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Improving deep learning protein monomer 
and complex structure prediction using 
DeepMSA2 with huge metagenomics data

Wei Zheng    1, Qiqige Wuyun    2, Yang Li    1,3, Chengxin Zhang    1, 
P. Lydia Freddolino    1,4  & Yang Zhang    1,3,4,5,6 

Leveraging iterative alignment search through genomic and metagenome 
sequence databases, we report the DeepMSA2 pipeline for uniform protein 
single- and multichain multiple-sequence alignment (MSA) construction. 
Large-scale benchmarks show that DeepMSA2 MSAs can remarkably 
increase the accuracy of protein tertiary and quaternary structure 
predictions compared with current state-of-the-art methods. An integrated 
pipeline with DeepMSA2 participated in the most recent CASP15 experiment 
and created complex structural models with considerably higher quality 
than the AlphaFold2-Multimer server (v.2.2.0). Detailed data analyses 
show that the major advantage of DeepMSA2 lies in its balanced alignment 
search and effective model selection, and in the power of integrating huge 
metagenomics databases. These results demonstrate a new avenue to 
improve deep learning protein structure prediction through advanced MSA 
construction and provide additional evidence that optimization of input 
information to deep learning-based structure prediction methods must be 
considered with as much care as the design of the predictor itself.

Substantial progress in protein structure prediction has been witnessed 
in the recent community-wide Critical Assessment of protein Structure 
Prediction (CASP) experiments1. In CASP14, for example, the end-to-end 
deep learning protocol AlphaFold22 was able to create atomic-level 
structure predictions for two-thirds of the single-domain protein 
sequences3. AlphaFold2 was later extended to AlphaFold2-Multimer4 
for multichain protein complex structure prediction, and proved capa-
ble of generating high-quality complex models in many cases. The 
AlphaFold2 framework makes use of coevolutionary features derived 
from MSAs as the major input for self-attention networks to train and 
create three-dimensional (3D) protein models. The quality of the input 
MSAs is therefore a key factor in determining whether a high-accuracy 
model can be produced.

Because of the importance of MSAs for structure prediction, the 
development of methods to accurately detect and align a diverse set of 
homologous sequences represents an important direction to improve 
predictive accuracy5. The exponentially increasing size of the metagen-
ome sequence databases has made the task of quick and accurate MSA 
construction highly nontrivial6. One recent example along this line is 
ColabFold7, which aimed to accelerate the MSA generation pipeline of 
AlphaFold2 by replacing the MSA search program HHblits8 with a more 
sensitive and faster tool, MMseqs29, meanwhile using nonredundant 
metagenomic databases. A more ambitious effort to enhance the con-
tribution of sequence information in structure predictions is the use of 
a protein language model10, which utilizes a deep learning transformer 
network for learning coevolutionary information by masking parts 
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local Distance Difference Test (pLDDT) score) of the monomer chains 
as defined in equation (3) below. Full details for both MSA construction 
procedures are provided in Methods.

Improvements of monomer structure prediction by 
DeepMSA2
We first tested the performance of template recognition and deep 
learning-based spatial restraint prediction assisted by the mono-
mer MSAs produced by DeepMSA2 and five other commonly used 
pipelines: BLAST16, HHblits8, HMMER17, MMseqs29 and PSIBLAST18. 
Overall, DeepMSA2 performs better than the five control programs 
in all three assessment criteria, including average template modeling 
scores (TM-scores) of the structure templates recognized by HHsearch  
(Fig. 2a and Supplementary Table 1), the precision of the top L 
long-range contacts predicted by DeepPotential19 (L is the sequence 
length and ‘long-range’ represents the sequence separation |i − j| ≥ 24) 
(Fig. 2b and Supplementary Table 2), and the mean absolute distance 
error (MAE; equation (6)) of the top 5L long-range distances (Fig. 2c, 
Supplementary Fig. 1 and Supplementary Table 3). The number of effec-
tive sequences (Neff; equation (1)), the average sequence identity and 
alignment coverage are also compared between those six MSAs (Sup-
plementary Fig. 2 and Supplementary Table 4), where DeepMSA2 shows 
the ability in collecting homologous sequences with more balanced 
alignment coverage and diversity. A detailed discussion on the features 
of the monomeric MSAs and the potential impact on template recogni-
tion and spatial restraint prediction is summarized in Supplementary 
Discussion Text 1.

As a more direct test of DeepMSA2 on deep learning 3D structure 
prediction, we implement a modified version of AlphaFold220, in which 
the input MSA is replaced with the MSA created by DeepMSA2. For brev-
ity, we use ‘DeepMSA2-based protein folding’ (DMFold) to refer to this 
hybrid pipeline in the following discussion. In Fig. 3a, we compare the 
TM-scores of all models predicted by DMFold versus AlphaFold2 on the 
132 free modeling (FM) monomer proteins from the CASP13–15 experi-
ments. To correctly reflect the FM nature of the domains, all templates 
released after May 2018, May 2020 and May 2022 have been excluded 
for the CASP13, CASP14 and CASP15 domains, respectively, when  
running the programs. It is shown that DMFold generated models with 
a higher TM-score than AlphaFold2 in 63% (83 of 132) of cases. The aver-
age TM-score of the models generated by DMFold (0.821) is 5% higher 
than that generated by AlphaFold2 (0.781), with a P value of 1.82 × 10−4 in 
a one-sided Student’s t-test indicating that the difference is statistically 
significant. It is notable that the difference mainly comes from difficult 
domains. For the 86 domains where both AlphaFold2 and DMFold 
achieved a TM-score >0.8, for example, the average TM-score is very 
close (0.925 for DMFold versus 0.922 for AlphaFold2). However, for the 
remaining 46 domains, where at least one of the methods performed 
poorly, the difference in TM-score is dramatic (0.626 for DMFold ver-
sus 0.517 for AlphaFold2; P = 2.86 × 10−4, one-sided Student’s t-test). 
Among the 46 difficult domains, DMFold builds models with TM-scores  
0.1 unit higher than AlphaFold in 18 domains, whereas AlphaFold2 does 
so only in 4 domains.

In Supplementary Table 5 we further list the statistics of sequences 
in the MSAs by AlphaFold2 and DMFold. Although AlphaFold2 collects 
a slightly larger number of homologous sequences than DeepMSA2 
(2,724 versus 2,279), the average number of effective sequences in 
the DeepMSA2 MSAs (Neff = 93.7) is much higher than that for the 
AlphaFold2 MSAs (Neff = 84.5), suggesting that DeepMSA2 manages to 
identify more diverse homologous sequences and build a ‘deeper’ effec-
tive MSA than AlphaFold2’s default MSA pipeline. One reason for this 
improvement is that the inclusion of in-house metagenome sequences 
derived from the Tara database (TaraDB)21, MetaSource database  
(MetaSourceDB)6 and JGIclust database substantially increased the  
coverage of biological sequence space. In addition, the multilevel iterative 
searching performed by DeepMSA2 helps it to collect more diverse but 

of the input sequences and trains the network to recover them. Once 
trained, the language model can be used to perform structure predic-
tions even without an MSA. Protein structure prediction methods that 
combine language models with the AlphaFold2 structure module, such 
as ESMFold11 and OmegaFold12, can generate better models than Alpha-
Fold2 on some orphan sequences for which detectable homologous 
sequences do not exist.

Despite ongoing efforts in the field, the above methods do not  
substantially improve the overall prediction accuracy for monomer 
proteins. In addition, structure prediction for protein complexes 
remains an even more substantial challenge. In the CASP14 experiment, 
for example, satisfactory models (those with an Interface Contact Score 
(ICS) >0.8) could be built for only 7% of tested protein complexes13. 
The situation was considerably improved in CASP15, where the best 
performance methods (including the pipeline introduced in this study) 
provided satisfactory models for up to 47% of cases14. However, there 
is still no evidence that modifications made in the newly introduced 
AlphaFold2-based methods (for example, ColabFold) can obviously 
improve the performance of protein complex modeling relative to 
AlphaFold2. It is also notable that in the CASP15 experiment, osten-
sibly MSA-free language model-based methods such as OmegaFold, 
performed poorly on targets with few homologous sequences15, sug-
gesting that the lack of sufficient evolutionary information encoded 
in the protein language models is equivalently problematic to shallow 
MSAs for explicitly MSA-based methods.

To systematically explore the potential contributions of optimal 
MSAs for protein structure prediction, we present DeepMSA2 (Fig. 1), 
a hierarchical approach inspired by our previous iterative monomer 
MSA construction method, DeepMSA5. Compared with DeepMSA, 
in addition to the protocol extension from monomers to multimers, 
DeepMSA2 couples several newly developed MSA generation pipelines 
to create multiple MSAs based on huge genomics and metagenom-
ics sequence databases containing a total of 40 billion sequences 
and introduces a deep learning-driven MSA scoring strategy for opti-
mal MSA selection. We present careful benchmarks for DeepMSA2 
applied to large-scale datasets containing both monomer and multimer  
targets from recent CASP13–15 experiments, with results demonstrat-
ing substantial advantages of the pipeline for improving both protein 
tertiary and quaternary structure modeling accuracy compared with 
contemporary state-of-the-art approaches. We have made DeepMSA2 
and associated structural databases freely available to the community, 
and the results of this study should have important implications for 
future developments of new MSA construction and deep learning 
protein structure and function prediction methods.

Results
DeepMSA2 consists of two separate pipelines for monomer and mul-
timer MSA construction, respectively. For monomer MSA construction 
(Fig. 1a), it utilizes three parallel blocks (dMSA, quadrupole MSA (qMSA) 
and mMSA) built on different searching strategies to obtain raw MSAs 
from a diverse set of databases, assembled from whole-genome and 
metagenome sequence libraries. In each of the three MSA generation 
blocks, a similar logic is followed, in which an initial query is searched 
against a sequence database, and if a sufficient number of effective 
sequences is not achieved, iterative searches into larger databases 
are attempted. Up to ten raw MSAs gathered from the three blocks are 
ranked through a rapid deep learning-guided prediction process to 
select the optimal MSA. For multimeric MSA construction (Fig. 1b), mul-
tiple composite sequences are created by linking monomeric sequences 
from different component chains that have the same orthologous 
origins. Here, a set of M top-ranked monomeric MSAs from each chain 
are paired with those of other chains, which results in MN hybrid mul-
timeric MSAs with N being the number of distinct monomer chains in 
the complex. The optimal multimer MSAs are then selected based on a 
combined score of the depth of the MSAs and folding score (predicted 
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relevant homologous sequences. In the bottom row of Supplementary  
Table 5, we list the modeling results obtained by using DMFold with-
out the in-house metagenome sequence databases (referred to 
‘DMFold-noh’). It shows that DMFold-noh still outperforms AlphaFold2 
in both Neff and TM-score. However, DMFold-noh clearly underper-
forms the full version DMFold, with a significantly lower TM-score 
(P = 1.65 × 10−5, one-sided Student’s t-test). This suggests that both the 
enhanced sequence databases and searching algorithms in DeepMSA2 
contribute to the quality of MSAs and structural model construction.

In Fig. 3b, we present a case study of the FM domain T1043-D1 from 
CASP14, for which AlphaFold2 generates an incorrect model with a 
TM-score of 0.20 and a global pLDDT of 0.40. Here, pLDDT is a scale 

used by AlphaFold2 to evaluate the residue-level prediction quality, 
with pLDDT ≥ 0.7 indicating a correct backbone fold, and pLDDT < 0.7 
indicating an expected failure to fold the protein20. The poor result 
observed here is mainly due to insufficient coevolutionary informa-
tion, because the AlphaFold2 default MSA pipeline detects only two 
homologous sequences, resulting in a Neff value of 0.16 in the MSA. 
Figure 3c shows the number of aligned amino acids per residue (Nr) and 
the pLDDT score along the protein sequence. Overall, the residue-level 
pLDDT scores show a strong correlation with Nr, demonstrating again 
the importance of MSA information in driving structure prediction. 
By contrast, DMFold constructs a model with a TM-score of 0.73 and 
a pLDDT of 0.71. The improvement in modeling quality by DMFold is 
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Fig. 1 | Schematic of the DeepMSA2 pipelines for monomeric and multimeric 
MSA constructions. a, DeepMSA2-Monomer contains two steps: an iterative 
MSA generation step that combines the dMSA, qMSA and mMSA algorithms, 
and a deep learning-based MSA ranking step based on the confidence scores 

of predicted structure models. b, DeepMSA2-Multimer contains four steps of 
monomeric MSA generation, MSA pairing, sequence linking and concatenated 
MSA selection. IMG/M is the metagenomics database sourced from Joint Genome 
Institute, see JGIclust in Methods.
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mainly because DeepMSA2 constructs a deeper MSA with 42 homolo-
gous sequences and a Neff value of 2.2, which offers more helpful 
coevolutionary information. The difference is especially dramatic in 
the N-terminal portion of the protein, where the DeepMSA2 alignments 
have an especially high Nr, and the pLDDT scores increase accord-
ingly (Fig. 3d). In Supplementary Fig. 4, we list eight other examples 
from CASP13–15 (T0991-D1, T1064-D1, T1125-D1, T1125-D2, T1125-D5, 
T1130-D1, T1169-D1 and T1169-D4), in which the TM-score improve-
ments by DMFold are >0.3. In seven of these eight cases, the Neff of 
DeepMSA2 is higher than that of AlphaFold2. These results again high-
light the capacity of DeepMSA2 to provide more informative MSAs to 
a state-of-the-art protein prediction pipeline, thus further improving 
protein monomer modeling accuracy and rendering many previously 
‘unfoldable’ proteins tractable for structure prediction.

Human proteome modeling for difficult proteins with 
DeepMSA2
To further examine the practical usefulness of our new developments 
for large-scale structure modeling, we applied the DeepMSA2/DMFold 
pipeline to the human proteome. Considering the availability of the 

AlphaFold2 Structure Database (DB), which was recently released by the 
DeepMind team22, our focus is on the 5,042 difficult sequences for which 
the AlphaFold2 DB models have a confidence score of pLDDT < 0.7. 
In Fig. 4a, we show the histogram distributions of fold-level pLDDTs 
obtained by DMFold and AlphaFold2 DB on these difficult proteins, 
where a clear shift is observed for the DMFold models towards higher 
pLDDT values. On average, the pLDDT of DMFold models (0.663) is 11% 
higher than that of AlphaFold2 DB models (P < 2.2 × 10−16, one-sided 
Student’s t-test), and 94% (4,738 of 5,042) of the DMFold models had a 
higher pLDDT than the corresponding AlphaFold2 DB model. Overall, 
DMFold creates high-quality global folds with pLDDT ≥ 0.7 for 1,934 
proteins that AlphaFold2 failed to model.

In Supplementary Fig. 5, we plot a histogram distribution of 
TM-scores between DMFold and AlphaFold2 DB models for the 1,934 
proteins that could be folded only by DMFold. Eighty percent (1,549 of 
1,934) of the DMFold models have a different overall structure relative 
to the corresponding AlphaFold2 DB models (with a TM-score of <0.6 
between them), indicating that the improvement in the DMFold models 
is at the topology level. By contrast, for the remaining 385 proteins, 
DMFold models have relatively similar structures to AlphaFold2 DB 

FM TBM All 

TM
-s

co
re

To
p 
L 

lo
ng

-r
an

ge
 p

re
ci

si
on

M
AE

DeepMSA2 BLAST PSIBLAST MMseqs2 HHblits HMMER

a

b

c

0.35 0.70 0.55

0.50

0.45

0.40

0.65

0.60

0.55

0.50

0.45

0.65

0.60

0.55

0.75

0.70

0.65

0.60

0.55

3 4

3

2

1

2

1

0

0.30

0.25

0.20

0.55

0.50

0.45

0.40

0.35

0.30

6

5

4

3

2

Fig. 2 | Comparisons of MSAs generated by DeepMSA2 and five control 
methods for assisting template recognition and deep learning spatial 
restraint prediction on 293 CASP13–15 monomer domains. a, Average TM-
score of the first template detected by HHsearch. b, Precision of top L long-range 
residue–residue contact prediction with L being the sequence length and 
sequence separation |i − j| ≥ 24. c, MAE for the top 5L long-range residue–residue 

distance predictions by DeepPotential. The height of the histogram indicates 
the mean value and the error bar depicts the 95% confidence interval for each 
variable using Student’s t-distribution. The CASP domains are categorized into 
FM and TBM by the accessors. In a, n = 287, 155 and 132 monomer domains for the 
columns ‘All’, ‘TBM’ and ‘FM’ respectively, whereas in b and c, n = 271, 146 and 125 
for the three columns, respectively.

http://www.nature.com/naturemethods


Nature Methods | Volume 21 | February 2024 | 279–289 283

Article https://doi.org/10.1038/s41592-023-02130-4

models, and thus the improvements in DMFold may come mainly from 
local structural corrections. Figure 4b further shows a head-to-head 
comparison of the residue-level pLDDTs obtained by DMFold and 
AlphaFold2 DB for the 1,934 human proteins, which involve a total of 
878,094 residues, where DMFold models have a higher residue-level 
pLDDT than the corresponding AlphaFold2 DB models on 93% of  
the residues.

In Fig. 4c, we present one illustrative example from an unchar-
acterized protein, Q6ZQT0, for which AlphaFold2 collects only nine 
homologous sequences with Neff = 0.7 in the MSA, compared with 
the DeepMSA2 MSA with 122 sequences and Neff = 6.2. Because of 
the sparse information from the MSA, a poor structure model with 
pLDDT = 0.51 is produced by AlphaFold2, showing an irregular second-
ary structure. By contrast, using the improved MSA from DeepMSA2, 
DMFold creates a model with much higher confidence (pLDDT = 0.92), 
which has a more stable fold with a well-formed hydrogen-bonding net-
work and secondary structure. Figure 4d further lists the residue-level 
pLDDT distributions, where nearly all residues in the DMFold model 
have a pLDDT of >0.7; the corresponding residues in the AlphaFold2 
DB model all fell below 0.7. For this protein, the DMFold model and 
AlphaFold2 DB model have a very low similarity with a TM-score of 0.44, 
showing that DMFold improves the quality of the global fold. Figure 
4e shows a complementary example from the putative diacylglycerol 
O-acyltransferase 2-like protein (Q6IED9) with an α/β three-layer sand-
wich fold. Although the DMFold and AlphaFold2 models have similar 
global folds (TM-score = 0.88), DMFold built the model with a pLDDT 
of 0.83, whereas the AlphaFold2 DB model has a pLDDT of 0.68. The 
residue-level pLDDT distributions in Fig. 4f show that DMFold created 
better local structures with greater pLDDTs for several regions (marked 
in red), corresponding to two better-formed β-sheets in the 3D struc-
tural packing, as highlighted in red in Fig. 4e. These examples show 
that DMFold could improve AlphaFold2 modeling at both the global 
fold and local structure levels by supplying additional evolutionary 
information from more informative MSAs.

Of the 5,042 human proteins for which no high-confidence Alpha-
Fold2 structure was available, 48 have experimental structures that 
cover >80% of the sequence of the natural protein and were released 
in the PDB after the model training date of AlphaFold2 (1 May 2018). 
For these 48 proteins, AlphaFold2 DB models achieve an average 

TM-score of 0.630, compared with 0.679 for DMFold (P = 1.46 × 10−4, 
one-sided Student’s t-test; Supplementary Table 6). Supplementary 
Fig. 6 examines the correlation between the TM-score and pLDDT of 
DMFold for those 48 proteins. Among all models with a DMFold pLDDT 
≥0.7, 85% of the predictions could be considered as true positives; 
that is, the model is predicted as foldable and is actually foldable with 
a TM-score >0.5. There is also a quite high false omission rate (76%) 
based on the 0.7 pLDDT score cutoff, suggesting that many of the 
models with a lower pLDDT might also possess correct folds. Overall, 
we note that despite the promising results for the small set of recently 
crystallized human proteins, the absolute quality of the predicted 
human proteome models from DMFold should be further verified 
with more proteins when the experimentally solved structures are 
available in the future.

Improvements of protein complex structure prediction
To examine the impact of DeepMSA2-Multimer on protein complex 
structure modeling, we collected 54 complex targets from CASP13 
and CASP14 each of which contains between two and eight chains; 
40 of the targets are homomers and 14 are heteromeric complexes 
(Supplementary Table 7). In Supplementary Table 8, we list a sum-
mary of TM-score comparisons for the complex models constructed 
by AlphaFold2-Multimer and DMFold-Multimer, which replaces the 
default MSA of AlphaFold2-Multimer by the multimer MSA from 
DeepMSA2-Multimer (Methods). It is found that DMFold-Multimer 
generates models for all, heteromer and homomer complexes with 
TM-scores of 0.834, 0.930 and 0.801, which are 12.2%, 3.9% and 16.1% 
higher than those of AlphaFold2-Multimer models (0.743, 0.895 and 
0.690), respectively. The P value in a one-sided Student’s t-test is below 
0.05 in all the comparisons, indicating that all the differences are sta-
tistically significant. Figure 5a also shows a head-to-head comparison 
of the TM-score of the models, where DMFold-Multimer outperforms 
AlphaFold2-Multimer in 70% of cases. Again, the improvement 
mainly occurs on the difficult complexes. If we consider the 26 easy 
targets for which both DMFold-Multimer and AlphaFold2-Multimer 
models have TM-scores >0.9, the average TM-scores are very close 
(0.961 for DMFold-Multimer versus 0.960 for AlphaFold2-Multimer). 
For the 28 more difficult targets, however, the average TM-score 
of DMFold-Multimer (0.716) is significantly higher than that of 
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AlphaFold2-Multimer (0.542), with P = 1.05 × 10−4 in a one-sided  
Student’s t-test.

Compared with the default MSAs in AlphaFold2-Multimer, 
two factors may contribute to the quality improvement of Deep-
MSA2-Multimer MSAs. One is the integrated MSA creation, pairing 
and selection mechanism of DeepMSA2-Multimer, and the second 
is the inclusion of the additional huge in-house metagenomics data-
bases. To assess the relative contributions of these factors, in Fig. 5b we 
compare the complex modeling performance of AlphaFold2-Multimer 
and DMFold-Multimer using different sequence databases. Even with 
the same sequence databases (from genomic sequences, Big Fan-
tastic Database (BFD) and Mgnify), DMFold-Multimer still outper-
forms AlphaFold2-Multimer with the TM-score increasing from 0.743 

to 0.784, indicating the usefulness of DeepMSA2-Multimer’s MSA  
generating, pairing and selection methods. After using the full version 
DMFold-Multimer including our expanded metagenome databases, the 
modeling quality can be further increased by 6.4% from 0.784 to 0.834, 
showing that the large metagenome databases are also beneficial for 
protein complex modeling.

Figure 5b also indicates that the magnitude of TM-score improve-
ment of DMFold-Multimer over AlphaFold2-Multimer is relatively 
small for heteromers compared with that for homomer complexes. 
This is probably because of the sequence linking mechanism, in which 
DeepMSA2-Multimer links two sequences if they come from the same 
species based on the UniProt species annotation to ensure orthologous 
pairing of the protein interactions. Because of the limit of species 
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annotations, only homologous sequences from genomic databases in 
the MSAs of the individual chains can be used for linking, as sequences 
from metagenomics databases do not have species annotations from 
UniProt. Thus, one major advantage of DeepMSA2, which leverages 
information from large metagenomics databases, will be eliminated 
because of the absence of species annotations (although the improved 

MSAs from monomer MSA generation and complex sequence pairing 
and selection still contribute to more accurate structure prediction). 
By contrast, for homomer complexes, because the component pro-
teins are identical, all sequences in the monomer MSAs will be linked 
with themselves, which results in the complete use of both genom-
ics and metagenomics databases, and substantially larger structure 
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Fig. 6 | Performance of the DMFold/DMFold-Multimer pipeline for protein 
complex structure prediction in the CASP15 experiment. a, Histogram of the 
TM-scores of structural models by DMFold-Multimer on the 38 complex targets 
that have their experimental structure released. b, The first models produced 
by DMFold-Multimer superposed on the experimental structures for the 27 
complex targets with TM-scores (TM) >0.8, where the component monomers 

of the predicted models are shown in distinct colors with the experimental 
structures marked in black. c, Sum of Z-scores on 41 multimeric targets for the 87 
registered CASP15 assembly groups, with data taken from the CASP15 webpage. 
DMFold-Multimer (registered as Zheng) and the public March-2022 version of 
the AlphaFold2-Multimer server (registered as NBIS-AF2-multimer) are marked in 
red and yellow, respectively. r.m.s.d., root mean square deviation.
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improvement of DMFold-Multimer over AlphaFold2-Multimer. We 
expect that the performance of DMFold-Multimer on heteromeric 
complexes can be further improved in future using more comprehen-
sive taxonomic annotation databases, or through the development of 
new sequence linking algorithms covering metagenomic sequences.

The positive impact of multimeric MSAs provided by DeepMSA2 
manifests itself mainly in the interchain orientation/distance map pre-
dictions. As a case study, in Fig. 5c we present an example from T0988o, 
which is a homo-trimer containing three protein chains with 612 resi-
dues in total. AlphaFold2-Multimer creates an incorrect model with a 
low TM-score of 0.18. A likely cause is that the AlphaFold2-Multimer 
default MSA pipeline only detects eight homologous sequences for 
each component protein, leading to a poor prediction of the intra-
chain distance map (MAE = 5.93 Å) used for protein monomer struc-
ture inference (Fig. 5d), thus resulting in a poor monomer structure 
model with a monomer TM-score of 0.20. By contrast, DeepMSA2 
detects 71 homologous sequences, which results in a more accurate 
distance map (MAE = 0.81 Å, Fig. 5e) and a more accurate structure 
model (monomer TM-score = 0.95) for each chain. At the complex level, 
DMFold-Multimer generates a high-quality complex structure model 
for T0988o with a TM-score of 0.96. Figure 5f shows another illustrative 
case from T1038o, which is a homo-dimeric complex with 796 residues 
in total. Although AlphaFold2-Multimer generates a good-quality 
monomer model with a TM-score of 0.91, the quaternary orienta-
tion of the complex is completely wrong resulting in a poor complex 
TM-score of 0.53. This is mainly due to the poor MSA constructed by 
the AlphaFold2-Multimer pipeline (with Neff = 0.2), which results 
in a very low interchain distance prediction accuracy (MAE = 4.11 Å;  
Fig. 5g). For this example, DeepMSA2-Multimer creates a deeper MSA 
with Neff = 1.4, which results in a high-accuracy prediction for both 
intrachain (MAE = 1.11 Å) and interchain (MAE = 1.80 Å) distance maps 
(Fig. 5h). As a result, DMFold-Multimer creates a much more accurate 
complex structure model with a complex TM-score of 0.91. These 
results show that correct construction of multimeric MSAs is critical 
to both quaternary restraints and final model predictions.

Blind test of DeepMSA2/DMFold-Multimer in CASP15 
experiment
As a blind test, the DeepMSA2/DMFold-Multimer pipeline participated 
in the community-wide CASP15 experiment held in 2022 for complex 
structure prediction. This experiment contained 47 complex targets, 
each with 2–27 component chains. In Fig. 6a, we show a histogram 
of TM-scores for the structural models by DMFold-Multimer for 
the 38 complexes that have experimental structure released, where 
DMFold-Multimer created models with an average TM-score of 0.83, 
and 36 of the 38 complexes have a TM-score above 0.5. Despite the 
promising result, the TM-score of the complex models is still con-
siderably lower than that for the corresponding monomer models 
(TM-score = 0.89), suggesting that interchain orientation is still a chal-
lenging issue in quaternary protein structure prediction.

In Fig. 6b, we present the superposition of the DMFold-Multimer 
models on the experimentally solved structures for 27 complex tar-
gets for which the predictions have a TM-score >0.8. These include 
seven large-size complexes from H1111, H1114, H1137, T1170o, H1171, 
H1172 and T1181o, the sequences of which contain 8,460, 7,988, 4,592, 
1,908, 1,956, 2,004 and 2,064 residues, where DMFold-Multimer con-
structed impressive complex models with TM-scores of 0.98, 0.91, 
0.94, 0.93, 0.93, 0.91 and 0.85, respectively. Notably, the three larg-
est targets are all heteromeric complexes with stoichiometry vari-
able of ‘A9B9C9’, ‘A4B8C8’ and ‘A1B1C1D1E1F1G2H1I1’, respectively, 
where DMFold-Multimer constructed high-accuracy models with 
TM-score >0.9 for all of them. These results demonstrate the ability of 
DMFold-Multimer to model large protein complexes, which has been 
a long-term challenge for traditional quaternary structure modeling 
approaches23.

In Fig. 6c and Supplementary Table 9, we also list a comparison of 
DMFold-Multimer (named Zheng) with 86 other methods participated 
in the CASP15 Multimeric Modeling Section. DMFold-Multimer out-
performed all other groups in terms of the sum of Z-score, which was 
calculated by the CASP assessors based on a combination of TM-score, 
LDDT, ICS and Interface Patch Score; where TM-score and LDDT meas-
ure the global fold quality and ICS and Interface Patch Score assess 
the protein interface modeling quality of protein complexes. Overall, 
DMFold-Multimer achieved a cumulative Z-score of 35.30, which is 
nearly three times higher than that of the ‘NBIS-AF2-multimer’ group 
(that is, the public March-2022 v.2.2.0 of the AlphaFold2-Multimer 
server run by the Elofsson Lab on CASP15 targets, which achieved a 
cumulative Z-score of 12.27) and 21.1% higher than the second-best per-
forming group (29.15). A breakdown of the component score compari-
sons between DMFold-Multimer and AlphaFold2-Multimer is shown in 
Supplementary Table 10.

In Supplementary Fig. 7, we show three illustrative examples from 
targets H1140, H1141 and H1144, which are all nanobody–antigen com-
plexes. Nanobodies are single-domain antibodies that initiate critical 
immune reactions by interacting with antigens24, where these targets 
represent three typical interaction modes of nanobodies with the 
same mouse 2',3'-Cyclic-nucleotide 3'-phosphodiesterase. As shown 
in Supplementary Fig. 7, the complex models by AlphaFold2-Multimer 
(the NBIS-AF2-multimer group) have a relatively low TM-scores (<0.7), 
whereas DMFold-Multimer created excellent predictions for the three 
complexes with TM-scores of 0.92, 0.95 and 0.99, respectively. Accord-
ingly, the ICS F1 scores of the DMFold-Multimer models (0.51, 0.79 
and 0.74) are much higher than those for AlphaFold2-Multimer (0.02, 
0.06 and 0.09), suggesting that correct construction of the Deep-
MSA2-Multimer MSAs has largely enhanced the modeling of quater-
nary chain interactions in these immune protein–antigen complex 
targets. In Supplementary Fig. 8, we investigate the target H1144 to 
further examine the difference in the two programs. In this example, 
DMFold-Multimer utilizes a multi-MSA pairing strategy to create 25 
paired MSAs, with the best model of TM-score (0.99) coming from the 
MSA with the highest Neff (16.3). By contrast, AlphaFold2-Multimer 
uses a single MSA with Neff = 8.1 which resulted in no models with a 
TM-score >0.8. Nevertheless, DMFold-Multimer could not fold all 
the nanobody–antigen complexes in CASP15. Supplementary Fig. 9 
presents a failed nanobody–antigen case from target H1142 in which 
no correct model was created by DMFold-Multimer despite the use 
of multiple MSAs. A detailed discussion on the failure and success of 
DMFold-Multimer on the nanobody–antigen complex structure mod-
eling is summarized in Supplementary Discussion Text 2.

Discussion
With the rapid progress of deep machine-learning techniques, MSAs 
have become increasingly essential to modern protein structure predic-
tions. Built on iterative alignment searches through multiple genome 
and metagenome sequence databases, we have developed a hierar-
chical pipeline, DeepMSA2, for protein monomer and multimer MSA 
construction. Large-scale tests show that DeepMSA2 can be used to 
substantially improve the accuracy of protein structure predictions.

Compared with existing MSA construction methods, one of 
the major advantages of DeepMSA2 lies in the iterative search and 
model-based preselection strategy, which can result in MSAs with 
more balanced alignment coverage and homologous diversity. The 
iterative searching strategy also allows for the exploration of multiple 
in-house metagenome sequence databases, which helps increase the 
diversity and coverage of the resulting MSA. Detailed benchmark data 
show that the evolutionary/coevolutionary information derived from 
such MSAs can clearly improve the accuracy of structure template 
recognition and deep learning distance/orientation restraint predic-
tions. By integrating DeepMSA2 with the state-of-the-art AlphaFold2 
modeling approach, DMFold can improve the TM-score of AlphaFold2 
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models by 5% for FM domains that lack homologous templates in the 
PDB. Our application of DMFold on the human proteome has resulted 
in an 11% increase in pLDDT score for the 5,042 difficult proteins for 
which AlphaFold2 failed to create confident models, thus substantially 
expanding the range of human proteins for which actionable structure 
predictions can be provided.

Utilization of DeepMSA2-Multimer MSAs has also resulted in sub-
stantial improvements in multichain protein complex structure predic-
tion, where a 12.2% increase in TM-score is obtained by DMFold-Multimer 
over the default AlphaFold2-Multimer for the 54 complexes from the 
CASP13 and CASP14 experiments. In the most recent community-wide 
blind test of CASP15, DMFold-Multimer achieved the highest modeling 
accuracy for complex structure prediction, with an average TM-score 
15.4% higher and average ICS score 27.5% higher than the public March-
2022 v.2.2.0 of the AlphaFold2-Multimer server run by the Elofsson Lab 
(registered as NBIS-AF2-multimer), according to the assessor’s criteria. 
Notably, DMFold-Multimer constructed high-quality models for mas-
sive oligomer complexes up to 8,460 amino acids with a TM-score of 
0.98, highlighting its ability to model large protein complex structures, 
addressing a persistent problem that has challenged traditional protein 
quaternary structure prediction23.

Despite the impressive improvements in performance, some 
challenges remain for DeepMSA2. One key area with likely room for 
improvement is in the modeling of heteromeric complexes, which show 
smaller improvements (relative to AlphaFold2) than homomer com-
plexes in our internal testing. Because current multimer MSAs are built 
from monomer MSAs, a fundamental challenge to be addressed is how 
to effectively link the sequences of different component MSAs to form 
optimal multimeric MSAs of interacting homologous sequences. The 
current sequence linking mechanism, which is based on species annota-
tion, works only on genomic sequences, and thus the highly informative 
homologous sequences from metagenomics databases cannot be fully 
utilized to guide multichain structural assembly. For homomer com-
plexes, the current approach simply links all sequences of monomer 
MSAs to themselves. However, not all homologous sequences interact 
with themselves and an approach correctly linking the interacting 
homologs, but not noninteracting homologs (for example, based on 
protein–protein interaction predictions), may help further improve 
homomer MSA construction. The identification of robust methods 
for optimal construction of paired MSAs will likely be of great value to 
future efforts to optimize predictions regarding heterologous con-
tacts between proteins, as well as for related tasks such as classifying 
arbitrary protein pairs as interacting versus noninteracting. In addi-
tion to MSA pairing, another potential area for growth is to retrain 
AlphaFold2-like models making explicit use of the more informative 
monomer MSAs; this may help address the sequence pairing issues 
directly through an integrated network learning process.

In addition, stoichiometry information (the number of copies of 
each component chain) for the complex is required before implement-
ing the DMFold-Multimer pipeline, which may limit the usefulness of 
the method in practical applications. Including a deep learning-based 
stoichiometry predictor25,26 based on the query sequences and evolu-
tionary signals to DMFold-Multimer pipeline may be part of the solu-
tion to alleviating this limitation. Furthermore, whether the current 
DeepMSA2/DMFold approach could be extended to RNA and RNA–
protein complex structure prediction is also a topic to explore in our 
ongoing research, where both limitations on the sparse availability of 
RNA sequence and structure databases compared with proteins need 
to be overcome.

More generally, the strong performance that we observe through 
the DeepMSA2/DMFold pipeline demonstrates that the protein struc-
ture prediction problem is not ‘solved’. Substantial room for improve-
ment over the current state-of-the-art still exists, particularly for 
proteins with few identifiable sequence homologs, and those involved 
in multiprotein complexes. The DeepMSA2/DMFold approach provides 

substantial advances in the prediction of some such difficult targets, 
showing additional evidence that optimization of the information 
content of input to deep learning-based protein structure prediction 
methods must be considered with as much care as the design of the 
predictor itself.

Online content
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Methods
Benchmark dataset preparation
Monomer proteins from CASP. Some 293 domains from monomer 
targets in the CASP experiments were collected to benchmark the effect 
of DeepMSA2 on monomer protein structure prediction. The CASP 
experiments often classify the domains as template-based modeling 
(TBM)-easy, TBM-hard, TBM/FM and FM. To simplify the data analy-
ses, we merged TBM-easy and TBM-hard domains as TBM domains, 
and TBM/FM and FM domains as FM domains in this study. In our 
benchmarks, 48 FM domains and 64 TBM domains came from CASP13;  
37 FM domains and 50 TBM domains were taken from CASP14; and  
47 FM domains and 47 TBM domains were from CASP15 (Supplemen-
tary Table 11).

Multimer protein complexes from CASP. Fifty-four protein complex 
targets were collected from CASP13 and CASP14, including 14 heter-
omer and 40 homomer complexes. Here we use the stoichiometry 
variable to represent the type of a complex; that is, with the alphabet 
representing different protein chains and the number after each let-
ter indicating the number of copies of the corresponding component 
protein chain in the complex. For example, ‘A3B2C2’ means the com-
plex contains three different protein chains, A, B and C, and there 
are three copies of protein A, two copies of protein B and two copies 
of proteins C in this complex. For homomers, the dataset contains 
twenty-two ‘A2’ (dimer), thirteen ‘A3’ (trimer), four ‘A4’ (tetramer) 
and one ‘A8’ (octamer) complexes. For heteromers, nine ‘A1B1’, three 
‘A2B2’, one ‘A3B1’ and one ‘A1B1C1D1E1’ complexes are in the dataset 
(Supplementary Table 7).

Human proteome. The human proteome dataset contains more than 
20,000 proteins or peptides with lengths between 2 and 34,350 amino 
acids collected from UniProt (https://www.uniprot.org/uniprotkb/?
facets=reviewed%3Atrue&query=proteome%3AUP000005640). In 
2021, DeepMind released the AlphaFold2 model database, AlphaFold2 
DB22, which contains structure models predicted by AlphaFold2 for 
several reference proteomes, including the human proteome. How-
ever, only around 70% (13,838) of human proteins in AlphaFold2 DB 
have confident predictions with pLDDT ≥ 0.7. From the remaining 
6,757 proteins for which AlphaFold2 failed to create confident folds, 
we selected the 5,042 proteins with lengths <800 amino acids for 
remodeling by DMFold.

Number of effective sequences in the MSA
To quantify the sequence diversity of an MSA, we define the number 
of effective sequences (Neff) as follows:

Neff = 1
√L

N
∑
n=1

1
1 +∑N

m=1,m≠nI [Sm,n ≥ 0.8]
(1)

where L is the length of the query sequence, N is the number of 
sequences contained in the MSA, Sm,n is the sequence identity 
between the mth and nth sequences, and I[] represents the Iver-
son bracket, which takes the value I[Sm,n ≥ 0.8] = 1 if Sm,n ≥ 0.8, and 
0 otherwise.

Based on the definition in equation (1), MSAs with a more diverse 
set of sequence pairs with sequence identity <0.8 have the term 
∑N

m=1,m≠nI [Sm,n ≥ 0.8] closer to 0, and thus result in a higher Neff value 

given the same number of sequences (N). In case that all N sequences 
in an MSA are diverse (pairwise sequence identity <0.8), the term 
∑N

m=1,m≠nI [Sm,n ≥ 0.8] = 0 , and then Neff will be N/√L. In other words, 

given a Neff cutoff Neffcut, the minimal number of diverse sequences 
needed for modeling can be roughly estimated by

Nmin = Neffcut×√L (2)

It is generally believed that MSAs with more diverse sequences 
and higher alignment coverages can provide more evolutionary and 
coevolutionary information and thus better assist deep learning pro-
tein structure prediction. To quantitatively evaluate that belief based 
on our data, in Supplementary Fig. 10a we plot the TM-score of DMFold 
models versus Neff values for the 62 monomer FM domains in CASP13–
CASP15. Although higher Neff values tend to correspond to models 
with higher TM-scores, there is no clear quantitative threshold of Neff 
corresponding to the absolute success of structure modeling. Follow-
ing the general trend, we can provide two approximate thresholds, 
Neff = 20 and Neff = 24, which are roughly associated with three 
TM-score territories; that is, the average TM-scores with Neff in [0, 20], 
(20, 24] and (24, ∞) are roughly <0.70, ~0.85 and >0.90, respectively. 
Thus, following equation (2), approximately at least 10 (= 20×√100) or 
160 (= 24×√100 ) diverse sequences are required for good- or 
high-accuracy modeling of a 100-residue protein, respectively.

In Supplementary Fig. 10b, we also present a comparison of 
TM-score versus alignment coverage, which is defined as the average 
rate of aligned residues on the query sequence across all homologous 
sequences in the MSA, for the same set of recent CASP targets. The 
data show no obvious correlation between TM-score and coverage of 
the MSA. It is obvious that an MSA with coverage that is too short (for 
example, with the alignment focused only on the N-terminal tail) is 
useless for deducing the coevolutionary signal of the entire protein 
sequence. Our data suggest, however, that the final performance of 
structure prediction does not depend on the alignment coverage as 
long as the alignment covers a reasonable region of the query sequence 
(for example, more than ~60% in our case).

Genome database collection
Three genomic sequence databases, Uniclust3027, UniRef3027 and 
Uniref9028, which are all based on UniProtKB29, are utilized in the Deep-
MSA2 pipeline (details are given in Supplementary Table 12).

Uniclust30/UniRef30. The Uniclust30/UniRef30 database is an 
HHblits-style8 hidden Markov model (HMM) database that clusters 
UniProtKB29 sequences at the level of 30% pairwise sequence identity 
by MMseqs29. For each cluster, an ‘A3M’ formatted MSA generated by 
Clustal Omega30 and the corresponding HMM are provided for HHblits. 
Whereas Uniclust30 is the version of the database generated before 
2019, UniRef30 is the one generated after 2019. In total, Uniclust30 
contains 124 million sequences in 15 million clusters, and UniRef30 
provides 231 million sequences in 25 million clusters.

Uniref90. Uniref90 provides sequences from the UniProtKB clustered 
at 90% pairwise sequence identity by MMseqs2. Unlike Uniclust30 and 
UniRef30 (which are HMM databases), Uniref90 is a flat sequence data-
base. For each cluster, only the representative sequence of the cluster 
is kept in the database. Thus, there are 109 million protein sequences/
clusters in the Uniref90 database.

Metagenomics genome database collection
Six metagenomics sequence databases are utilized in DeepMSA2. These 
include three third-party databases (Metaclust31, BFD31 and Mgnify32) 
and three in-house databases (TaraDB21, MetaSourceDB6 and JGIclust). 
The three in-house databases, which were built using data collected 
from the European Bioinformatics Institute (EBI) Metagenomics pro-
ject33 and the Joint Genome Institute ( JGI)34, contain in total 35.6 billion 
nonredundant sequences, which are approximately 11 times as large 
as the three third-party metagenomics databases used (~3.2 billion).

Metaclust. Metaclust was created by clustering and assembling  
1.59 billion protein sequence fragments predicted by Prodigal35 in 
~2,200 metagenomics and meta-transcriptomic datasets that came 
from the JGI34. The 1.59 billion metagenomics sequences were clustered 
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with 50% sequence identity at 90% coverage, yielding 712 million  
clusters and the corresponding nonredundant sequences.

BFD. The BFD is an HHblits-style HMM database that was created by 
clustering 2.5 billion protein sequences from UniProtKB29, Metaclust31, 
soil reference catalog and marine eukaryotic reference catalog assem-
bled by Plass36. BFD was clustered by MMseqs29 with 30% pairwise 
sequence identity, and only the clusters that have more than three 
sequence members were kept in the database. In total, 66 million clus-
ters and 2.2 billion genomics/metagenomics sequences are collected 
in the BFD database.

Mgnify. The Mgnify metagenomics database was collected by the 
EBI Metagenomics project32,33 and was clustered by MMseqs2 using  
coverage and sequence identity threshold set at 90%. Similar to 
Uniref90, for each cluster, only the representative sequence was kept 
in Mgnify database, leading to 305 million metagenomics sequences.

TaraDB. We obtained 245 metagenomics sequencing runs from the 
‘Tara Oceans’ project hosted on EBI Metagenomics (https://www.
ebi.ac.uk/metagenomics/studies/ERP001736). To obtain protein 
sequences for Tara metagenome database, a pipeline combining raw 
reads assembly, open reading frames (ORFs) identification and redun-
dant sequence trimming approaches were implemented21. The raw 
read sequences were assembled by MEGAHIT v.1.0 to contigs and only 
contigs with >500 nucleotides are selected. Next, Prodigal (v.2.6) was 
used with parameters ‘-c –m p meta’ to identify ORFs from metagenome 
data and translate the gene to protein productions. Finally, CD-HIT 
(v.4.6)37 was utilized to cluster protein sequences in each sample, and 
the sequence identity threshold was set to 95% to remove the identical 
sequence. In total, the Tara metagenome database contains 121 million 
protein sequences.

MetaSourceDB. MetaSourceDB was used in our previous MetaSource 
research6, which collects metagenome data from four large environmen-
tal biomes of the EBI database (https://www.ebi.ac.uk/metagenomics/). 
Those four biomes, including ‘fermentor’, ‘soil’, ‘lake’ and ‘gut’, cover all 
typical biomes of the EBI database. In total, 1,705 high-quality samples 
were selected, assembled and clustered by the similar pipeline used in 
TaraDB. In addition to Prodigal, FragGeneScan38 (v.1.20) was also used 
to predict ORFs from assembled contigs to avoid missing the short 
sequences. Overall, 805, 4,170, 1,290 and 12,811 million protein sequences 
are collected for the ‘fermentor’, ‘soil’, ‘lake’ and ‘gut’ biomes, respec-
tively, resulting in 19.1 billion proteins contained in MetaSourceDB.

JGIclust.  We collected ~25,000 metagenomics and meta 
-transcriptomic samples from the JGI34. For each project, the assembled 
protein sequences (‘*.assembled.faa’) were downloaded and clustered 
with 90% sequence identity at 90% coverage by MMseqs2. For each 
cluster of one project, only the representative sequence was kept in 
the in-house JGIclust database. A total of 16.4 billion metagenomics and 
meta-transcriptomic sequences are contained in the JGIclust database.

DeepMSA2-Monomer pipeline for monomeric MSA 
construction
Given the complexity and huge size of the protein sequence data-
bases, there is no single MSA construction tool that can quickly search 
through all sequence databases and create reliable MSAs for different 
targets. To address this issue, DeepMSA2 utilizes a multi-MSA genera-
tion step to create a diverse set of MSAs using the dMSA, qMSA and 
mMSA programs, followed by a MSA ranking step based on rapid deep 
learning structure prediction (Fig. 1a).

dMSA. The dMSA algorithm used in DeepMSA2 is modified from our 
previous MSA generation tool, DeepMSA. Here, dMSA generates up to 

three MSAs by a three-stage procedure that uses HHblits8, Jackhmmer39 
and HMMsearch39 to iteratively search the genomic and metagenomics 
sequence databases. In stage 1, HHblits is used to search Uniclust30 
with the parameters ‘-diff inf -id 99 -cov 50 -n 3’. In stage 2, Jackhmmer 
is used to search against Uniref90 with parameters ‘-N 3 -E 10 --incE 1e-3’ 
to pick up potentially homologous sequences. Instead of directly using 
the alignment generated by Jackhmmer, the full-length sequences 
according to the Jackhmmer raw hits are collected from Uniref90. 
These full-length sequences are clustered by kClust into sequence 
clusters by 30% sequence identity cutoff. Next, Clustal Omega30 is used 
to realign sequences within each cluster into aligned sequence profiles. 
Those sequence profiles are then converted to a custom HHblits-style 
database using the ‘hhblitdb.pl’ script from the HH-suite package. 
HHblits is again applied to search this custom database using the same 
search parameter as in stage 1 but starting from the stage 1 sequence 
MSA as input. In stage 3, the MSA from stage 2 is converted to a HMM 
by HMMbuild from the HMMER package. This HMM is searched against 
the Metaclust metagenome database by HMMsearch, using parameters 
‘-E 10 --incE 1e-3’. Similar to stage 2, sequence hits from HMMsearch are 
built into a custom HHblits database. The MSA from the previous stage 
is used to search against this new custom HHblits database to derive the 
stage 3 MSA. In addition, to speed up the custom database construc-
tion and filter out the noisy raw sequences picked up by Jackmmer and 
HHMsearch in stages 2 and 3, respectively, a BLAST filter is applied to 
the raw sequences obtained from Uniref90 before kClust clustering. 
Here, PSIBLAST18 is used to rank the homologous relation between 
the raw hits and the query sequence by e-value, and up to 30,000 
top-ranked raw hits will be used in the kClust clustering step. Based on 
our benchmark, by adding this BLAST filter, the AlphaFold2 modeling 
accuracy can be slightly increased compared with that without the filter 
in the CASP14 monomer dataset (Supplementary Table 13). The dMSA 
construction will be stopped at any searching stage whenever the Neff 
value is >128. Thus, at most three MSAs will be generated by dMSA.

qMSA. qMSA is composed of four stages that perform HHblits (v.2), 
Jackhmmer, HHblits (v.3) and HMMsearch searches against Uniref30, 
Uniref90, BFD and Mgnify databases, respectively. In the BFD 
database-searching step, HHblits (v.3) is utilized with parameters ‘-diff 
inf -id 99 -cov 40 -n 3 –e 1’. Similar to dMSA stages 2 and 3, the sequence 
hits from Jackhmmer, HHblits (v.3) and HMMsearch in stages 2, 3 and 
4 of qMSA are converted to HHblits (v.2) formatted databases, against 
which the HHblits (v.2) search based on the MSA input from the previ-
ous stage is performed. As with dMSA, the searching will stop when the 
MSA from the current stage of qMSA has Neff > 128, resulting in up to 
four MSAs created by the qMSA method.

mMSA. In mMSA, the qMSA stage 3 alignment is used as a probe by 
HMMsearch using parameters ‘-E 10 --incE 1e-3’ to search through 
a metagenomics database combining JGIclust, TaraDB and Meta-
SourceDB, with the resulting sequence hits converted to a raw sequence 
database. This mMSA database is then used as the target database, 
which is searched by HHblits (v.2) with three seed MSAs (MSAs from 
dMSA stage 2 and qMSA stages 2 and 3) to derive three new MSAs. 
The mMSA program will not be used if both dMSA and qMSA stopped 
at stage 1, which means that the number of detected homologous 
sequences is sufficiently reliable from genomic sequence databases.

Final MSA selection. A simplified version of AlphaFold2 is applied 
here to rank the MSAs generated by dMSA, qMSA and mMSA, where the 
template detection module is turned off and the embedding parameter 
is set to one in AlphaFold2 for rapid model generation. Up to ten MSAs 
are collected from the MSA generation step, where each of the MSAs 
is fed into the modified AlphaFold2 program to create five structure 
models. For a given MSA, the highest pLDDT score among the five pre-
dicted models is assigned as the rank score of the MSA. The MSA with 
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the highest rank score among all created MSAs is returned as the final 
selected MSA, reflecting an optimization of the information content 
contributing to protein structure prediction.

DeepMSA2-Multimer pipeline for multimeric MSA 
construction
DeepMSA2 for multimeric MSA construction contains four steps:  
(1) monomeric MSA generation, (2) monomeric MSA pairing, (3) joint 
MSA creation by sequence linking, and (4) multimeric MSA ranking 
and selection (Fig. 1b).

Monomeric MSA generation. The abovementioned Deep-
MSA2-Monomer pipeline is used to create monomeric MSAs for each 
of the component chains. However, instead of returning only one 
top-ranking MSA, up to ten MSAs are kept for each chain, to facili-
tate the modeling of quaternary orientations of between different  
component chains.

MSA pairing. Two types of complexes are considered in DeepMSA2. 
For homomeric complexes in which all component chains are identical, 
all of the monomer MSAs are utilized and the multimeric MSAs are cre-
ated by concatenating each of the monomer MSAs n times side-by-side, 
where n is the number of monomer chains (Supplementary Fig. 11). For 
heteromeric complexes, the top M MSAs are selected for each mono-
mer chain so that MN distinct paired MSAs can be created for the com-
plex, where N is the number of distinct chains in the complex. To avoid 
an impractically long MSA construction time, M is set as the maximal 
value to satisfy MN ≤ 100. For example, for a complex containing three 
different protein chains (A2B2C1, N = 3), M will be set to 4 (43 ≤ 100) 
(Supplementary Fig. 12a). In other words, for each component chain 
in this complex, we select four top-ranked monomer MSAs and build 
paired MSAs for the complex with 64 different combinations of those 
monomer MSAs. Normally, MN ranges from 50 to 100 for different kinds 
of heteromer complexes.

Sequence linking. For a given set of MN paired monomeric MSAs, for 
example (MSA − 1i1, MSA − 2i2, …, MSA − NiN) with 1 ≤ i1, i2,… , iN ≤ M, the 
sequences from the monomeric MSAs are concatenated into a multi-
meric MSA as follows (Supplementary Fig. 12b). First, the sequences 
in each monomeric MSA are grouped based on the UniProt annotated 
species. The sequences in each group are then ordered based on the 
sequence identity to the query sequence. To properly capture ortholo-
gous signals of interchain coevolution, the top sequences of different 
monomeric MSAs belonging to the same species group are linked 
together side-by-side to form a composite sequence in the multimeric 
MSA. In cases where one of the monomeric MSAs is missing for a spe-
cific species, which appear in more than one other chains, the compo-
nent chain is padded with gaps in the composite sequence with other 
linked chains having that species. Finally, the unlinked sequences in 
the monomeric MSAs are padded below the linked sequences. This 
composite linking step is applied only to heteromeric complexes, as 
the MSAs for homomeric complexes are constructed by simply con-
catenating the same monomer MSA multiple times as shown in Sup-
plementary Fig. 11.

MSA selection. Of the MN concatenated MSAs formed from the 
MSA paring procedure, 25 top MSAs are returned from the Deep-
MSA2-Multimer pipeline based on the M-score:

M-score = Neff(
∑N

i=1ni×pLDDTi

∑N
i=1ni

) (3)

where Neff is the depth of the concatenated MSA calculated based 
on equation (1). ni is the copy number of ith component chain in the 

complex where pLDDTi is the pLDDT score of chain-i taken from the 
monomeric MSA generations. Again, this step is designed for hetero-
meric complexes, whereas for homomeric complexes, all ten MSAs 
from self-concatenation are returned.

Protein tertiary and quaternary structure prediction
AlphaFold2 and AlphaFold2-Multimer programs. In the standard 
AlphaFold2 program20, an end-to-end network architecture is imple-
mented on predicting 3D structure of monomeric proteins from an MSA 
and homologous templates. AlphaFold2-Multimer4 was extended from 
AlphaFold2 protocol for quaternary structure prediction by training 
the networks on protein complex structures.

DMFold. DMFold-Monomer (or DMFold) is designed for modeling 
structure of monomer proteins by combing the DeepMSA2 and Alpha-
Fold2 pipelines. The major difference between DMFold and AlphaFold2 
is that the MSAs in AlphaFold2 are regenerated by DeepMSA2.

DMFold-Multimer. The DMFold-Multimer pipeline utilizes Alpha-
Fold2-Multimer to generate complex structure models, but with k 
multimer MSAs from DeepMSA2-Multimer as the input matrix, where 
k = 25 for heteromer and k = 10 for homomer complexes. For each 
multimer MSA, 25 models are generated. Finally, the resulting 625 
(or 250 for homomer) complex models are ranked by the predicted 
TM-scores4,40, and the top five complex models are selected as the 
final set of models.

We note that we did not retrain the AlphaFold2 or AlphaFold2- 
Multimer network models with DeepMSA2 MSAs in the DMFold or 
DMFold-Multimer pipeline, because one focus of this study is on com-
paring the impact of the MSAs on protein structure prediction and 
making a fair comparison with AlphaFold2 and AlphaFold2-Multimer. 
Meanwhile, because the original AlphaFold2 training sets contain 
proteins with various MSA qualities—for example, with Neff ranging 
from low to high values—it is expected that the retraining of Alpha-
Fold2 models on a set of improved MSAs should have a minimal impact 
(if any) on the final model quality. Thus, for the calculations shown 
here, we simply used the DeepMind pretrained AlphaFold2 and Alpha-
Fold2-Multimer models and parameters when implementing DMFold 
and DMFold-Multimer programs.

DeepPotential for residue–residue restraint prediction
DeepPotential19 is a deep learning algorithm predicting distance 
and geometry restraints of proteins based on MSAs (Supplemen-
tary Fig. 13). Given an MSA, two major pair features are extracted, 
including raw coupling parameters from the pseudo likelihood 
maximized (PLM) 22-state (the 20 standard amino acids, the non-
standard amino acid type and the gap state) Potts model and the raw 
mutual information (MI) matrix. The PLM feature minimizes a loss  
function defined by

ℒPLM = −
L
∑
i=1

N
∑
n=1
ln

exp(hi(σin)+
L
∑

j=1, j≠i
Pi,j(σin ,σ

j
n))

∑Q
q=1 exp(hi(q)+

L
∑

j=1, j≠i
Pi,j(q,σjn))

+ λsingle
L
∑
i=1
||||hi (σin)||||

2
2

+ λpair
L
∑
i=1

L
∑
j=1
||||Pi,j (σin,σ

j
n)||||

2

2

(4)

where L is the length of the protein and N is the number of aligned 
sequences in the MSA, σin indicates the amino acid type of nth sequence 
and ith position in the MSA; and h and P are field and coupling param-
eters respectively. Q = 22, representing 20 types of regular amino acids, 
plus the unknown residue type state and the gap state. Additional L2 
regularization terms are also added to avoid possible overfitting, where 
λsingle = 1 and λpair = 0.2 × (L − 1) are the regularization coefficients. The 
MI feature of residue pair i and j is defined by:
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Mi, j (k, l) = fi, j (k, l) ln
fi, j (k, l)
fi (k) fj (l)

(5)

where fi (k) is the frequency of a residue type k at position i of the MSA, 
fi,j(k,l) is the co-occurrence of two residue types k and l at positions i 
and j. Complementary information—that is, conditional and marginal 
relationships between residues—can be extracted from the MSAs by 
PLM and MI features, respectively.

In addition, sequential features, such as self-mutual information 
feature, field parameter of the Potts model, one-hot sequence feature 
and HMM profiles, are also considered as the inputs of DeepPotential. 
The sequential features and pair features are fed into deep convo-
lutional neural networks separately, where each of them is passed 
through a set of 10 one-dimensional and 10 two-dimensional residual 
blocks, which are then tiled together. The feature representations are 
used as the inputs of another fully residual neural network containing 
40 two-dimensional residual blocks which output interresidue distance 
terms (Supplementary Fig. 13).

To assess the accuracy of the distances predicted by DeepPotential 
relative to experimental results, the MAE of the top 5L (L is the protein 
length, in amino acids) long-range (|i − j|≥24) predicted distances is 
considered:

MAE = 1
5L

5L
∑
(i,j)

||d
pred
i,j − dexpi,j

|| (6)

where dexpi,j  is the Cβ–Cβ distance between residue i and j in the experi-
mental structure, and dpredi,j  is the predicted Cβ–Cβ distance between 
residue i and j from DeepPotential; the latter is estimated as the middle 
value of the bin with the highest probability.

Model quality assessment
TM-score40 is used in the work to assess the model quality for both 
monomer and complex structures of proteins. For calculating 
TM-score, US-align41 is utilized here, with the commands ‘US-align 
monomer-model.pdb native.pdb’ for protein monomer and ‘US-align 
complex-model.pdb native.pdb –ter 0 –TMscore 6’ for protein com-
plexes. All data statistical analyses are done by R (v.4.1.2).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The third-party databases used in this work, Uniclust30 (UniRef30), 
BFD, Uniref90, Metaclust and MGnify, are available at https://gwdu111.
gwdg.de/~compbiol/uniclust/, https://bfd.mmseqs.com/, https://
ftp.uniprot.org/pub/databases/uniprot/current_release/uniref/
uniref90/, https://metaclust.mmseqs.org/ and http://ftp.ebi.ac.uk/
pub/databases/metagenomics/peptide_database/, respectively. All 
CASP benchmark data used in this work are available at https://zhang-
group.org/DMFold/ (or https://zenodo.org/record/8371924). The 
structure modeling results on 5,042 human proteome proteins are 
freely available at https://zhanggroup.org/DMFold/human (or https://
zenodo.org/records/10099696) for academic use. Source data are 
provided with this paper.

Code availability
The online servers of DeepMSA2/DeepMSA2-Multimer and DMFold/
DMFold-Multimer are freely available at https://zhanggroup.org/
DeepMSA/ and https://zhanggroup.org/DMFold, respectively. The 
standalone packages of DeepMSA2/DeepMSA2-Multimer and DMFold/
DMFold-Multimer are freely available at https://zhanggroup.org/
DeepMSA/download (or https://zenodo.org/record/10092418) and 

https://zhanggroup.org/DMFold/download (or https://zenodo.org/
records/10092882), respectively, for academic use.
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