were extended by a template switch oligonucleo-
tide and full-length cDNA was amplified with primers binding to the 
template switch oligonucleotide-site and the adapter. An NEB UltraII 
FS kit was used to fragment cDNA. After end repair and A-tailing, a 
TruSeq adapter was ligated and 3′-end fragments were finally ampli-
fied using primers with Illumina P5 and P7 overhangs. In comparison 
with ref. 96, the P5 and P7 sites were exchanged to allow sequencing 
of the cDNA in read1 and barcodes and UMIs in read2 to achieve bet-
ter cluster recognition. The library was sequenced on a NextSeq 500 
(Illumina) system with 65 cycles for the cDNA in read1 and 16 cycles 
for the barcodes and UMIs in read2. Data were processed using the 
published Drop-seq pipeline (v.1.0) to generate sample- and genewise 
UMI tables97. Reference genome GRCh38 (ref. 93) was used for align-
ment. Transcript and gene definitions were used according to the  
Gencode v.38 (ref. 10). Differential expression analysis was performed 
in R v.3.6.3 with DESeq2 v.1.26 (ref. 95), testing each treatment against 
the respective control condition.

Target selection and Albarossa library design
Using an iterative process, we selected 30,510 lncRNAs based on 
expression and evolutionary conservation from the original genes. 
The selection steps were performed on the calculated TPM values from 
the raw counts obtained with featureCounts subread package v.1.6.3)91 
(Supplementary Table 5). We subsequently selected the 9,300 most 
expressed lncRNA genes on average in all the cell lines, the 9,306 most 
expressed genes on average in each tissue, the 8,892 most expressed 
genes by cell line and, finally, 3,012 evolutionary conserved lncRNA 
genes (2,000 with the maximum average expression across samples 
and 1,012 with the maximum tissue-specific expression).

To maximize the targeting of the most expressed isoforms we 
avoided designing gRNAs against low-expressed exons. We quantified 
exon expression levels (normalized by length) using featureCounts 
(subread package v.1.6.3)91 with the -f option to output exon-level 
instead of transcript-level counts (Supplementary Table 8). We con-
sidered an exon as low-expressed if its normalized expression level was 
less than two s.d. from the mean normalized expression level of all the 
exons from the same lncRNA gene.

For each of the 30,510 selected lncRNA genes, we designed from 
two to seven crRNA arrays (each array containing two gRNAs). The 
number of arrays per gene was scaled according to the gene complexity 
(as defined by gene length multiplied by the number of exons). Using 
an in-house command line tool that allows parallel multiparametric 
gRNA design, we generated the arrays for each gene: (1) we retrieved 
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the FASTA sequence for the lncRNA genes using the getSeq function 
from the BSgenome package (H. sapiens GRCh38). (2) All possible 
23 bp gRNA spacers and their predicted efficiency were generated 
using an adaptation of the pipeline used in ref. 43 (https://gitlab.com/
sanjanalab/cas13). (3) To filter out possible gRNAs with potential 
off-targets, we mapped the gRNA sequences to all the genes from our 
lncRNA original genes and to all the protein-coding genes (Gencode 
v.38 (ref. 10)) using bowtie2 v.2.3.5.1 (ref. 98) end-to-end option with-
out allowing mismatches. All the gRNAs with at least one off-target 
mapping were removed for the next steps. (4) We also removed gRNAs 
containing the restriction site sequence of the BsmBI enzyme (CGTCTC) 
to avoid interference during library cloning. (5) We extended the length 
of the gRNAs to 30 bp following the sequence of the targeted lncRNA. 
(6) We designed the arrays using four subsequent rounds of decreasing 
stringency (lncRNA genes whose design was not accomplished in the 
previous round were processed in the following round) according to 
three parameters: gRNA quality (Standardized Guide Score (SGS)43); 
a minimum distance between gRNAs in the same array (defined as 
minimum local distance (MLD)); a minimum distance between any 
gRNA targeting the same gene (defined as minimum global distance 
(MGD)). First, round, SGS ≥ 0.75; MLD ≥ 30% of the lncRNA gene length; 
MGD ≥ 10% of the lncRNA gene length. Second round, SGS in the best 
quartile; MLD ≥ 25% of the lncRNA gene length; MGD ≥ 5% of the lncRNA 
gene length. Third round, SGS in the best quartile; MLD ≥ 10% of the 
lncRNA gene length; MGD ≥ 1% of the lncRNA gene length. Fourth 
round, SGS any value; MLD≥ of 10% of the lncRNA gene length; MGD≥ 
no overlap. In each round, we selected the gRNA in position 1 for each 
array as follows: first, the gRNA with the best SGS was assigned to posi-
tion 1 of the first array. For position 1 of the second array, we selected 
(of the remaining designed gRNAs) the one with the best SGS that 
fulfilled the MGD criteria. The same process was repeated for all the 
remaining arrays. We choose the gRNA in position 2 for each array as 
follows: for the first array, we picked (from the remaining gRNAs) the 
one with the best SGS that satisfied both the MGD and MLD criteria. 
This process was iterated for all arrays. If, at any point during this 
process, no gRNA meeting the SGS, MGD or MLD criteria was found, 
the lncRNA passed to the next less stringent design round. Based on 
the criteria described above, we designed gRNA arrays predicted to 
target 24,171 lncRNA genes.

We complemented the library with positive and negative controls. 
We designed gRNAs against 300 AE and 300 NE protein-coding genes. 
In addition, we included 600 NT gRNA arrays. AE and NE control genes 
were obtained from ref. 99. For these genes, we retrieved the ENSEMBL 
canonical transcript and we designed the gRNA arrays as described 
before for the lncRNAs. NT gRNA arrays were designed by first gener-
ating 10,000 random 23-mers. These sequences were mapped to the 
genome build GRCh38 (ref. 93) with bowtie v.1.2.3 (ref. 100) allowing up 
to three mismatches. Only sequences that did not map were retained. 
We selected 1,200 of these sequences and we extended their lengths 
to 30 bp using randomly generated seven-mers. Pairs of these gRNAs 
were used to design 600 NT arrays. The final library comprises 78,125 
gRNA arrays (Supplementary Table 9).

Design of other libraries
For the construction of the control library, NE coding genes were 
selected to do not show any fitness effect and to exhibit robust 
expression across the CCLE cell lines45. Specifically, we downloaded 
CRISPR–Cas9 and RNAi fitness effect data from the DepMap resource 
v.22Q2 (ref. 45). Genes with average and median fitness values between 
±0.05 (Chronos fitness effect for CRISPR–Cas9 screens) and between 
±0.15 (Demeter2 fitness effect for RNAi screens) were chosen. Next, 
we filtered out genes that were not expressed, excluding those with 
a median expression of <0.5 TPM across the CCLE cell lines. From the 
remaining genes, we manually selected 300 NE coding genes that dis-
played no observable fitness effect and exhibited expression across 

CCLE cell lines. Additionally, we included 300 essential coding genes: 
we identified all genes showing a top 25% Chronos negative fitness 
effect in each specific cell line. Among these genes, we selected those 
appearing in this rank for all the cell lines and, subsequently, the genes 
with the highest average fitness effect were included in the library. 
For both the NE coding genes and the essential coding genes, four 
gRNA arrays were designed. We also included 1,634 NT gRNA arrays  
(Supplementary Table 9).

The LN-18 custom library targets all the lncRNA genes expressed 
in the LN-18 cell line (TPM > 0.01) and not targeted by the Albarossa 
library. The validation library targeted 93 lncRNA genes previously 
identified as hits in the Albarossa screens. Both libraries also included 
1,200 gRNA arrays targeting nonessential coding genes, 1,200 gRNA 
arrays targeting essential coding genes and 1,000 NT gRNA arrays 
(Supplementary Table 9).

For the three libraries, gRNA arrays targeting genes and NT gRNA 
arrays were designed as described above in ‘Target selection and Alba-
rossa library design.’

Cloning of CasRx libraries
An ssDNA oligonucleotide pool (TWIST Bioscience) containing all 
the sequences of the library arrays flanked by BsmbI (Supplementary  
Table 9) was amplified (three cycles) using the KAPA HiFi HotStart 
polymerase. The PCR reaction product was purified using the  
QIAquick PCR Purification kit (Qiagen) and the resulting product 
was cloned into the lentiGuide-CasRx(DR1 36)-stuffer-Puro (Sup-
plementary Table 10) using several Golden Gate assembly reactions. 
The cloning reactions were pooled together and precipitated using 
isopropanol-sodium acetate and washed three times with 70% ethanol. 
The concentrated DNA was electroporated into competent Escheri-
chia coli cells. The cells were cultured in Luria Bertani medium with 
(100 μg ml−1) ampicillin selection overnight. The next day, plasmid 
DNA was purified using a Plasmid Mega kit (Qiagen). The quality of 
the library was checked by digestion, Sanger-sequencing and NGS (see 
below). To maintain library diversity, the coverage during cloning was 
around 6,000. The lentiGuide-CasRx(DR1 36)-stuffer-Puro vector were 
cloned using the lentiGuide-Puro (Addgene, cat. no. 52963 (ref. 101)).

CasRx screens and NGS
For all the screens, 94 million cells were transduced (using the previ-
ously described spin-infection protocol) with the Albarossa lentiviral 
library at a MOI of 0.25 and a coverage of 300. On the following day, all 
the cells were seeded into 175 cm2 flasks (Cellstar) with puromycin. After 
4 days of selection, two replicates (20 million cells each, maintaining 
the 300 coverage) of individual lines were seeded into 150 mm culture 
plates (TPP). Each replicate was passaged every 3 days (maintaining 
the coverage) and cultured for 21 days. At the end of the experiment, 
24 million cells were harvested and processed to isolate genomic DNA 
to be used for sequencing.

NGS libraries were produced following a two-step nested PCR 
protocol. In the first PCR (18 cycles), we enriched a 481 bp genomic 
region containing the integrated array using the KAPA HiFi Hot-
Start polymerase (Roche) with 6 μg of DNA in each 50 μl reaction 
(25 reactions per sample). We pooled all reactions and purified the 
DNA from 100 μl using the QIAquick PCR Purification kit (Qiagen). 
We used the elute to amplify the final library in a second nested PCR 
(ten cycles) using the KAPA HiFi HotStart polymerase (Roche) and 
barcoded primers that contained the P5 and P7 Illumina Adapters. 
We quantified the library and sequenced it on an Illumina NextSeq 
500/550 High Output Kit v.2.5 (75 cycles) with custom primers. We 
obtained three reads: in read1 with 30 cycles, the primer binds next to 
the second guide and gives the sequence in reverse complement. In 
read2, the primer binds to the passage of U6 to the direct repeat and 
reads the first guide in cycles 29–56; i7 barcodes (6 bp) are sequenced 
with a third primer.
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Screens analysis
Using a custom pipeline, we obtained the raw counts from all the screen 
samples and the original plasmid library (using the FASTQ files from the 
NGS protocol described above). We generated two different indexes 
for the sequence of the gRNAs in position 1 or position 2 of the arrays. 
For position 1 we indexed the first 27 bp (length of the gRNA covered 
by the sequencing procedure) and for position 2 the full 30 bp. The 
first 29 bp of Read2 were trimmed to leave only the 27 bp portion that 
covers the gRNA at position 1. We used bowtie v.1.2.2 (ref. 100) to map 
read1 to the position 2 index and read2 to the position 1 index allowing 
two mismatches. We assigned a count if the sequence from both read1 
and read2 mapped to the same array.

For each gRNA array, we calculated an LFC on CPM-normalized 
counts using the plasmid library as the baseline. Arrays with an absolute 
LFC value in the percentile one in at least two control screens (without 
CasRx) and one sample screen were considered noisy and removed 
from the analysis. Arrays with <30 counts in the plasmid library were 
also removed. For the remaining arrays, we normalized the counts 
using the median of ratios method from DESeq2 (ref. 102). The P value 
of each array was calculated using the RRA algorithm from MAGeCK 
v.0.5.9 (ref. 57), treating the sequenced plasmid library as control. As 
a second criterion to prevent off-targets gRNAs, we ‘blacklisted’ any 
array with a significant P value (<0.05) in a minimum of two screens and 
in which at least one of its gRNAs mapped (using bowtie v.1.2 (ref. 100) 
allowing 21 nucleotide end-to-end) to the exon or intron of an essential 
coding gene45,103,104 (Achilles common essentials and CRISPR com-
mon essentials lists from the DepMap repository version 22Q2). More 
precisely, we used a 23 nucleotide match allowing two mismatches 
at any position. This means by default that a 21 bp perfect match is 
included. By allowing two mismatches, we are more permissive in 
detecting off-targets as we allow for a larger potential ‘sequence pool’ to  
align and be flanked as potential off-target (Supplementary Table 11).

After using the RRA algorithm from MAGeCK v.0.5.9 (ref. 57) 
and the plasmid library as baseline, we retrieved an FDR for each 
gene in every screening. MAGeCK identifies a gene as a depend-
ency if some gRNAs display a markedly strong depletion or if several 
gRNAs with moderate to strong effects consistently demonstrate 
the same behavior. It then evaluates the chance of a random set of 
gRNAs behaving similarly to those targeting a specific gene. The rarer 
the observed pattern is, the more significant the resulting P value 
becomes. A gene was considered a significant hit if its FDR was <0.25  
(Supplementary Table 12).

We calculated an empirical FDR considering false positive (FP) hits 
as the sum of the significant lncRNA hits in the control screenings with-
out CasRx and total hits (true positive hits (TP) + false positive hits (FP)) 
as the sum of the significant lncRNA hits in the correspondent condition 
screenings. Empirical FDR = FP/(TP + FP). For each significant hit, we 
calculated a gene-unified LFC. We annotated manually the gene IDs of 
all the hits. We grouped together lncRNA genes that corresponded to 
the same previously annotated gene. The gene-unified LFC value was 
calculated as the average of the two most significant gRNAs per gene 
ID (Supplementary Table 13).

Reanalysis of previous lncRNA CRISPR screening approaches
The raw counts for the CRISPRi-based screens in all the reported cancer 
cell lines (HeLa, K-562, MCF7, MDA-MB-231 and U-87) were retrieved 
directly from the original publication27. An FDR for the TSS of each 
lncRNA was calculated using the RRA algorithm as described above. 
Each lncRNA FDR was defined as the most significant FDR between all 
the targeted TSS for each gene. A lncRNA was considered a significant 
hit if its FDR was <0.25. Next, we converted the TSS coordinates in the 
paper from Genome build hg19 to hg38 using liftover from University of 
California Santa Cruz83. The distance between each lncRNA TSS and the 
nearest essential coding gene or the nearest coding gene was calculated 
using the findOverlaps function of the GenomicRanges package105.  

A lncRNA was considered an off-target if its TSS was <1 kb from the TSS 
of an essential coding gene (Supplementary Table 14).

In the case of the Cas9-based deletion screens15, we down- 
loaded the FASTQ reads from the SRA database106 for the Huh7.5 cell 
line screen (accession number SRX2148759) and for the HeLa cell  
line screen (accession number SRX2149095). Read counts were 
obtained using the MAGeCK v.0.5.9.4 count function57 (Supplemen-
tary Table 15). FDR for each lncRNA was obtained as described above 
for the CasRx screens (Supplementary Table 16).

For the Cas9-based screens targeting splicing sites16, we retrieved 
the raw counts from the original publication. For each gRNA, we cal-
culated an LFC on CPM-normalized counts using the plasmid time 
0 as baseline (Supplementary Table 17). To quantify the expression 
of the lncRNAs, we downloaded the RNA-seq FASTQ data for the cell 
lines HeLa and K-562 from the SRA database106 (accession numbers 
SRR8615629 and SRR8615717, respectively). We obtained raw counts 
with Salmon v.1.5 (ref. 92) with the Gencode v.20 transcript sequences 
as reference. A lncRNA was defined as expressed if its TPM value was 
≥0.01 (Supplementary Table 18).

Validation of lncRNA dependencies
NT (control) gRNAs or new gRNAs against different lncRNAs were 
cloned into either the pLentiRNAGuide_001-hU6-RfxCas13d-DR1- 
BsmBI-EFS-Puro-WPRE vector (Addgene, cat. no. 138150 (ref. 83)) or 
the pLKO5-CasRx(DR1 30)-EFS-EGFP vector (Supplementary Table 10) 
using golden gate cloning. Cells were transduced with the vectors carry-
ing the puromycin resistance cassette and encoding either NT gRNA or 
gRNAs against the lncRNAs, followed by selection with puromycin for 
2 days before experiments. In the case of vectors carrying EGFP, cells 
were transduced at approximately 0.25 MOI and allowed to recover for 
2 days with fresh medium before experiments.

For the FACS-based competition assay, after recovery, the percent-
age of GFP-positive cells (cells carrying a gRNA against a particular 
lncRNA or the NT gRNA) or untransduced cells were recorded by flow 
cytometry (day 0). The same cells were maintain in culture for 2 weeks 
and at the end of the experiment the distribution of GFP-positive cells 
or untransduced cells were recorded again (day 14). The experimental 
LFC was calculated as the fold between the proportions of GFP-positive 
cells at day 14 compared with day 0. Cells populations were recorded 
using a Beckman Coulter Cytoflex LX system. FlowJo v.10.7.2 was used 
to analyze populations.

For the colony formation assay, following antibiotic selection, 
4,000 cells per condition were seeded into six wells, with two techni-
cal replicates per condition. After 10 days in culture, the cells were 
stained with crystal violet. To quantify the results, the crystal violet was 
dissolved in 10% acetic acid and the absorbance was measured using a 
GloMax Discover microplate reader (Promega).

For the proliferation assay, following antibiotic selection, 2,000 
cells per condition were seeded into 96 wells, with four technical rep-
licates per condition. For each timepoint, a separate 96-well plate was 
seeded using the same cell master mix for all conditions. Surviving 
cells were quantified based on luminescence using CellTiter-Glo, after 
8 h (day 0), 1 day, 2 days or 3 days of culture, using a GloMax Discover 
microplate reader (Promega). The fluorescence values representing 
the number of cells were normalized to day 0 and are indicated as fold 
change over the controls (cells transduced with a NT gRNA).

Data availability
All sequencing datasets have been deposited in ENA (accession  
number: PRJEB60776). The GENCODE Human Release 38 genome  
(GRCh38.p13) and transcriptome can be found here: https://www. 
gencodegenes.org/human/release_38.html. The resources from 
DepMap and the CCLE can be found here: https://doi.org/10.6084/
m9.figshare.19700056.v2. The resources from RNAcentral can be found 
here: https://ftp.ebi.ac.uk/pub/databases/RNAcentral/releases/16.0.

http://www.nature.com/naturemethods
https://www.ncbi.nlm.nih.gov/sra/?term=SRX2148759
https://www.ncbi.nlm.nih.gov/sra/?term=SRX2149095
https://www.ncbi.nlm.nih.gov/sra/?term=SRR8615629
https://www.ncbi.nlm.nih.gov/sra/?term=SRR8615717
https://www.ebi.ac.uk/ena/browser/view/PRJEB60776
https://www.gencodegenes.org/human/release_38.html
https://www.gencodegenes.org/human/release_38.html
https://doi.org/10.6084/m9.figshare.19700056.v2
https://doi.org/10.6084/m9.figshare.19700056.v2
https://ftp.ebi.ac.uk/pub/databases/RNAcentral/releases/16.0


Nature Methods

Article https://doi.org/10.1038/s41592-024-02190-0

Code availability
The custom pipelines for CasRx gRNA arrays design, gRNA arrays 
quantification from amplicon-seq data and the computational anal-
ysis of the CasRx lncRNAs screens used in this paper are available at  
Github: https://github.com/roland-rad-lab/Genome-scale-pan-cancer- 
interrogation-of-lncRNA-dependencies-using-CasRx.git.

References
82. Li, H. Aligning sequence reads, clone sequences and assembly 

contigs with BWA-MEM. Preprint at ArXiv https://doi.org/10.48550/
arXiv.1303.3997 (2013).

83. malignancy with combinatorial genetic lesions using CRISPR- 
Cas9 genome editing. Nat. Biotechnol. 32, 941–946 (2014).

84. Hinrichs, A. S. et al. The UCSC genome browser database: update 
2006. Nucleic Acids Res. 34, D590–598 (2006).

85. Cunningham, R. et al. Ensembl 2022. Nucleic Acids Res. 50, 
D988–D995 (2022).

86. Ghandi, M. et al. Next-generation characterization of the cancer 
cell line encyclopedia. Nature 569, 503–508 (2019).

87. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible 
trimmer for Illumina sequence data. Bioinformatics 30,  
2114–2120 (2014).

88. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. 
Bioinformatics 29, 15–21 (2013).

89. Li, H. et al. The sequence alignment/map format and SAMtools. 
Bioinformatics 25, 2078–2079 (2009).

90. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for 
comparing genomic features. Bioinformatics 26, 841–842 (2010).

91. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general 
purpose program for assigning sequence reads to genomic 
features. Bioinformatics 30, 923–930 (2014).

92. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C.  
Salmon: fast and bias-aware quantification of transcript 
expression using dual-phase inference. Nat. Methods 14,  
417–419 (2017).

93. Schneider, V. A. et al. Evaluation of GRCh38 and de novo haploid 
genome assemblies demonstrates the enduring quality of the 
reference assembly. Genome Res. 27, 849–864 (2017).

94. Ritchie, M. E. et al. limma powers differential expression analyses 
for RNA-sequencing and microarray studies. Nucleic Acids Res. 
43, e47 (2015).

95. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold 
change and dispersion for RNA-seq data with DESeq2. Genome 
Biol. 15, 550 (2014).

96. Parekh, S., Ziegenhain, C., Vieth, B., Enard, W. & Hellmann, I.  
The impact of amplification on differential expression analyses  
by RNA-seq. Sci. Rep. 6, 25533 (2016).

97. Macosko, E. Z. et al. Highly parallel genome-wide expression 
profiling of individual cells using nanoliter droplets. Cell 161, 
1202–1214 (2015).

98. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with 
Bowtie 2. Nat. Methods 9, 357–359 (2012).

99. Li, W. et al. Quality control, modeling, and visualization of CRISPR 
screens with MAGeCK-VISPR. Genome Biol. 16, 281 (2015).

100. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast 
and memory-efficient alignment of short DNA sequences to the 
human genome. Genome Biol. 10, R25 (2009).

101. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and 
genome-wide libraries for CRISPR screening. Nat. Methods 11, 
783–784 (2014).

102. Anders, S. & Huber, W. Differential expression analysis for 
sequence count data. Genome Biol. 11, R106 (2010).

103. Wang, T. et al. Identification and characterization of essential 
genes in the human genome. Science 350, 1096–1101 (2015).

104. Behan, F. M. et al. Prioritization of cancer therapeutic targets 
using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).

105. Lawrence, M. et al. Software for computing and annotating 
genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

106. Sayers, E. W. et al. Database resources of the national center for 
biotechnology information. Nucleic Acids Res. 50, D20–D26 (2022).

Acknowledgements
We thank J. Eichinger, A. Grotloh and V. Aigner for excellent 
technical assistance. This study was supported by the European 
Research Council (Consolidator grant CoG PACA-MET-819642 and 
MSCA-ITN-ETN-861196 to R.R.; CoG no. 648521 to D.S.); the Deutsche 
Forschungsgemeinschaft (DFG RA1629/2-1;SFB1321 to R.R. and 
M.S.S.; and SFB 1371 to D.S.); German Cancer Consortium, Deutsche 
Krebshilfe (70114314 to R.R.); the German Federal Ministry of Education 
and Research (Cluster4Future: CNATM to R.R.) and TUM Innovation 
Network NextGenDrugs funded under the Excellence Strategy of the 
Federal Government and the Länder (to R.R.). J.J.M. was supported 
by a European Molecular Biology Organization (EMBO) long-term 
fellowship (ALFT 655-2019).

Author contributions
J.J.M. and R.R. designed the study. J.J.M., R.T., M.S., R.Ö., A.B., E.Z. 
and P.W. carried out the research. J.J.M. and R.T. analyzed the data. 
R.T. developed the code. R.T. and T.E. performed the bioinformatic 
analyses. R.R., M.S.S. and D.S. supplied resources. J.J.M. and R.R. 
supervised the project. J.J.M. and R.T. prepared the figures. J.J.M. and 
R.R. wrote the manuscript.

Funding
Open access funding provided by Technische Universität München.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41592-024-02190-0.

Correspondence and requests for materials should be addressed to 
Juan J. Montero or Roland Rad.

Peer review information Nature Methods thanks Igor Ulitsky, Jian Yan 
and the other, anonymous, reviewer(s) for their contribution to the 
peer review of this work. Peer reviewer reports are available. Primary 
Handling Editor: Madhura Mukhopadhyay, in collaboration with the 
Nature Methods team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://github.com/roland-rad-lab/Genome-scale-pan-cancer-interrogation-of-lncRNA-dependencies-using-CasRx.git
https://github.com/roland-rad-lab/Genome-scale-pan-cancer-interrogation-of-lncRNA-dependencies-using-CasRx.git
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.1038/s41592-024-02190-0
http://www.nature.com/reprints







	Genome-scale pan-cancer interrogation of lncRNA dependencies using CasRx
	Results
	Optimization of a genome-integrated CasRx system
	RNA targeting without indiscriminate off-target cleavage
	Target selection for lncRNA screens across solid tumors
	CasRx library design
	Quality control of selected lncRNAs
	Library generation and sequencing
	Genome-scale CasRx screening
	Systematic mapping of lncRNA dependencies in cancer
	CasRx-based screens overcome previous approaches limitations
	Identification of common and context-specific vulnerabilities
	Validation of lncRNA dependencies

	Discussion
	Material availability
	Reporting summary

	Online content
	Fig. 1 Optimization of a genome-integrated CasRx system.
	Fig. 2 CasRx pan-cancer library design.
	Fig. 3 Albarossa library displays high cross-cancer coverage and captures interentity lncRNA transcriptional heterogeneity.
	Fig. 4 Genome-scale CasRx mapping of lncRNA dependencies across different tumor types.
	Fig. 5 CasRx-based screens solve bottlenecks linked to previous perturbation approaches and enable the identification of common and context-specific lncRNA vulnerabilities.
	Fig. 6 Validation of lncRNA dependencies.




