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Understanding metric-related pitfalls in 
image analysis validation

Validation metrics are key for tracking scientific progress and bridging the 
current chasm between artificial intelligence research and its translation 
into practice. However, increasing evidence shows that, particularly in 
image analysis, metrics are often chosen inadequately. Although taking 
into account the individual strengths, weaknesses and limitations of 
validation metrics is a critical prerequisite to making educated choices, 
the relevant knowledge is currently scattered and poorly accessible to 
individual researchers. Based on a multistage Delphi process conducted 
by a multidisciplinary expert consortium as well as extensive community 
feedback, the present work provides a reliable and comprehensive 
common point of access to information on pitfalls related to validation 
metrics in image analysis. Although focused on biomedical image analysis, 
the addressed pitfalls generalize across application domains and are 
categorized according to a newly created, domain-agnostic taxonomy. 
The work serves to enhance global comprehension of a key topic in image 
analysis validation.

Measuring performance and progress in any given field critically 
depends on the availability of meaningful outcome metrics. In domains 
such as athletics, this process is straightforward because the perfor-
mance measurements (for example, the time it takes an athlete to run 
a given distance) exactly reflect the underlying interest (for example, 
which athlete runs a given distance the fastest?). In image analysis, the 
situation is much more complex. Depending on the underlying research 
question, vastly different aspects of an algorithm’s performance might 
be of interest (Fig. 1) and meaningful in determining its future practical 
applicability, particularly in clinical settings. If the performance of an 
image analysis algorithm is not measured using relevant validation 
metrics, no reliable statement can be made about how suitable the 
algorithm is for solving the proposed task, and the algorithm is unlikely 
to ever be used in the real world. Moreover, unsuitable algorithms could 
be wrongly regarded as the best-performing ones, sparking entirely 
futile resource investment and follow-up research while obscuring true 
scientific advancements. In determining new state-of-the-art methods 
and informing future directions, the use of validation metrics actively 
shapes the evolution of research. In summary, validation metrics are 
key for both measuring and informing scientific progress, as well as 
bridging the current chasm between image analysis research and its 
translation into practice.

In image analysis, for some applications, it might be sufficient to 
draw a box around the structure of interest (for example, detecting 
individual mitotic cells or regions with apoptotic cell debris) and, 
optionally, to associate that region with a classification (for exam-
ple, distinguishing a mitotic versus an interphase cell); however, 
other applications (for example, cell tracing for fluorescent signal 
quantification) could require the exact structure boundaries to be 
determined. The suitability of any validation metric thus hinges on 
the properties of the driving problem. As a result, several metrics 
have so far been proposed in the image-processing field. In our previ-
ous work, we analyzed all biomedical-image-analysis competitions 
conducted within a period of about 15 years1. We found 97 metrics 
reported in the field of biomedicine alone, each with its own individual 
strengths, weaknesses and limitations and hence varying degrees of 
suitability for meaningfully measuring algorithm performance on a 
given research problem. The vast range of options makes tracking all 
related information impossible for any individual, and consequently 
renders the process of metric selection prone to error. Thus, it is not 
surprising that researchers often rely on flawed validation practices 
that have been traditionally used in the literature. To make matters 
worse, there is currently no comprehensive resource providing an 
overview of the relevant definitions, (mathematical) properties, 
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of experts and a social-media campaign. It represents a comprehensive 
collection, visualization and detailed discussion of pitfalls, drawbacks 
and limitations regarding validation metrics that are commonly used 
in image analysis. Our work provides researchers with a reliable, single 
point of access to this critical information. Owing to the enormous 
complexity of the matter, the metric properties and pitfalls are dis-
cussed in the specific context of classification problems, that is, image 
analysis problems that can be considered classification tasks at either 
the image, object or pixel level. Specifically, these encompass four 
problem categories: image-level classification, semantic segmentation, 
object detection and instance segmentation. Our contribution includes 
a dedicated profile for each metric (Supplementary Note 3), as well as 
the creation of a new common taxonomy that categorizes pitfalls in a 
domain-agnostic manner (Fig. 2). The taxonomy is depicted for indi-
vidual metrics in provided tables (see Extended Data Tables 1–5) and 
enables researchers to quickly grasp whether a certain metric comes 
with pitfalls in a given use case.

limitations and pitfalls for a metric of interest. Although taking into 
account the individual properties and limitations of metrics is impera-
tive for choosing suitable validation metrics, the required knowledge 
is largely inaccessible.

As a result, numerous flaws and pitfalls are prevalent in image 
analysis validation, and researchers are often unaware of them owing 
to a lack of knowledge of intricate metric properties and limitations. 
Accordingly, increasing evidence shows that metrics are often selected 
inadequately in image analysis (for example, refs. 2–4). In the absence 
of a central information resource, it is common for researchers to 
resort to popular validation metrics; however, these can be entirely 
unsuitable, for instance owing to a mismatch of the metric’s inherent 
mathematical properties with the underlying research question and 
specifications of the dataset at hand (see Fig. 1).

The present work addresses this important roadblock in image 
analysis research with a crowdsourcing-based approach involving 
both a Delphi process undertaken by a multidisciplinary consortium 
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Fig. 1 | Examples of metric-related pitfalls in image analysis validation.  
a, An example of medical image analysis. Voxel-based metrics are not appropriate 
for detection problems. Measuring the voxel-level performance of a prediction 
yields a near-perfect sensitivity. However, the sensitivity at the instance level 
reveals that lesions are actually missed by the algorithm. Green metric values 
correspond to a good metric value, whereas red values correspond to a poor 
value. Green check marks indicate desirable behavior of metrics; red crosses 

indicate undesirable behavior. b, An example of biological image analysis.  
The task of predicting fibrillarin in the dense fibrillary component of the 
nucleolus should be phrased as a segmentation task, for which segmentation 
metrics reveal the low quality of the prediction. Phrasing the task as image 
reconstruction instead and validating it using metrics such as the Pearson 
correlation coefficient yields misleadingly high metric scores12,35–38.

http://www.nature.com/naturemethods


Nature Methods | Volume 21 | February 2024 | 182–194 184

Perspective https://doi.org/10.1038/s41592-023-02150-0

Although our work grew out of image analysis research and prac-
tice in the field of biomedicine, which is highly complex and particularly 
high stakes owing to its direct impact on patient health, we believe the 
identified pitfalls are transferable to other application areas of imag-
ing research. It should be noted that this work focuses on identifying, 
categorizing and illustrating metric pitfalls; the sister publication of 
this work gives specific recommendations on which metrics to use in 
certain circumstances5.

Information on metric pitfalls is largely 
inaccessible
Researchers and algorithm developers seeking to validate image analy-
sis algorithms often face the problem of choosing adequate validation 
metrics while navigating a range of potential pitfalls. Common practice 
is often not the best option, as demonstrated by several recent pub-
lications1–4. Making an informed decision is notably complicated by 
the absence of any comprehensive databases or reviews covering the 
topic, and thus the lack of a central resource for reliable information 
on validation metrics.

The lack of accessibility is recognized as a major obstacle in image 
analysis validation1. To illustrate this, we searched the literature for 
information on commonly used validation metrics. The search was 
conducted on the platform Google Scholar. We used search strings that 
combined various notations of metric names, including synonyms and 
acronyms, with terms indicating problems, such as ‘pitfall’ or ‘limita-
tion.’ The mean and median number of hits for the metrics discussed 
in this work were 159,329 and 22,100, respectively, and ranged from 
49 for the centerline dice similarity coefficient (clDice) to 962,000 
for sensitivity. Moreover, despite the valuable literature on individual 
relevant aspects (for example, refs. 3,4,6–10), we did not find a common 
point of entry for metric-related pitfalls in image analysis, whether in 
the form of a review paper or another credible source. We conclude 
that essential knowledge for making informed decisions and avoiding 
pitfalls related to the use of validation metrics is highly scattered and 
cannot be easily accessed by individuals.

Established practices are not always justified
To obtain initial insights into current common practice regarding 
validation metrics, we prospectively captured the designs of chal-
lenges organized by the IEEE Society of the International Symposium 
of Biomedical Imaging, the Medical Image Computing and Computer 
Assisted Interventions Society and the Medical Imaging with Deep 
Learning foundation. The organizers were asked to provide their ration-
ale for the choice of metrics used in these competitions. We analyzed  
138 competitions held between 2018 and 2022 and found that metrics 
were frequently (in 24% of the competitions) chosen on the basis of 
common practices. We also found, however, that common practices 
are often not well-justified, and poor practices may even be passed 
across generations.

One remarkable example is the widespread adoption of an incor-
rect naming and inconsistent mathematical formulation of a metric 
proposed for cell instance segmentation. The term ‘mean average 
precision (mAP)’ usually refers to one of the most common metrics 
in object detection (object-level classification)11,12. Here, precision 
denotes the positive predictive value (PPV), which is ‘averaged’ over 
varying thresholds on the predicted class scores of an object detection 
algorithm. The ‘mean’ average precision (AP) is then obtained by tak-
ing the mean over classes12,13. Despite the popularity of mAP, a widely 
known challenge on cell instance segmentation (https://www.kaggle.
com/competitions/data-science-bowl-2018/overview/evaluation) in 
2018 introduced a new ‘mean average precision’ term. The task matches 
the task of the original ‘mean’ AP, object detection, but all terms in the 
newly proposed metric (mean, average and precision) refer to entirely 
different concepts. For instance, the common definition of precision 
from the literature, TP/(TP + FP), was altered to TP/(TP + FP + FN), 

where TP, FP and FN refer to the cardinalities of the confusion matrix 
(that is, the true and false positives (TP and FP) and negatives (TN and 
FN)). The latter formula actually defines the intersection over union 
(IoU) metric. Despite this problem, the terminology was adopted by 
subsequent influential works14–17, indicating its widespread propaga-
tion and usage within the community.

A multidisciplinary Delphi process reveals 
numerous pitfalls in biomedical-image-analysis 
validation
With the aim of creating a comprehensive, reliable collection and 
future point of access to metric definitions and limitations in bio-
medical image analysis, we formed an international multidiscipli-
nary consortium comprising 62 experts in various fields related to 
biomedical image analysis. The consortium engaged in a multistage 
Delphi process18,19 to facilitate consensus building. The Delphi pro-
cess involved multiple surveys, crafted by a coordinating team and 
completed by the remaining members of the consortium. On the basis 
of the survey results, the list of pitfalls was iteratively refined by col-
lecting pitfall sources, specific feedback and suggestions on pitfalls, 
and final agreement on which pitfalls to include and how to illustrate 
them. Further pitfalls were crowdsourced through the publication of 
a dynamic preprint of this work12, as well as a social-media campaign, 
both of which asked the scientific community for contributions. This 
approach allowed us to integrate distributed, cross-domain knowl-
edge on metric-related pitfalls within a single resource. In total, the 
process identified 37 distinct sources of pitfalls (Fig. 2). Notably, 
these pitfall sources (for example, class imbalances, uncertainties 
in the reference or poor image resolution) can occur irrespective 
of imaging modality or application. As a result, many pitfalls can 
be generalized across different problem categories in image pro-
cessing (image-level classification, semantic segmentation, object 
detection and instance segmentation), as well as imaging modalities 
and domains. A detailed discussion of all pitfalls can be found in 
Supplementary Note 2.

A common taxonomy enables domain-agnostic 
categorization of pitfalls
One of our key objectives was to facilitate information retrieval and 
provide structure within this vast topic. Specifically, we wanted to 
enable researchers to quickly identify which metrics are affected by 
which types of pitfalls. To achieve this, we developed a comprehensive 
taxonomy that categorizes the different pitfalls in a semantic manner. 
The taxonomy was created in a domain-agnostic manner to reflect 
the generalization of pitfalls across different imaging domains and 
modalities. An overview of the taxonomy is presented in Figure 2, and 
the relations between the pitfall categories and individual metrics can 
be found in Extended Data Tables 1–5. We distinguish the following 
three main categories:

P1: pitfalls related to the inadequate choice of the  
problem category
A common pitfall occurs when metrics are applied to a problem cat-
egory that they are not suited for, because they fail to fulfill crucial 
requirements of that problem category and hence do not reflect the 
domain interest (Fig. 1). For instance, popular voxel-based metrics, 
such as the Dice similarity coefficient (DSC) or sensitivity, are widely 
used in image analysis problems, although they do not fulfill the 
critical requirement of detecting all objects in a dataset (Fig. 3). In a 
cancer-monitoring application, they fail to measure instance progress, 
that is, the potential increase in the number of lesions (Fig. 1), which 
can have serious consequences. For some problems, there may even 
be a lack of matching problem category (Fig. SN 2.2), rendering com-
mon metrics inadequate. We present further examples of pitfalls in 
this category in Supplementary Note 2.1.
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P2: pitfalls related to poor metric selection
Pitfalls in this category occur when a validation metric is selected with-
out considering specific properties of the given research problem or 
method that make this metric unsuitable in the particular context. P2 
can be further divided into the following four subcategories:

P2.1: disregarding the domain interest. Frequently, several require-
ments stemming from the domain interest of the underlying research 
problem may clash with particular metric limitations. For exam-
ple, if there is particular interest in the structure boundaries, it is 
important to know that overlap-based metrics, such as the DSC, do 
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Fig. 2 | Overview of the taxonomy for metric-related pitfalls. Pitfalls can 
be grouped into three main categories: P1, pitfalls related to the inadequate 
choice of the problem category; P2, pitfalls related to poor metric selection; and 
P3, pitfalls related to poor metric application. P2 and P3 are further split into 

subcategories. For all categories, pitfall sources are presented (turquoise), with 
references to corresponding illustrations of representative examples. The order 
in which the pitfall sources are presented does not correlate with importance.
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not take the correctness of an object’s boundaries into account, as 
shown in Figure 4a. Similar issues may arise if the structure volume  
(Fig. SN 2.4) or center(line) (Fig. SN 2.5) are of particular interest. Other 
domain-interest-related properties could include an unequal severity 
of class confusions. This could be important in an ordinal grading use 
case, in which the severity of a disease is categorized by different scores. 
Predicting a low disease severity for a patient who actually has a severe 
disease should incur substantial penalties, a requirement not met by 
common classification metrics. An example is provided in Figure 4b. At 
the pixel level, this property relates to an unequal severity of over- ver-
sus undersegmentation. In applications such as radiotherapy, it may be 
highly relevant whether an algorithm tends to over- or undersegment 
the target structure. Common overlap-based metrics, however, do not 
represent over- and undersegmentation equally20. Further pitfalls may 
occur if confidence awareness (Fig. SN 2.6), comparability across data-
sets (Fig. SN 2.7) or a cost–benefit analysis (Fig. SN 2.9) are of particular 
importance, as illustrated in Supplementary Note 2.2.1.

P2.2: disregard of the properties of the target structures. For prob-
lems that require local properties to be captured (object detection, 
semantic or instance segmentation), the properties of the target 
structures to be localized and/or segmented may have important 
implications for the choice of metrics. Here, we distinguish between 
size-related and shape- and topology-related pitfalls. Common metrics, 
for example, are sensitive to structure sizes, such that single-pixel dif-
ferences can hugely impact the metric scores, as shown in Extended 
Data Figure 1a. Shape- and topology-related pitfalls can arise from 
the fact that common metrics disregard complex shapes (Extended 
Data Fig. 1b) or that boundary boxes do not capture the disconnect-
edness of structures (Fig. SN 2.14). A high variability of structure sizes  
(Fig. SN 2.11) and overlapping or touching structures (Fig. SN 2.13) 
can also influence metric values. We present further examples of P2.2 
pitfalls in Supplementary Note 2.2.2.

P2.3: disregard of the properties of the dataset. Several properties 
of the dataset, such as class imbalances (Fig. 5a), small sample size  
(Fig. 5b) or reference-annotation quality, can directly affect metric 
values. Common metrics such as balanced accuracy (BA), for instance, 
might yield a very high score for a model that predicts many FP samples 
in an imbalanced setting (see Fig. 5a). When only small test datasets 
are used, common calibration metrics (which are typically biased 

estimators) either underestimate or overestimate the true calibration 
error of a model (Fig. 5b)21. However, metric values can be impacted 
by reference annotations (Fig. SN 2.17). Spatial outliers in the refer-
ence might have a huge impact on distance-based metrics, such as the 
Hausdorff distance (HD) (Fig. 5c). Additional pitfalls can arise from the 
occurrence of cases with an empty reference (Extended Data Fig. 2b), 
causing division-by-zero errors. We present further examples of P2.3 
pitfalls in Supplementary Note 2.2.3.

P2.4: disregard of the properties of the algorithm output. 
Reference-based metrics compare the algorithm output with a refer-
ence annotation to compute a metric score. Thus, the content and 
format of the prediction are of high importance when considering 
metric choice. Overlapping predictions in segmentation problems, 
for instance, can return misleading results. In Extended Data Figure 
2a, the predictions only overlap to a certain extent, not representing 
that the reference instances actually overlap substantially. This is 
not detected by common metrics. Another example is empty predic-
tions that can cause division-by-zero errors in metric calculations, as 
illustrated in Extended Data Figure 2b, or the lack of predicted class 
scores (Fig. SN 2.20). We present further examples of P2.4 pitfalls in 
Supplementary Note 2.2.3.

P3: pitfalls related to poor metric application
Selected metrics need to be applied to an image or an entire dataset. 
This step is not straightforward and comes with several pitfalls. For 
instance, when aggregating metric values over several images or 
patients, a common mistake is ignoring the hierarchical data structure, 
such as data from several hospitals or varying numbers of images from 
each patient. We present three examples of P3 pitfalls in Figure 6; for 
more pitfalls in this category, please refer to Supplementary Note 2.3. 
P3 can be further divided into five subcategories that are described in 
the following paragraphs.

P3.1: inadequate metric implementation. Metric implementation is, 
unfortunately, not standardized. As shown by ref. 22, different research-
ers typically employ various implementations for the same metric, 
which can yield a substantial variation in the metric scores. Although 
some metrics can be implemented in a straightforward way, others 
require more advanced techniques and offer different possibilities. 
In the following, we provide some examples for inadequate metric 
implementation:

•	 How identical confidence scores are handled in the computation 
of the AP metric might lead to substantial differences in met-
ric scores. Microsoft Common Objects in Context (COCO)11, for 
instance, processes each prediction individually, whereas City-
Scapes23 processes all predictions with the same score in one joint 
step. Figure 6a provides an example in which two predictions have 
the same confidence score; the final metric scores differ depending 
on the chosen handling strategy for identical confidence scores. 
Similar issues can arise with other curve-based metrics, such as 
area under the receiver operating characteristic curve (AUROC), 
AP or free-response receiver operating characteristic scores (see, 
for example, ref. 24).

•	 Metric implementation might be subject to discretization issues, 
such as the chosen discretization of continuous variables, which 
can cause differences in the metric scores, as illustrated in Figure 
SN 2.22.

•	 For metrics assessing structure boundaries, such as the average 
symmetric surface distance (ASSD), the exact boundary extrac-
tion method is not standardized. Thus, for example, the boundary 
extraction method implemented by the Liver Tumor Segmentation 
challenge25 and that implemented by Google DeepMind (https:// 
github.com/deepmind/surface-distance) could produce different 

Inadequate choice of the problem category returns misleading results

Reference Prediction 1

1 object detected

DSC = 0.92 >> DSC = 0.79

3 objects detected

Prediction 2

P1
Pitfalls related to
the inadequate
choice of the

Problem
category

Fig. 3 | P1: pitfalls related to the inadequate choice of the problem category. 
The effect of using segmentation metrics for object-detection problems. The 
pixel-level DSC of a prediction recognizing every structure (Prediction 2) is 
lower than that of a prediction that only recognizes one of the three structures 
(Prediction 1).
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metric scores for the ASSD. This is especially critical for metrics 
that are sensitive to small contour changes, such as the HD.

•	 Suboptimal choices of hyperparameters can also lead to metric 
scores that do not reflect the domain interest. For example, the 
choice of a threshold on a localization criterion (Fig. SN 2.23) or 
the chosen hyperparameter for the Fβ score will heavily influence 
the subsequent metric scores26.

More P3.1 pitfalls can be found in Supplementary Note 2.3.1.

P3.2: inadequate metric aggregation. A common pitfall with respect 
to metric application is to simply aggregate metric values over the 
entire dataset and/or all classes. As detailed in Figure 6b and Supple-
mentary Note 2.3.2, important information can be lost in this process, 
and metric results can be misleading. For example, the popular Torch-
Metrics framework calculates the DSC metric by default as a global 
average over all pixels in the dataset without considering their image 
or class of origin (https://torchmetrics.readthedocs.io/en/stable/ 
classification/dice.html?highlight=dice). Such a calculation eliminates 

the possibility of interpreting the final metric score with respect to indi-
vidual images and classes. For example, errors in small structures might 
be suppressed by correctly segmented larger structures in other images 
(see for example, Fig. SN 2.26). An adequate aggregation scheme is also 
crucial for handling hierarchical class structure (Fig. SN 2.27), missing 
values (Fig. SN 2.29) and potential biases (Fig. SN 2.28) of the algorithm. 
Further P3.2 pitfalls are shown in Supplementary Note 2.3.2.

P3.3: inadequate ranking scheme. Rankings are often created to 
compare algorithm performance. In this context, several pitfalls per-
tain to either metric relationships or ranking uncertainty. For example, 
to assess different properties of an algorithm, it is advisable to select 
multiple metrics and determine their values. However, the chosen 
metrics should assess complementary properties and should not 
be mathematically related. For example, the DSC and IoU are closely 
related, so using both in combination would not provide any addi-
tional information over using either individually (Fig. SN 2.30). In this 
context, unawareness of metric synonyms can be equally misleading. 
Metrics can have different names; for instance, sensitivity and recall 
refer to the same mathematical formula. Despite this seemingly trivial 
fact, an analysis of 138 biomedical-image-analysis challenges5 found 3 
challenges that unknowingly used two versions of the same metric to 
calculate their rankings. Moreover, rankings themselves can be unsta-
ble (Fig. SN 2.31)1,27; rankings are highly sensitive to alterations of the 
metric aggregation operators, the underlying dataset or the general 
ranking method. Thus, if the robustness of rankings is disregarded, 
the winning algorithm might be identified by chance, rather than by 
true superiority.

P3.4: inadequate metric reporting. A thorough reporting of metric 
values and aggregates is important in terms of both transparency and 
interpretability. However, several pitfalls should be avoided. Nota-
bly, different types of visualization may vary substantially in terms of 
interpretability, as shown in Figure 6c. For example, although a box 
plot provides basic information, it does not depict the distribution of 
metric values. This may conceal important information, such as spe-
cific images on which an algorithm performed poorly. Other pitfalls 
in this category relate to the non-determinism of algorithms, which 
introduces a natural variability to the results of a neural network, even 
with fixed seeds (Fig. SN 2.32). This issue is aggravated by inadequate 
reporting, for instance, reporting solely the results from the best run 
instead of proper cross-validation and reporting of the variability 
across different runs. Generally, shortcomings in reporting, such as 
providing no s.d. or confidence intervals in the presented results, are 
common. Concrete examples of P3.4 pitfalls can be found in Supple-
mentary Note 2.3.4.

P3.5: inadequate interpretation of metric values. Interpreting metric 
scores and aggregates is an important step for the analysis of algorithm 
performance. However, several pitfalls can arise from interpretation. 
In rankings, for example, minor differences in metric scores might 
not be relevant from an application perspective but might still yield 
better ranks (Fig. SN 2.36). Furthermore, some metrics do not have 
upper or lower bounds, or the theoretical bounds may not be achiev-
able in practice, rendering interpretation difficult (Fig. SN 2.35). More 
information on interpretation-based pitfalls can be found in Supple-
mentary Note 2.3.4.

An illustrated common access point to metric 
definitions and pitfalls
To underline the importance of a common access point to metric pit-
falls, we conducted a search for individual metric-related pitfalls on 
the platforms Google Scholar and Google, with the aim of determining 
how many of the pitfalls that we identified could be located in existing 
resources. We were able to locate only a portion of the identified pitfalls 
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in existing literature (68%) or online resources, such as blog posts  
(11%; 8% were found in both). Only 27% of the pitfalls that we located 
were presented visually.

Our work now provides this key resource in a highly structured 
and easily understandable form. Supplementary Note 2contains a 
dedicated illustration for each of the pitfalls discussed, thus facilitating 
reader comprehension and making the information accessible to eve-
ryone regardless of their level of expertise. A further core contribution 
of our work is the metric profiles presented in Supplementary Note 2, 
which, for each metric, summarize the most important information 
deemed of particular relevance by the Metrics Reloaded consortium 
that produced this publication’s sister work5. The profiles provide 
the reader with a compact, at-a-glance overview of each metric and 
an explanation of the limitations and pitfalls identified in the Delphi 
process that we conducted.

Discussion
Flaws in the validation of algorithms for biomedical image analysis 
significantly impede the translation of methods into (clinical) practice 
and undermine the assessment of scientific progress in the field28. They 
are often caused by poor choices in disregarding the specific properties 

and limitations of individual validation metrics. This work represents 
a comprehensive collection of pitfalls and limitations when using vali-
dation metrics in image-level classification, semantic segmentation, 
instance segmentation and object-detection tasks. Our work enables 
researchers to gain a deep understanding of and familiarity with both 
the overall topic and individual metrics by providing a common access 
point to key information—which researchers can use when validating 
image analysis algorithms—that was previously largely scattered and 
inaccessible. Our work aims to disrupt the current common practice 
of choosing metrics on the basis of their popularity rather than their 
suitability to the underlying research problem. This practice, which, for 
instance, often manifests in the unreflected and inadequate use of the 
DSC, is concerningly prevalent, even among prestigious, high-quality 
biomedical-image-analysis competitions1–4,29–32. The educational aspect 
of our work is complemented by dedicated ’metric profiles’ that detail 
the definitions and properties of all the discussed metrics. Our work 
pioneers the examination of artificial intelligence (AI) validation pitfalls 
in the biomedical domain, in which they are arguably more critical 
than in many other areas. Flaws in biomedical algorithm validation 
can directly affect patient well-being and safety.

We propose that shortcomings in current common practice are 
characterized by the low accessibility of information on the pitfalls and 
limitations of commonly used validation metrics. A literature search 
conducted from the point of view of a researcher seeking information 
on individual metrics confirmed that the number of search results far 
exceeds any amount that could be examined in a reasonable time and 
with realistic effort, as well as the lack of a common point of entry to 
reliable metric information. Even when the specific pitfalls and related 
keywords uncovered by our consortium were known, only a fraction 
could be found in the literature, indicating the novelty and added 
value of our work.

Several constraints regarding our literature search must be noted. 
First, the remarkably high number of search results inevitably includes 
duplicates of papers (for example, the same work in a conference paper 
and on arXiv) as well as results that are out of scope (for example,  
refs. 33,34); in the cited examples, for instance, this was due to a metric 
acronym (AUC) also being an acronym for another entity (a trinucleo-
tide) in a different domain, or the word ‘sensitivity’ being used in its 
common, non-metric meaning. Moreover, common words used to 
describe pitfalls such as ‘problem’ or ‘issue’ are, by nature, present in 
many publications discussing any kind of research, rendering them 
unusable for a dedicated search. This could, in turn, account for miss-
ing publications that discuss pitfalls using these terms. Similarly, when 
searching for specific pitfalls, many of the returned results containing 
the appropriate keywords did not actually refer to metrics or algo-
rithm validation, but to other parts of a model or biomedical problem  
(for example, the need for stratification is commonly discussed with 
regard to the design of clinical studies, but not with regard to their 
validation). Character limits in the Google Scholar search bar fur-
ther complicate or prevent the use of comprehensive search strings. 
Finally, it is both possible and probable that our literature search did 
not retrieve all publications and non-peer-reviewed online resources 
that mention a particular pitfall, because even extensive search strings 
might not cover the particular words used for a pitfall description.

None of these observations, however, detracts from our hypoth-
esis. In fact, all of the above observations reinforce our finding that, 
for any individual researcher, retrieving information on metrics of 
interest is difficult, if not impossible. In many cases, finding informa-
tion on pitfalls seems feasible only if the specific pitfall and its related 
keywords are known exactly, which, of course, is usually not the case. 
Overall accessibility of such essential information, therefore, currently 
leaves much to be desired.

Compiling this information through a multistage Delphi process 
allowed us to leverage distributed knowledge from experts across dif-
ferent biomedical imaging domains and thus ensure that the resulting 
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illustrated collection of metric pitfalls and limitations is both com-
prehensive and of maximum practical relevance. We maintained a 
continuing connection of our work to practical applications by sharing 
the first results of this process as a dynamic preprint12 with dedicated 
calls for feedback, as well as by crowdsourcing further suggestions 
on social media.

Although their severity and practical consequences might differ 
between applications, we found that the pitfalls generalize across dif-
ferent imaging modalities and application domains. By categorizing 
them solely according to their underlying sources, we were able to 
create an overarching taxonomy that goes beyond domain-specific 
concerns and thus enjoys broad applicability. Given the large number 
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of identified pitfalls, our taxonomy crucially establishes structure in 
the topic. Moreover, by relating types of pitfalls to the respective met-
rics that they apply to and illustrating them, it enables researchers to 
gain a deeper, systemic understanding of the causes of metric failure.

Our complementary Metrics Reloaded recommendation frame-
work, which guides researchers towards the selection of appropriate 
validation metrics for specific tasks and is introduced in a sister publica-
tion to this work5, shares the same principle of domain independence. 
Its recommendations are based on the creation of a ’problem finger-
print’ that abstracts from specific domain knowledge and, informed 
by the pitfalls discussed here, captures all properties relevant to metric 
selection for a specific biomedical problem. In this sister publication, 
we present recommendations to avoid the pitfalls described in this 
work. Notably, the finding that pitfalls generalize and can be catego-
rized in a domain-independent manner opens up avenues for future 
expansion of our work to other fields of machine-learning-based imag-
ing, such as general computer vision (see below), thus freeing it from 
its major constraint of exclusively focusing on biomedical problems.

It is worth mentioning that we examined only pitfalls related to the 
tasks of image-level classification, semantic segmentation, instance 
segmentation and object detection, which can all be considered clas-
sification tasks at different levels (image, object or pixel) and hence 
share similarities in their validation. Although including a wider range 
of biomedical problems not considered classification tasks, such as 
regression or registration, would have gone beyond the scope of the 
present work, we envision that future work will address this. Moreover, 
our work focused on pitfalls related to reference-based metrics. Explo-
ration of pitfalls pertaining to non-reference-based metrics, such as 
metrics that assess speed, memory consumption or carbon footprint, 
could be a future direction. Finally, although we aspired to be as com-
prehensive as possible in our compilation, there could be more pitfalls 
to take into account that the consortium and the community have so 
far failed to recognize. Should this be the case, our dynamic Metrics 
Reloaded online platform, which is currently under development and 
will be updated continuously after release, will allow us to easily and 
transparently append missed pitfalls. This way, our work will remain 
a reliable point of access, reflecting the state of the art at any given 
moment in the future. In this context, we explicitly welcome feedback 
and further suggestions.

The expert consortium was primarily compiled in a way that 
covers the required expertise from various fields, but also consists 
of researchers of different countries, career stages, ages, roles and 
backgrounds (details can be found in the Supplementary Methods). 
The work mainly focused on biomedical applications. The pitfalls 
presented here are therefore of the highest relevance for biological 
and clinical use cases. Their clear generalization across different bio-
medical imaging domains, however, indicates broader generalizability 
to fields such as general computer vision. Future work could thus see 
a major expansion of our scope to AI validation well beyond biomedi-
cal research. Regardless of this possibility, we strongly believe that, 
by raising awareness of metric-related pitfalls, our work will kick off a 
necessary scientific debate. Specifically, we see its potential in inducing 
the scientific communities in other areas of AI research to follow suit 
and investigate pitfalls and common practices impairing progress in 
their specific domains.

In conclusion, our work presents a comprehensive and illustrated 
access point to information on validation metric properties and their 
pitfalls. We envision it to not only impact the quality of algorithm valida-
tion in biomedical imaging and ultimately catalyze faster translation 
into practice, but also to raise awareness on common issues and call 
into question flawed AI validation practice far beyond the boundaries 
of the field.

Data availability
No data were used in this study.

Code availability
We provide reference implementations for all Metrics Reloaded met-
rics within the MONAI open-source framework. They are accessible at 
https://github.com/Project-MONAI/MetricsReloaded.
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Extended Data Fig. 1 | [P2.2] Disregard of the properties of the target 
structures. (a) Small structure sizes. The predictions of two algorithms 
(Prediction 1/2) differ in only a single pixel. In the case of the small structure 
(bottom row), this has a substantial effect on the corresponding Dice Similarity 
Coefficient (DSC) metric value (similar for the Intersection over Union (IoU)). 
This pitfall is also relevant for other overlap-based metrics such as the centerline 
Dice Similarity Coefficient (clDice), and localization criteria such as Box/Approx/
Mask IoU and Intersection over Reference (IoR). (b) Complex structure shapes. 

Common overlap-based metrics (here: DSC) are unaware of complex structure 
shapes and treat Predictions 1 and 2 equally. The clDice uncovers the fact that 
Prediction 1 misses the fine-granular branches of the reference and favors 
Prediction 2, which focuses on the center line of the object. This pitfall is also 
relevant for other overlap-based such as metrics IoU and pixel-level Fβ Score as 
well as localization criteria such as Box/Approx/Mask IoU, Center Distance,  
Mask IoU > 0, Point inside Mask/Box/Approx, and IoR.
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Extended Data Fig. 2 | [P2.4] Disregard of the properties of the algorithm 
output. (a) Possibility of overlapping predictions. If multiple structures of 
the same type can be seen within the same image (here: reference objects R1 and 
R2), it is generally advisable to phrase the problem as instance segmentation 
(InS; right) rather than semantic segmentation (SemS; left). This way, issues with 
boundary-based metrics resulting from comparing a given structure boundary 
to the boundary of the wrong instance in the reference can be avoided. In the 
provided example, the distance of the red boundary pixel to the reference, 
as measured by a boundary-based metric in SemS problems, would be zero, 
because different instances of the same structure cannot be distinguished. 

This problem is overcome by phrasing the problem as InS. In this case, (only) 
the boundary of the matched instance (here: R2) is considered for distance 
computation. (b) Possibility of empty prediction or reference. Each column 
represents a potential scenario for per-image validation of objects, categorized 
by whether True Positives (TPs), False Negatives (FNs), and False Positives (FPs) 
are present (n > 0) or not (n = 0) after matching/assignment. The sketches on 
the top showcase each scenario when setting ‘n > 0’ to ‘n = 1’. For each scenario, 
Sensitivity, Positive Predictive Value (PPV), and the F1 Score are calculated. Some 
scenarios yield undefined values (Not a Number (NaN)).
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Extended Data Table 1 | Overview of pitfall sources for image-level classification metrics ((a): counting metrics, (b): multi-
threshold metrics) related to poor metric selection [P2]

Pitfalls for semantic segmentation, object detection and instance segmentation are provided in Extended Data Tables 2–5 respectively. A warning sign indicates a potential pitfall for the 
metric in the corresponding column, in case the property represented by the respective row holds true. Comprehensive illustrations of pitfalls are available in Supplementary Note 2. A 
comprehensive list of pitfalls is provided separately for each metrics in the metrics cheat sheets (Supplementary Note 3). Note that we only list sources of pitfalls relevant to the considered 
metrics. Other sources of pitfalls are neglected for this table. (a) Counting metrics. Considered metrics: Accuracy (Fig. SN 3.38), Balanced Accuracy (BA) (Fig. SN 3.39), Expected Cost (EC) 
(Fig. SN 3.42), Fβ Score (Fig. SN 3.43), Matthews Correlation Coefficient (MCC) (Fig. SN 3.46), Net Benefit (NB) (Fig. SN 3.47), Negative Predictive Value (NPV) (Fig. SN 3.48), Positive Likelihood 
Ratio (LR+) (Fig. SN 3.50), Positive Predictive Value (PPV) (Fig. SN 3.51), Sensitivity (Sens) (Fig. SN 3.52), Specificity (Spec) (Fig. SN 3.53), Weighted Cohen’s Kappa (WCK) (Fig. SN 3.54). (b) 
Multi-threshold metrics. Considered metrics: Area under the Receiver Operating Characteristic Curve (AUROC) (Fig. SN 3.55) and Average Precision (AP) (Fig. SN 3.56).
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Extended Data Table 2 | Overview of pitfall sources for semantic segmentation metrics ((a): overlap-based metrics, (b): 
boundary-based metrics) related to poor metric selection [P2]

A warning sign indicates a potential pitfall for the metric in the corresponding column, in case the property represented by the respective row holds true. Comprehensive illustrations of 
pitfalls are available in Supplementary Note 2. A comprehensive list of pitfalls is provided separately for each metrics in the metrics cheat sheets (Supplementary Note 3). Note that we only 
list sources of pitfalls relevant to the considered metrics. Other sources of pitfalls are neglected for this table. (a) Overlap-based metrics. Considered metrics: centerline Dice Similarity 
Coefficient (clDice) (Fig. SN 3.40), Dice Similarity Coefficient (DSC) (Fig. SN 3.41), Fβ Score (Fig. SN 3.43), Intersection over Union (IoU) (Fig. SN 3.45). (b) Boundary-based metrics. Consid-
ered metrics: Average Symmetric Surface Distance (ASSD) (Fig. SN 3.58), Boundary Intersection over Union (Boundary IoU) (Fig. SN 3.59), Hausdorff Distance (HD) (Fig. SN 3.60), Hausdorff 
Distance 95th Percentile (HD95) (Fig. SN 3.63), Mean Average Surface Distance (MASD) (Fig. SN 3.61), Normalized Surface Distance (NSD) (Fig. SN 3.62).
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Extended Data Table 3 | Overview of sources of pitfalls for object detection metrics ((a): detection metrics, (b): localization 
criteria) related to poor metric selection [P2]

A warning sign indicates a potential pitfall for the metric in the corresponding column, in case the property represented by the respective row holds true. Comprehensive illustrations of 
pitfalls are available in Supplementary Note 2. A comprehensive list of pitfalls is provided separately for each metrics in the metrics cheat sheets (Supplementary Note 3). Note that we only 
list sources of pitfalls relevant to the considered metrics. Other sources of pitfalls are neglected for this table. (a) Detection metrics. Considered counting metrics: Fβ Score (Fig. SN 3.43), 
Positive Predictive Value (PPV) (Fig. SN 3.51), Sensitivity (Sens) (Fig. SN 3.52). Considered multi-threshold metrics: Average Precision (AP) (Fig. SN 3.56) and Free-Response Receiver Operating 
Characteristic (FROC) (Fig. SN 3.57). (b) Localization criteria. Considered localization criteria: Box/Approx IoU (Fig. SN 3.74), Center Distance (Fig. SN 3.72), Mask IoU > 0 (Fig. SN 3.75), and 
Point inside Mask/ Box/ Approx (Fig. SN 3.76).
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Extended Data Table 4 | Overview of sources of pitfalls for instance segmentation metrics (Part 1) ((a): detection metrics, (b): 
localization criteria) related to poor metric selection [P2]

A warning sign indicates a potential pitfall for the metric in the corresponding column, in case the property represented by the respective row holds true. Comprehensive illustrations of 
pitfalls are available in Supplementary Note 2. A comprehensive list of pitfalls is provided separately for each metrics in the metrics cheat sheets (Supplementary Note 3). Note that we only 
list sources of pitfalls relevant to the considered metrics. Other sources of pitfalls are neglected for this table. (a) Detection metrics. Considered counting metrics: Fβ Score (Fig. SN 3.43), 
Positive Predictive Value (PPV) (Fig. SN 3.51), Panoptic Quality (Fig. SN 3.49) Sensitivity (Sens) (Fig. SN 3.52). Considered multi-threshold metrics: Average Precision (AP) (Fig. SN 3.56) and 
Free-Response Receiver Operating Characteristic (FROC) (Fig. SN 3.57). (b) Localization criteria. Considered localization criteria: Boundary Intersection over Union (IoU) (Fig. SN 3.59), 
Intersection over Reference (IoR) (Fig. SN 3.73), Mask IoU (Fig. SN 3.74).
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Extended Data Table 5 | Overview of sources of pitfalls for instance segmentation metrics (Part 2) ((a) per instance 
segmentation overlap-based metrics, (b) per instance segmentation boundary-based metrics) related to poor metric 
selection [P2]

A warning sign indicates a potential pitfall for the metric in the corresponding column, in case the property represented by the respective row holds true. Comprehensive illustrations of 
pitfalls are available in Supplementary Note 2. Note that we only list sources of pitfalls relevant to the considered metrics. Other sources of pitfalls are neglected for this table. (a) Per instance 
segmentation overlap-based metrics. Considered metrics: Considered metrics: centerline Dice Similarity Coefficient (clDice) (Fig. SN 3.40), Dice Similarity Coefficient (DSC) (Fig. SN 3.41), 
Fβ Score (Fig. SN 3.43), Intersection over Union (IoU) (Fig. SN 3.45). (b) Per instance segmentation boundary-based metrics. Considered metrics: Average Symmetric Surface Distance 
(ASSD) (Fig. SN 3.58), Boundary Intersection over Union (IoU) (Fig. SN 3.59), Hausdorff Distance (HD) (Fig. SN 3.60), Hausdorff Distance 95th Percentile (HD95) (Fig. SN 3.63), Mean Average 
Surface Distance (MASD) (Fig. SN 3.61) and Normalized Surface Distance (NSD) (Fig. SN 3.62).
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