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Direct prediction of intrinsically disordered 
protein conformational properties  
from sequence

Jeffrey M. Lotthammer    1,2,3, Garrett M. Ginell    1,2,3, Daniel Griffith    1,2,3, 
Ryan J. Emenecker1,2 & Alex S. Holehouse    1,2 

Intrinsically disordered regions (IDRs) are ubiquitous across all domains  
of life and play a range of functional roles. While folded domains are 
generally well described by a stable three-dimensional structure, IDRs 
exist in a collection of interconverting states known as an ensemble. This 
structural heterogeneity means that IDRs are largely absent from the 
Protein Data Bank, contributing to a lack of computational approaches 
to predict ensemble conformational properties from sequence. Here we 
combine rational sequence design, large-scale molecular simulations 
and deep learning to develop ALBATROSS, a deep-learning model for 
predicting ensemble dimensions of IDRs, including the radius of gyration, 
end-to-end distance, polymer-scaling exponent and ensemble asphericity, 
directly from sequences at a proteome-wide scale. ALBATROSS is 
lightweight, easy to use and accessible as both a locally installable software 
package and a point-and-click-style interface via Google Colab notebooks. 
We first demonstrate the applicability of our predictors by examining  
the generalizability of sequence–ensemble relationships in IDRs.  
Then, we leverage the high-throughput nature of ALBATROSS to 
characterize the sequence-specific biophysical behavior of IDRs within  
and between proteomes.

IDRs make up an estimated 30% of most eukaryotic proteomes and 
play a variety of roles in molecular and cellular function1–4. Although 
folded domains are often well described by a single (or small number 
of) three-dimensional (3D) structures, IDRs are defined by extensive 
conformational heterogeneity. This means that they exist in a confor-
mational ensemble (a collection of rapidly interconverting states that 
prohibits structural classification by any single reference structure). 
This heterogeneity challenges many experimental, computational and 
conceptual approaches developed for folded domains, necessitating 
the application of polymer physics to describe, classify and interpret 
IDRs in a variety of contexts5–10.

Although IDRs are defined by the absence of a defined folded state, 
they are not ‘unstructured’4,11. The same chemical moieties that drive 
protein folding and enable molecular recognition in folded domains 
are also found within IDRs. As such, while folded domains subscribe to 
a sequence–structure relationship, IDRs have an analogous sequence–
ensemble relationship4,11. Over the past 15 years, there has been a sub-
stantial effort to decode the mapping between IDR sequence and 
conformational properties7,11–14.

IDR conformational properties can be local or global. Local confor-
mational properties typically involve a transient secondary structure, 
particularly transient helicity15. Global conformational properties 
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behavior offers a route to discretize IDRs into conformationally dis-
tinct subdomains. Finally, we used ALBATROSS to identify examples 
where, despite large-scale changes in IDR sequence, conformational 
properties are conserved, a phenomenon termed ‘conformational  
buffering’30.

By combining ALBATROSS with recent improvements to our 
state-of-the-art disorder predictor (metapredict V2-FF), we also pro-
vide the ability to predict and annotate the entire set of IDRs for a given 
proteome (the IDR-ome) in seconds to minutes. This advance opens the 
door for large-scale structural bioinformatics of disordered proteins 
at proteome-wide scales. More broadly, if the Google Colab notebooks 
are used, this analysis is made easy for anyone with an internet connec-
tion, requiring no local software installation.

As a final note, while we rigorously validate the accuracy of ALBA-
TROSS against both simulated and experimental data, we do not see it 
as a replacement for well-designed simulation or experimental stud-
ies. Instead, our goal is for ALBATROSS to estimate sequence-specific 
biophysical properties from IDR-encoded sequence chemistry to 
aid in hypothesis generation and the interpretation and design of 
experiments.

Results
We developed ALBATROSS by performing coarse-grained simulations 
of a set of training sequences that would enable a bidirectional recur-
rent neural network with long short-term memory cells (LSTM-BRNN) 
model to learn the mapping between IDR sequence and global con-
formational behavior. To this end, four distinct phases in this process 
were required: (1) selecting an appropriate force field, (2) obtaining an 
appropriate set of sequences for training and testing, (3) performing 
simulations of those sequences and (4) optimizing our deep-learning 
models for sequence-to-ensemble mapping.

Mpipi-GG accurately recapitulates IDR ensemble dimensions
The Mpipi force field is a recently published one-bead-per-residue 
model for exploring sequence-to-ensemble behavior in disordered 
proteins24. Mpipi offers good molecular insight into a range of sys-
tems24,31,32 (Supplementary Fig. 1). While Mpipi generally shows very 
good accuracy, when compared to experiments, in performing initial 
calibration simulations, we noticed a few minor discrepancies between 
known experimental trends and Mpipi behavior (Supplementary  
Figs. 1–5). We made several small modifications to the underlying 
parameters, yielding a version of Mpipi that we refer to as Mpipi-GG (see 
Supplementary Information for more details on force field fine-tuning).

To assess the accuracy of Mpipi-GG, we curated a set of 137 radii of 
gyration from previously published SAXS experiments on disordered 
proteins (Supplementary Fig. 1). Comparing the predictive power of 
Mpipi-GG to the original Mpipi force field for these sequences reveals 
comparable accuracy, with Mpipi-GG performing modestly better with 
an R2 of 0.921 versus 0.896 for Mpipi, although both models are highly 
accurate. Given this accuracy, we reasoned that we could use Mpipi-GG 
simulations to generate training data for deep-learning-based models 
to map IDR sequence chemistry to ensemble properties.

Constructing a library of sequences for training data
Before performing simulations, we constructed a library of disordered 
proteins with diverse sequence chemistries. This library included natu-
rally occurring IDRs and a large set of rationally designed IDRs. A sys-
tematic exploration of IDR sequence space enabled our deep-learning 
models to learn the complex underlying sequence-encoded confor-
mational biases of disordered proteins. Rationally designed IDRs were 
generated using GOOSE, our recently developed computational pack-
age for synthetic IDR design33. GOOSE allowed us to titrate across a 
range of sequence features that impact IDR conformational behavior 
(Fig. 1d; Methods). Moreover, we opted to take advantage of GOOSE’s 
ability to focus compositional exploration on sequences predicted to 

report on ensemble-average dimensions (the overall size and shape 
that the ensemble occupies4). Two common properties measured by 
both experiment and simulation are the radius of gyration (Rg) and 
end-to-end distance (Re). Rg reports on the average distance between 
the IDR residues and the protein’s center of mass and Re reports on the 
average distance between the first and the last residue. Ensemble shape 
can be quantified in terms of asphericity, a parameter that lies between 
0 (sphere) and 1 (prolate ellipsoid) and reports on how spherical an 
ensemble is. While Re, Rg and asphericity are relatively coarse-grain, 
they can offer insight into the molecular conformations accessible to an 
IDR, as well as provide hints at the types of intramolecular interactions 
that may also be relevant for intermolecular interactions (especially in 
the context of low-complexity sequences)16–18.

An in vitro assessment of sequence–ensemble relationships 
involves expression, purification and measurement of ensemble 
properties using various biophysical techniques. The experimental 
methods commonly used to study conformational properties include 
single-molecule fluorescence spectroscopy (smFRET), nuclear mag-
netic resonance (NMR) spectroscopy and small-angle X-ray scattering 
(SAXS)9,19,20. While powerful, all three of these approaches can be techni-
cally demanding, necessitate access to specific instrumentation and, 
in the case of NMR and SAXS, require relatively high concentrations of 
protein. Beyond in vitro assessment, integrating all-atom simulations 
with biophysical measurements has proven invaluable in obtaining a 
holistic description of sequence–ensemble relationships, yet these 
integrative studies can also be challenging16,21,22. As such, obtaining 
insight into sequence-specific conformational biases for disordered 
proteins is often inaccessible for groups with a limited background in 
molecular biophysics.

Recent efforts have markedly improved the accuracy of 
coarse-grained force fields for disordered protein simulations23–28. In 
particular, simulations performed with the CALVADOS and Mpipi force 
fields offer robust predictions of global conformational properties for 
disordered proteins23,24,28,29; however, setting up, running and analyzing 
molecular simulations necessitate a level of expertise and resources 
beyond many (arguably most) research groups and simulations typi-
cally take tens of minutes to hours for single sequences. As such, the 
democratization of large-scale exploration of sequence-to-ensemble 
relationships in disordered proteins demands easy-to-use tools that 
are readily accessible (available in a web browser without any hardware 
constraints).

Here, we address this gap by developing a rapid and accurate pre-
dictor for disordered protein global dimensions from sequences. We 
do this through a combination of rational sequence design, large-scale 
coarse-grained simulations and deep learning (Fig. 1a). The resulting 
predictor (ALBATROSS, a deep-learning-based approach for predict-
ing properties of disordered proteins) not only pushes the boundaries 
of acronym development but provides a means to predict IDR global 
dimensions (Rg, Re, asphericity and apparent polymer-scaling expo-
nent) directly from sequences.

ALBATROSS was developed with ease of use and portability in 
mind. No specific hardware is required and predictions can be per-
formed on either CPUs or GPUs. We provide both a locally install-
able implementation of ALBATROSS as well as point-and-click Google 
Colab notebooks that enable predictions to be performed on 30–60 
sequences per second on a CPU and thousands of sequences per sec-
ond on a GPU (Fig. 1b). Notably, ALBATROSS correlates extremely well 
with experimental radii of gyration derived from SAXS experiments  
(Fig. 1b). Taken together, ALBATROSS offers predictive power equiv-
alent to the current state of the art in coarse-grained simulations, 
yet allows proteome-wide IDR analysis in seconds to minutes.

Here, we use ALBATROSS to demonstrate the generality of core 
sequence–ensemble relationships identified by foundational previ-
ous work, as well as assess general conformational biases observed 
at proteome-wide scales. We then propose that local conformational 
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be disordered, such that our initial library is centered on sequences 
predicted with high confidence to be IDRs.

Using GOOSE, we designed a library of synthetic sequences that 
systematically explore IDR hydropathy, overall charge, net charge, 
charge patterning (quantified by κ) and the overall fraction of different 
amino acids (Fig. 1c and Supplementary Fig. 6). Last, we also added dis-
ordered sequences where random amino acid fractions were specified 
without constraining other features. Collectively, we designed a library 
of 22,127 synthetic sequences across a broad sequence landscape. In 
addition to these synthetic IDRs, we also randomly selected 19,075 IDRs 
from common model system proteomes. In total, we collected a library 
of 41,202 disordered protein sequences. This training library covered 
broad chemical space in terms of the fraction of aliphatic and polar resi-
dues as well as the fraction of positively charged residues and aromatic 
residues (Supplementary Fig. 6). Moreover, we also ensured that our 
sequence library had broad coverage of the sequence charge decora-
tion parameter defined by Sawle and Ghosh as well as the sequence 
hydropathy decoration parameters (Supplementary Fig. 7)34,35.

Training a sequence-to-ensemble deep-learning model
After designing our training library of IDR sequences, and both selecting 
and tuning our force field, we performed molecular dynamics simula-
tions of all 41,202 sequences and calculated ensemble-average param-
eters of interest. Specifically, we focused on the radius of gyration, 
end-to-end distance, asphericity and the scaling exponent and prefac-
tor for the polymer-scaling law to fit the internal scaling data4,8,16,36,37. 
These data served as the foundation for training our LSTM-BRNN net-
works using the software package PARROT (Methods)38. The training 
was performed using a fivefold cross-validation for 500 epochs with 
a split of 64:16:20 for training:validation:test. We call the collection 
of trained networks that enable sequence-to-ensemble predictions 
ALBATROSS.

We first began training the ALBATROSS Rg network. After 
optimizing hyperparameters (Methods), we checked that 
ALBATROSS-derived radii of gyration matched the Mpipi-GG radii 
of gyration for the set of sequences presented in Fig. 1c. This com-
parison showed excellent agreement (R2 = 0.998; Supplementary  
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Fig. 1 | ALBATROSS is a deep-learning framework for predicting sequence-
dependent IDR ensemble properties. a, Sequence design and simulation 
approach to generate training data for ALBATROSS networks. The Python 
package GOOSE was used to generate synthetic IDRs across a diverse area 
of sequence space. Coarse-grained molecular dynamics simulations were 
performed for each sequence to generate labeled data for downstream deep 
neural network training and validation. b, ALBATROSS is implemented as a 
point-and-click style interface on Google Colab with support for CPU and 
GPU inference. The user simply specifies the amino acid sequence or a fasta 
file of amino acid sequences and then selects the predictions that they would 

like to perform. As discussed below, ALBATROSS is highly accurate, providing 
state-of-the-art predictions for global dimensions almost instantaneously, as 
shown here, with predictions compared against the radii of gyration derived 
from experimentally measured SAXS data. c, Rational sequence design 
scheme. GOOSE was used to design sequences that titrated along different 
protein sequence parameter axes: length, residue patterning and bulk amino 
acid properties. The fraction of charged residues and the fraction of tyrosine 
residues are examples of bulk properties. An example of residue patterning is 
the sequence parameter κ, which describes the asymmetry of positively and 
negatively charged amino acids in a sequence.
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Fig. 8) despite the fact that none of these sequences were in the original 
training data.

We next sought to assess more systematically how accurately 
ALBATROSS was able to predict the simulated Mpipi-GG Rg values on 
data unseen during training. Promisingly, when we evaluated our model 
on a held-out test set of 6037 sequences (in addition to the original 
41,202 used for training) consisting of both synthetic and biological 
IDRs, we saw strong correlations in all cases (R2 = 0.995; Fig. 2a). Finally, 
ALBATROSS was comparable to or more accurate than the current 
state-of-the-art methods for radii of gyration prediction but enabled 
a much higher throughput (thousands of sequences per second) than 
comparable approaches (Supplementary Fig. 8). We next turned to 
evaluate the accuracy of our networks on the Re prediction task and 
observed a strong correlation between the ALBATROSS Re and the 
Mpipi-GG Re on the held-out test set (R2 = 0.986; Fig. 2b).

In addition to these Rg and Re networks, we also trained networks 
for the mean asphericity, which displayed quantitative agreement on 
the test set (R2 = 0.817; Fig. 2c). Last, we trained predictors based on the 
two parameters obtained by fitting the internal scaling of the beads 
to a polymer-scaling model, the scaling exponent and prefactor. The 
accuracy of the predictions from these networks was 0.967 and 0.930, 
respectively on the independent set of test sequences (Fig. 2d and Sup-
plementary Fig. 9). In summary, the ALBATROSS networks performed 
well on both synthetically designed and naturally occurring IDRs, sug-
gesting that our networks have learned the role of sequence chemistry 
for tuning IDR ensemble dimensions.

ALBATROSS enables high-throughput predictions
Unlike coarse-grained simulations, which can take minutes, hours or 
even days, ALBATROSS enables thousands of predictions per minute. 
A summary of our performance benchmarks on modest commod-
ity CPU hardware (Intel(R) Core(TM) i9-9900, as well as Intel and M1 
Macbooks) is provided in Supplementary Fig. 10. We focused our 
benchmarking on commodity hardware, given that many researchers 
lack access to high-end GPUs; however, we note that one can compute 
Rg predictions for the entire human proteome in ~8 s via our Google 
Colab notebook running on GPUs. As such, ALBATROSS offers an 
accurate and high-performance route to map sequence–ensemble 
relationships for Re, Rg, asphericity and the polymer-scaling exponent  
and prefactor.

Systematic investigation of sequence–ensemble relationships
We next used ALBATROSS to assess how IDR sequence features influ-
ence global dimensions. Using GOOSE, we designed libraries of syn-
thetic disordered sequences that systematically vary one sequence 
feature while holding others fixed. This strategy enables us to isolate 
and assess the average contribution of different sequence features; 
each data point on the panels in Fig. 3 reflects the average ensemble 
dimensions obtained from 100 distinct sequences with the same 
overall sequence features.

This analysis recapitulates and confirms a wide variety of 
sequence-to-ensemble relationships reported by many groups  
through computational and experimental studies over the past 
decade. In particular, our work highlights the importance of net 
charge in determining IDR global dimensions (Fig. 3a,b) and illus-
trates the fact that charge patterning becomes an increasingly 
important determinant of IDR dimensions as the overall fraction 
of charged residues increases (Fig. 3c)7,12–14,34. A systematic titra-
tion of individual amino acid fractions confirms that aromatic resi-
due drive chain compaction (with tryptophan the strongest of the 
three), proline residue drive chain expansion and glutamine (more 
than any other polar amino acid) drives intramolecular interac-
tions and compaction (Fig. 3d)16,39,40. Finally, these analyses suggest 
that aliphatic hydrophobes have a modest impact on IDR dimen-
sions, a result consistent with previous work, although we caution 
that our predictions likely underestimate the hydrophobic effect 
(Discussion) (Fig. 3d)41–43. In summary, our conclusions here are 
largely concordant with previous work but generalize those conclu-
sions from individual proteins or systems to the sequence-average  
properties.

In addition to titrating the aromatic fraction, we designed syn-
thetic repeat proteins consisting of glycine–serine-repeat ‘spac-
ers’ and polytyrosine ‘stickers’44–46. These synthetic IDRs allow us 
to assess how spacer length and sticker strength (tuned by the 
number of tyrosine residues in a sticker) influence chain dimen-
sions. Our results demonstrate that both spacer length and sticker 
strength can synergistically influence IDR global dimensions  
(Fig. 3e). The dependence of the individual chain Rg on spacer length 
(y axis) and sticker strength (x axis) mirrors conclusions drawn 
from sticker–spacer architecture polymers from simulations and  
experiments16,47–49.
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Proteome-wide predictions of IDR ensemble properties
We next performed large-scale bioinformatic characterization of the 
biophysical properties of disordered regions across the human pro-
teome (Fig. 4a,b). Focusing on IDRs between 35 and 3,000 residues in 
length, we calculated normalized radii of gyration (Fig. 4c), normalized 
end-to-end distance (Fig. 4d) and asphericity (Fig. 4e). Normalization 
here was essential to account for the variability in absolute radii of 
gyration with sequence length and was achieved by dividing the ALBA-
TROSS Rg with the sequence-specific Rg expected if the IDR behaved as 
a Gaussian chain50. These analyses suggest that most IDRs behave as 
relatively expanded chains, although we recognize that there are likely 
several important caveats to this interpretation (Discussion). Assessing 
the absolute radius of gyration versus IDR length, the majority of more 
compact IDRs are enriched for aromatic residues (Fig. 4f). Indeed, 
plotting the asphericity (a measure of IDR ensemble shape) versus 
the normalized radius of gyration and coloring by either the fraction 
of aromatic residues (Fig. 4g) or the absolute net charge and the frac-
tion of proline residues (Fig. 4h) suggest that IDRs with an ensemble 
that is expanded and elongated have a net charge and/or are enriched 
for proline, whereas IDRs with an ensemble that is compact and more 
spherical are enriched for aromatic residues. Segregating IDRs into 
the 1,000 most compact and 1,000 most expanded sequences reveals 
that compact IDRs tend to be depleted in proline residues and have a 
low net charge per residue (NCPR). In contrast, expanded sequences 

tend to be enriched in proline and/or have higher absolute NCPR. Taken 
together, our analysis of the human IDR-ome mirrors insights gleaned 
from the analysis of synthetic sequences in Fig. 3.

Characterizing local dimensions of subregions within IDRs
Our proteome-wide analysis in Fig. 4 focused on ensemble-average 
properties calculated for entire IDRs. While convenient for reveal-
ing gross properties, we reasoned that for large (200+ residue) IDRs, 
it may be more informative to assess local conformational behavior 
with a sliding-window analysis. To this end, using a window size of 51 
residues, we calculated the local end-to-end distance across every 
51-mer fragment in the human proteome, enabling us to extract the 
2,146,400 51-mer fragments that lay entirely within every IDR (Fig. 5a). 
With our definition of a highly compact/expanded window falling in 
the bottom/top 2.5%, this analysis generates just over 50,000 highly 
compact/expanded subregions (Fig. 5b).

We used previously published protein abundance data from HeLa 
cells to identify highly abundant proteins with ten or more compact or 
expanded subregions51. For IDRs with compact subregions, almost all 
are RNA-binding proteins, with many known to undergo homotypic 
phase separation, a result consistent with the presence of an IDR with 
favorable intramolecular interactions (Fig. 5c)16,52–54. For IDRs with 
expanded subregions, many are histones, reflecting the positively 
charged histone tails, along with additional abundant RNA-binding 
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residue was systematically varied. e, Dependence of the normalized radius of 
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is calculated as the ALBATROSS Rg divided by the Rg expected for a sequence-
matched version of the protein behaving as a Gaussian chain (the analytical Flory 
random coil (AFRC) model)50. Each sequence here contains eight sticker–spacer 
repeats. Each repeat contains spacer regions (glycine–serine dipeptide repeats) 
that vary in length from 2 to 120 residues and sticker regions (polytyrosine 
repeats) that vary in length from 0 to 8 tyrosines.
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proteins (Fig. 5d). Nucleolin, a highly abundant nucleolar protein, 
possesses both highly compact and highly expanded subregions, a 
result that reflects large charge blocks, a key feature explored in recent 
work on the molecular grammar of nucleolar assembly55. The com-
plete set of abundance-ranked proteins is provided in Supplementary  
Tables 1 and 2.

The linear assessment of local dimensions enables the demarca-
tion of conformationally distinct subdomains within IDRs. As a proof 
of concept, we plotted the normalized local end-to-end distance for 
two large IDRs, revealing distinct subregions within each. First, we 
analyzed the 2,227-residue IDR from the nuclear speckle protein Son, 
identifying distinct subregions with specific conformational proper-
ties that map to previously analyzed subregions within the sequence 
(Fig. 5e)56. Second, we analyzed the N-terminal IDR of nucleolin  
(Fig. 5f). This IDR possesses blocks of negative and positive resi-
dues and at the intersection of these blocks, highly compact local 

conformational ensembles are predicted. In parallel, runs of Es and 
Ds are expected to be highly expanded. While the importance of these 
conformational biases in nucleolin is yet to be tested, recent work has 
highlighted this complex sequence architecture as underlying nucleo-
lar assembly55. The ability to (from sequence alone) demark poten-
tial subdomains within an IDR paves the way for more sophisticated 
mutagenesis studies, as well as the ability to predict if and how muta-
tions might influence local conformational behavior and, potentially,  
molecular function.

Finally, we used the set of ~2 million IDR subregions to assess which 
residues were enriched in expanded or compact IDRs (Fig. 5g,h). Enrich-
ment was assessed based on the fraction of the 20 amino acids in sub-
regions taken from the top/bottom 2.5% of all subregions with respect 
to normalized end-to-end distance, compared to the overall fraction 
for all subregions. Aromatic residues, histidine, arginine, glycine 
and glutamine were all found to be enriched in compact subregions.  
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In contrast, proline and glutamic acid were found to be enriched for 
expanded subregions. Notably, several of the residues most strongly 
enriched for compact IDRs match those residues known to engage 
in RNA binding31,57–60. Moreover, a Gene Ontology (GO) analysis for 
proteins with ten or more compact subfragments found strong enrich-
ment for RNA binding (Supplementary Table 3). In contrast, we saw no 
obvious patterns in proteins that possessed expanded subregions (Sup-
plementary Table 4). Taken together, our analysis suggests that IDRs 
that favor intramolecular interaction may share a common molecular 
function in RNA binding, whereas those that are highly expanded likely 
play a variety of context-specific roles.

High-throughput IDR ensemble informatics across evolution
Having demonstrated the accuracy and throughput of ALBATROSS in 
conducting broad, proteome-wide analyses, we next sought to show-
case ALBATROSS’ unique advantages for structural bioinformatics of 
disordered proteins. In particular, we were motivated by recent work 
demonstrating that IDRs can conserve global dimensions despite varia-
tions in amino acid sequence, as reported for a linker region in the viral 
protein E1A30. Compelled by this example, we wondered whether there 

were other instances whereby IDR dimensions are conserved across 
divergent homologs.

To test this, we analyzed evolutionarily related IDRs across a 
wide-ranging set of yeast species. Using the Saccharomyces cerevi-
siae proteome as a reference, we aligned and extracted 2,302 sets of 
homologous IDRs from 20 yeast proteomes, totaling 49,335 IDRs (see 
‘Yeast homologous IDR analysis’ in Methods; Fig. 6a). We predicted the 
Re for all IDRs and used the s.d. of these predicted Re values to quantify 
the conservation of IDR dimensions; a larger s.d. implies a lack of con-
servation, whereas a smaller s.d. implies that the end-to-end distance 
is less variable.

We quantified homolog sequence divergence using two 
approaches: by computing the variation of IDR sequence lengths 
and by scoring the sequence similarities from the multiple sequence 
alignment (Methods). In line with previous work, both approaches 
reveal that homologous IDRs are significantly more divergent than 
homologous folded domains (Mann–Whitney U-test, P < 0.001; Sup-
plementary Fig. 11)61–64.

Looking at all of the sets of homologous IDRs, we see a clear rela-
tionship between sequence similarity and Re conservation (Fig. 6b 
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and Supplementary Fig. 12). As expected, IDRs with more divergent 
sequences tend to possess larger variations in Re, yet several homologs 
exhibit tightly coupled Re relative to their sequence (dis)similarity, 
even compared to E1A30 (Fig. 6b and Supplementary Fig. 12). While 
characterizing all of these homologs is beyond the scope of this work, 
as a proof of concept, we performed a deeper analysis of two of these 
candidate IDRs.

We first examined the N-terminal IDR of the DYRK-family kinase 
Yak1 and its homologs. Despite large variation in sequence length 
(248–420 residues), the Yak1 homologs displayed notably conserved 
dimensions, with all but two sequences having a predicted Re between 
109 and 122 Å (Fig. 6c). In contrast, basic polymer models predict 
Re differences of >27 Å across this range of sequence lengths, sug-
gesting that there may be evolutionary constraints on the Re of the 
N-terminal Yak1 IDR. Analysis of the IDR sequences reveals several 
trends in sequence features that may explain the buffering of chain 
dimensions. As sequence length increases, there is a decrease in the 
fraction of proline and charged residues, an increase in the fraction 
of glutamine and asparagine and a modest trend toward a neutral net 
charge (Fig. 6d and Supplementary Table 5). Each of these features is 
associated with chain compaction30(Figs. 3–5). Other trends, such as a 
modest increase in κ and changing sequence composition of polar and 
aliphatic residues may also modulate the dimensions and properties 
of the Yak1 homologs (Supplementary Fig. 13).

We also examined the disordered linker (residues 57–373) from 
Spt2, a histone chaperone associated with chromatin remodeling 
during transcription. Like Yak1, the Spt2 IDR homologs have relatively 
constrained Re despite spanning 186 to 239 residues in length (Fig. 6b 
and Supplementary Figs. 12 and 14). Through analysis of the sequence 

features of the Spt2 homologs, the dimension of the longer sequences 
seems to be modulated by an increase in proline and aliphatic content 
and a more neutral net charge. Additionally, all the homologs have high 
κ values, which may buffer the overall chain dimensions (Supplemen-
tary Fig. 14 and Supplementary Table 6).

Discussion
Here, we present ALBATROSS, a deep-learning approach trained 
on coarse-grained simulations that allows for direct prediction of 
ensemble-average global dimensions from protein sequences. While 
there are several caveats that should be considered, ALBATROSS ena-
bles us to assess sequence-to-ensemble relationships for both synthetic 
and natural IDRs.

Our proteome-wide analysis suggests that IDR expansion can 
be driven by net charge, proline residues or a combination of the two  
(Fig. 4i). In contrast, the subset of amino acids (Y/W/F/H/R/G/Q) 
enriched in compact IDR subregions overlap strongly with those resi-
dues previously reported to engage in RNA binding (Fig. 5g). Previous 
work has shown that disordered regions can chaperone RNA, both 
in isolation and in the context of biomolecular condensates31,65–68. 
Notably, these same RNA-binding residues are also over-represented 
in IDR subregions that can drive phase separation in vitro and form 
condensates in vivo16,45,69. One interpretation of these observations 
is that compact IDRs have evolved to self-assemble and recruit RNA 
into condensates. Another interpretation is that these RNA-binding 
IDRs are constitutively bound to RNA in cells where they exchange 
compaction-driving intramolecular protein–protein interac-
tions for expansion-driving intermolecular protein–RNA interac-
tions. Under this interpretation, compact IDRs are only compact 
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in an unphysiological RNA-free context, such that they expand to 
envelop and chaperone RNA molecules, while themselves being 
reciprocally chaperoned by RNA. These interpretations are not 
mutually exclusive, nor do they prohibit a model in which RNA chaper-
oning requires many copies of RNA-binding proteins forming dynamic  
condensates.

ALBATROSS was parameterized to predict IDRs in isolation (with-
out N- or C-terminal folded domains). While there is ample evidence 
that folded domains connected to IDRs can influence ensemble prop-
erties in a variety of complex ways, these effects are not captured by 
a naive ALBATROSS prediction70–73. While this could be viewed as a 
limitation, we see this as a feature. ALBATROSS provides a simple route 
to predicting the behavior expected if the IDR were not interacting with 
folded domains, such that major deviations from that expectation 
implicate IDR-folded domain interactions. The same is true for experi-
ments performed in the presence of potential ligands; deviation from 
the expected behavior in isolation implies intermolecular interactions 
that lead to those discrepancies.

Our analysis of yeast homologs highlights two specific cases where 
IDR dimensions seem to be conserved across evolution despite sub-
stantial divergence in amino acid sequences, consistent with previous 
studies30. The homologs of the Yak1 N-terminal IDR have more con-
strained Re than we would expect based on polymer models (Fig. 6c). 
In the literature, Yak1 kinase activity has been shown to be regulated 
by its N-terminal IDR, through both intra- and intermolecular interac-
tions74. We hypothesize that maintaining a narrow range of end-to-end 
dimensions of the N-terminal IDR across homologs could be important 
for preserving autophosphorylation capabilities and for facilitating 
specific, multivalent interactions with 14-3-3 proteins74,75. The his-
tone chaperone Spt interacts with a variety of proteins and its IDRs 
also maintain similar Re values across divergent homolog sequences 
(Supplementary Fig. 14)76,77. As with Yak1, we hypothesize that Spt2 
dimensions are conserved to preserve Spt2’s ability to function as a 
multivalent scaffold. While direct experimental validation is needed 
to test these hypotheses, we believe that these examples (any many 
others that emerge from our analysis) illustrate ALBATROSS’ potential 
applications.

Recent work from several groups touches on ideas or results that 
dovetail well with our own. As a proof of principle, Janson et al. trained 
a generative adversarial network to predict ensemble properties for 
coarse-grained simulations (idpGAN)78. This study also demonstrated 
the potential for multi-resolution models that interpolate between 
coarse-grained and atomistic simulations79,80. In parallel, Chao et al. 
presented a new approach to represent IDR ensembles and trained 
several different machine-learning architectures to predict global 
dimensions from sequence81. Finally, Tesei and Trolle et al. recently 
performed an analogous assessment of the human IDR-ome using 
the CALVADOS2 force field23,28,29. Despite using a different force field, 
the correlation between CALVADOS2 simulations of the human pro-
teome and ALBATROSS predictions is high, with root mean squared 
errors (r.m.s.e.) within the range of experimental error (Supple-
mentary Fig. 15; R2 = 0.98, r.m.s.e. = 3.68 Å, n = 29,998, ALBATROSS 
prediction time for all IDRs ~200 s on a CPU). Moreover, we arrive 
at similar conclusions for the propensity for relatively expanded 
IDRs, the importance of net charge, charge patterning and aromatic 
residues in tuning overall dimensions and the association between 
RNA-binding proteins and compact IDRs. Overall, the distribution of 
IDR dimensions from CALVADOS2 is slightly more compact than from 
Mpipi-GG, a difference we suspect reflects an underestimation of ali-
phatic residue interactions in the Mpipi-GG force field. Nevertheless, 
the general trends between the two studies show good agreement, a 
compelling result given the differences in approaches, force fields and  
assumptions.

While our benchmarks demonstrate the predictive power of 
simulations performed using Mpipi-GG and ALBATROSS, there are 

a few important limitations. Mpipi-GG is a one-bead-per-residue, 
coarse-grained force field that assumes an isotropic interaction 
potential. Despite this simplifying assumption, many independ-
ent studies have confirmed that coarse-grained models are able to 
capture global ensemble properties of IDRs with reasonably good 
accuracy23,24,26,28,82. Nevertheless, we suggest a few specific caveats 
that should be considered when evaluating Mpipi-GG simulations or 
ALBATROSS predictions.

First, ALBATROSS may underestimate the impact of solvation 
effects on charged amino acids. Second, ALBATROSS does not account 
for transient secondary structure elements, a pervasive source of local 
conformational heterogeneity in many IDRs, which may bias predic-
tions for IDRs rich in transient helicity to be too expanded. Finally, we 
likely underestimate the hydrophobic effect for aliphatic residues, an 
intrinsically challenging phenomenon to capture in coarse-grained 
force fields for IDR simulations. These two final points mean that we 
likely overestimate the predicted dimensions of IDRs that possess 
hydrophobicity-driven secondary structures, a caveat that should be 
carefully considered for IDRs enriched for helicity-promoting and/or 
aliphatic residues.

The use of an LSTM-BRNN architecture enabled us to develop 
trained networks that were performant (10–50 sequences per second) 
on CPU commodity hardware. While more complex architectures (for 
example, transformer-based networks) may offer more accurate pre-
dictors, we see two central limitations here. First, transformer-based 
architectures are memory intensive and although some low-memory 
transformer-based architectures exist, most pretrained biological 
transformers have memory requirements that scale quadratically with 
sequence length, impeding use on commodity hardware83–85. Second, 
our LSTM-based architecture generates predictions that are already 
quite accurate. Our predictions error is on the order of the experi-
mental error (0 to 4 Å), meaning that treating model architecture as a 
tunable hyperparameter did not merit further investigation. Finally, 
combining an LSTM-based sequence-to-ensemble predictor with our 
high-throughput LSTM-based disorder predictor (metapredict V2-FF) 
ensures parity in the performance of disorder prediction and ensemble 
prediction. Our IDR-ome predictor notebook enables proteome-wide 
predictions in minutes, democratizing high-throughput structural 
bioinformatics of disordered proteins.

In conclusion, here we present ALBATROSS, an accessible and 
accurate route to predict IDR global dimensions from sequence. Our 
results are in good agreement with previous experimental and recent 
analogous computational work, suggesting that ALBATROSS offers 
a convenient route to obtain biophysical insight into IDR sequence–
ensemble relationships. Given the emerging appreciation for disor-
dered regions in the context of cellular function and regulation, we 
hope that ALBATROSS, along with recent simulation-based characteri-
zation of the human IDR-ome, will enable useful insight for mapping 
sequence to ensemble and sequence to function in IDRs29.
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Methods
The overall approach for developing ALBATROSS involved several 
steps. First, we generated a library of synthetic disordered proteins that 
systematically titrated across compositional space using our artificial 
disordered protein design package GOOSE33. Next, we fine-tuned the 
Mpipi force field, making small changes to the previously published 
parameters to address minor shortcomings, leading to a version we 
refer to as Mpipi-GG24. We then simulated synthetic training sequences 
using Mpipi-GG and calculated ensemble-average parameters37. 
Finally, we trained bidirectional recurrent neural networks with long 
short-term memory cells (LSTM-BRNNs) to map between amino acid 
sequences and simulation-derived ensemble-average parameters38. 
Network weights and the software to perform sequence–ensemble 
predictions were packaged into our sequence analysis package SPAR-
ROW, which is distributed as a Python package and as an easy-to-use 
Google Colab notebook86.

ALBATROSS training sequence library design
Using the IDR design package GOOSE, we assembled a library of chemi-
cally diverse synthetic disordered proteins (https://github.com/idp-
tools/goose)33. The sequences varied in charge, hydropathy, charge 
patterning and amino acid composition and were between 10 and 750 
residues long. We generated 22,127 disordered protein sequences 
across a diverse sequence space (Supplementary Information). In 
addition to the synthetic sequence library, we curated a set of 19,075 
naturally occurring IDRs by randomly sampling disordered proteins 
ranging in length from 10–750 residues from one of each of the fol-
lowing proteomes: Homo sapiens, Mus musculus, Dictyostelium dis-
coideum, Escherichia coli, Drosophilia melanogaster, S. cerevisiae, 
Neurospora crassa, Schizosaccharomyces pombe, Xenopus laevis, 
Caenorhabditis elegans, Arabidopsis thaliana and Danio rerio. All 
annotated IDRs from the proteomes mentioned above are available 
at https://github.com/holehouse-lab/shephard-data/tree/main/data/
proteomes.

ALBATROSS validation sequence library design
To prepare a test set to accurately assess the true generalization error 
for each of our ALBATROSS predictors, we randomly selected an addi-
tional set of 2,501 biological IDRs from one of the aforementioned 
proteomes. To ensure that any newly selected biological sequences 
were distinct from those seen during training, we applied CD-HIT 
with default parameters to remove sequences with >20% similarity, 
leaving 2,306 biological IDRs in our test set87. We also designed and 
simulated 3,731 synthetic disordered protein sequences using the 
same design parameters as in our training set. All sequences gener-
ated were between 10 and 750 residues in length. The ALBATROSS test 
set we used to assess model accuracy consisted of 6,037 disordered 
protein sequences.

Coarse-grained simulations
Simulations were performed with the LAMMPS simulation engine 
and the newly parameterized Mpipi-GG or Mpipi (for comparison to 
Mpipi-GG) force fields24,88. Initial disordered protein starting configura-
tions were built by assembling beads as a random coil in the excluded 
volume limit. Each simulation was minimized for 1,000 iterations or 
until the force tolerance was below 1 × 10−8 (kcal mol−1) per Å. All simula-
tions were performed with 150 mM implicit salt concentration in the 
canonical (NVT) ensemble at a target temperature of 300 K. The simu-
lation temperature was maintained with a weakly-coupled Langevin 
thermostat that was adjusted every 100 ps and an integration timestep 
of 20 fs for all production runs. Simulations were performed with peri-
odic boundary conditions in a 500-Å3 cubic box. Output coordinates 
for each trajectory were saved every 2 ns. All simulations were initially 
equilibrated for 10 ns and structures from this equilibration period 
were discarded. Production simulations of disordered sequences with 

fewer than 250 residues were performed for 6 µs, whereas sequences 
greater than 250 residues were simulated for 10 µs. In terms of LAMMPS 
simulation parameters, these settings reflect saving IDR conformations 
every 1 × 105 simulation steps, discarding the first 5 × 105 simulation 
steps as equilibration and performing simulations for 3 × 108 steps 
for short sequences and 1 × 109 steps for long sequences. Simulation 
analysis was performed using SOURSOP and MDTraj37,89. For the error 
analysis, five replicate simulations were performed. The s.e.m. for each 
observation was computed. We made extensive use of GNU parallel for 
simulation analysis90.

Deep learning
We leveraged BRNN-LSTM for all sequence-to-ensemble property 
prediction tasks with the flexible recurrent neural network frame-
work PARROT38. We generated training, validation and test data from 
coarse-grained simulations performed with the Mpipi-GG force field. 
Specifically, we developed predictors for Rg, Re and asphericity, along 
with the polymer-scaling law prefactors and scaling exponents91,92.

Following previous PARROT network protocols, we employed a 
one-hot encoding scheme to translate the protein sequence data into 
numerical vectors amenable for deep neural network training. We used 
a training objective that sought to minimize an L1 loss function between 
the predictions and labeled data for each of the sequence-to-ensemble 
property predictors. For each of these prediction tasks, we performed 
a hyperparameter grid search with fivefold cross-validation for 500 
epochs with PARROT (64% training, 16% validation and 20% test). The 
set of hyperparameters that performed best on average across each 
fold were selected to train a final model, with 80% of the data used as 
training data and 20% as validation data. Final network weights were 
chosen by selecting the epoch with the lowest validation loss across 
750 epochs.

For each network, we chose a default learning rate of 0.001 and we 
performed a hyperparameters search over the following parameters: 
number of hidden layers (1 to 2), a hidden dimension size (10 to 55) and 
batch size (4 to 32). To evaluate the generalization error of our models 
on sequences relevant to biological function, we evaluated the most 
accurate networks for each predictor using the curated test set of 
6,037 IDR sequences, which consisted of both synthetic and naturally 
occurring IDRs. The final network parameters for each predictor are 
summarized in Supplementary Table 5.

Disorder prediction
Disorder prediction (in this manuscript and the associated notebooks) 
is provided through metapredict V2-FF93,94. Metapredict V2-FF is our 
newly implemented version of metapredict V2, which offers a 5–50× 
improvement in performance compared to metapredict V2 with no 
loss in accuracy. V2-FF was developed specifically in the context of 
this manuscript for working with ALBATROSS and enables accurate 
proteome-wide prediction of disordered regions to be obtained in a 
reasonable timeframe (for example, for the human proteome (20,393 
proteins) this takes <1–2 min on a CPU and 30 s on a GPU)95.

Bioinformatics
Proteome-wide bioinformatic analyses were performed using SPAR-
ROW (https://github.com/idptools/sparrow) and SHEPHARD96. 
SPARROW is an in-development Python package for calculating IDR 
sequence properties and SHEPHARD is a hierarchical analysis frame-
work for annotating and analyzing large sets of protein sequences. IDRs 
and proteome data are available at https://github.com/holehouse-lab/
shephard-data. Proteomes were obtained from UniProt94,97.

Normalized chain dimensions (normalized Re and normalized 
Rg) were calculated as the ALBATROSS-predicted Re or Rg divided by 
the AFRC-derived Re or Rg. The AFRC is a model that reports on the 
sequence-specific chain dimensions expected if an IDR behaved as a 
Gaussian chain (a Flory scaling exponent of 0.50)50.
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For calculating the local compact/expanded subregion (Fig. 5), 
we used a sliding window of 51 residues to construct a local end-to-end 
distance profile for each protein. This specific length scale was chosen 
as it offers an ideal spacing over which sequence-specific conforma-
tional properties can be observed without being so large that complex 
behavior is always masked by compensatory effects7,98,99. Specifically, 
this involved calculating the predicted end-to-end distance for every 
individual 51-residue fragment in the human proteome for all proteins 
equal to or longer than 51 residues, over 2,146,400 fragments. We then 
excised IDRs that were 51 residues or longer and took the linear profiles 
associated with those regions for further analysis. Examples of these 
profiles are shown in Fig. 5c,d (top). We also took the bottom and 
top 2.5% of all 51-residue fragments to define compact and expanded 
subfragments. Ultimately we identified 1,022 unique proteins with 
ten or more expanded subwindows and 1,175 proteins with compact 
subregions.

Gene Ontology enrichment
GO enrichment was performed using PANTHER100. We calculated 
enrichment using all IDR-containing proteins as our background (using 
PANTHER overrepresentation test, released 13 October 2022). For all 
reported GO terms, we focused on terms where there were over 100 
proteins with the term of interest. PANTHER reports used Fisher’s exact 
test (default behavior, two-sided).

Yeast homologous IDR analysis
Homologous yeast proteomes were obtained from the Yeast Genome 
Order Browser (YGOB)61,101. Syntenic genes were used to identify 
homologous proteins and these sequences were then aligned using 
Clustal Omega102. For all homolog sets where there were more than 
ten total proteins and a S. cerevisiae protein present, this protein was 
segmented into folded and disordered domains using metapredict 
(V2-FF)93,94. This domain prediction was projected from the S. cerevisiae 
protein onto the multiple sequence alignment of all the homologs, 
assigning any gapped regions between domains as IDRs. We filtered 
out all sets of homologous IDRs when either one of two conditions 
was met. First, If the S. cerevisiae IDR was fewer than 40 amino acids, 
then that IDR was omitted. Second, any IDR homologous to the S. cer-
evisiae protein had to be at least 15 residues in length. For each set 
of homologous IDRs, we first computed both the sequence length 
(in number of amino acids) and the predicted Re values for each 
IDR in the set of homologous IDRs. Then, we computed the s.d. in 
the sequence length and predicted Re values for each set to obtain a 
measure of variation in both sequence space and physical space. All 
IDRs belonging to one of these sets had predicted dimensions using  
ALBATROSS.

Additionally, on each of these sets, the sequence similarity of the 
aligned IDRs was calculated using the pyMSA (v.0.5.1) package (https://
github.com/benhid/pyMSA), using the BLOSUM62 scoring matrix and 
two different similarity metrics: the SumOfPairs and the StarScore103. 
Briefly, the SumOfPairs score uses the BLOSUM62 substitution matrix 
to construct a similarity score for each column position across the MSA. 
This is conducted by computing scores between all pairs of sequences 
for a given column position, then summing these scores. The final 
SumOfPairs score of the alignment is the sum of the column scores, with 
negative values corresponding to more divergent amino acid sequences. 
The StarScore method is another approach for computing the simi-
larity between sequences. This approach also uses the BLOSUM62  
substitution matrix, but instead of looking at all combinations of pairs 
for each column score, it computes the most common residue at the 
column position and uses the substitution matrix to compare it to all 
other residues at that column position. For each analysis, both the 
SumOfPairs and StarScore metrics for evaluating MSA similarity were 
normalized by the number of aligned sequences and the length of the 
alignment. A similar procedure was applied to the E1A linker sequences 

from30. All sequence features for the Yak1 and Spt2 IDR homologs were 
computed using SPARROW.

ALBATROSS implementation and distribution
ALBATROSS is implemented within the SPARROW sequence analy-
sis package (https://github.com/idptools/sparrow). In addition, a 
point-and-click-style interface to ALBATROSS is provided via a 
standalone Google Colab notebook for both single-sequence and 
large-scale predictions of hundreds of sequences. If a FASTA file is 
uploaded and GPUs are selected, this notebook enables predictions for 
thousands of IDRs per second, facilitating in-browser proteome-wide 
analysis. The notebook is available at https://colab.research.google.
com/github/holehouse-lab/ALBATROSS-colab/blob/main/example_
notebooks/polymer_property_predictors.ipynb

For IDRs predicted from protein sequences at https://metapre-
dict.net/, the predicted Rg and Re are also returned instantaneously. 
We provide a standalone notebook for predicting and annotating all 
IDRs in a proteome (IDR-ome construction) at https://colab.research.
google.com/github/holehouse-lab/ALBATROSS-colab/blob/main/
idrome_constructor/idrome_constructor.ipynb

Specifically, IDR-ome construction combines predicting IDRs 
across an entire proteome with calculating IDR sequence proper-
ties and predicted IDR ensemble properties. With GPU support on 
Google Colab, this notebook enables the construction of the annotated 
human IDR-ome (both disorder prediction and all ensemble prop-
erties) in ~ 60 s. Without GPU support, the same output is achieved  
in ~7–10 min.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Natural amino acid sequences are taken from the UniProt data-
base97. Beyond this, all data, code and analysis used for this 
manuscript are shared at https://github.com/holehouse-lab/sup-
portingdata/tree/master/2023/ALBATROSS_2023. Synthetic and 
natural IDRs used for training and test data are shared in the main 
GitHub repository and are also shared as a Zenodo repository 
(https://doi.org/10.5281/zenodo.10198620). Sequences for which 
SAXS data and alternative predictive tools were tested are shared 
in the main GitHub repository. All of the data associated with the 
proteome-wide analysis presented in Figs. 4 and 5 are shared as 
SHEPHARD-compliant datafiles and we encourage other groups to 
explore these predictions in the context of other protein annotations 
using SHEPHARD and the set of precomputed annotations provided 
therein. All data associated with Fig. 6 are provided as files. In addi-
tion, all other data and code used for sequence analysis, training 
weights, bioinformatic data, the SPARROW implementation and 
the Google Colab notebook are linked from this manuscript’s main  
GitHub directory.

Code availability
All other data and code used for sequence analysis, training weights, 
bioinformatic data, the SPARROW implementation and the Google 
Colab notebook are linked from this manuscript’s main GitHub direc-
tory at https://github.com/holehouse-lab/supportingdata/tree/mas-
ter/2023/ALBATROSS_2023. ALBATROSS is implemented as a series 
predictor built into our general-purpose open-source sequence analy-
sis package SPARROW (https://github.com/idptools/sparrow).
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