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RNA structure profiling at single-cell 
resolution reveals new determinants of  
cell identity

Jiaxu Wang    1,5 , Yu Zhang    1,5, Tong Zhang1,5, Wen Ting Tan1, 
Finnlay Lambert1,2, Jefferson Darmawan1, Roland Huber    3 & Yue Wan    1,4 

RNA structure is critical for multiple steps in gene regulation. However, 
how the structures of transcripts differ both within and between individual 
cells is unknown. Here we develop a SHAPE-inspired method called 
single-cell structure probing of RNA transcripts that enables simultaneous 
determination of transcript secondary structure and abundance at 
single-cell resolution. We apply single-cell structure probing of RNA 
transcripts to human embryonic stem cells and differentiating neurons. 
Remarkably, RNA structure is more homogeneous in human embryonic 
stem cells compared with neurons, with the greatest homogeneity 
found in coding regions. More extensive heterogeneity is found within 3′ 
untranslated regions and is determined by specific RNA-binding proteins. 
Overall RNA structure profiles better discriminate cell type identity and 
differentiation stage than gene expression profiles alone. We further 
discover a cell-type variable region of 18S ribosomal RNA that is associated 
with cell cycle and translation control. Our method opens the door to the 
systematic characterization of RNA structure–function relationships at 
single-cell resolution.

Understanding the genetic and transcriptomic determinants of cell 
identity remains a key question in biology. Toward this goal, numerous 
groups have developed technologies to interrogate different aspects 
of the genome and transcriptome in a single cell, including chromatin 
states, RNA abundance levels and alternative splicing1–5. RNA structure 
plays critical roles in every step of an RNA’s lifecycle, including transcrip-
tion, splicing, localization6,7, translation8 and RNA decay9. However, 
how RNA structure differs among—and contributes to—the identity of 
individual cells is poorly understood. As such, defining the structurome 
of an individual cell will greatly enhance our understanding of cellular 
identity and is a fundamental problem that needs to be addressed.

The brain is one of the most complex organs in our body and 
undergoes extensive co-/posttranscriptional gene regulation10–12.  

Recent advances in single-cell transcriptomic analyses have revealed a 
large amount of diversity in posttranscriptional processes, including 
RNA expression, alternative splicing and alternative 3′ untranslated 
region (UTR) usage in individual cells13. However, the extent to which 
RNA structures differ, are regulated and have different functions in indi-
vidual cells remains unknown. As such, being able to probe RNA struc-
tures in single cells during the neuronal differentiation process deepens 
our understanding of neuronal states during brain development.

Unfortunately, current single-cell RNA sequencing cannot 
be directly applied to study RNA structure. Recent developments 
in high-throughput RNA structure mapping technologies such as 
DMS-mutational mapping, icSHAPE and SHAPE-MaP have enabled us to 
probe the structures of thousands of RNAs simultaneously, providing 
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and Extended Data Fig. 1g), allowing us to now perform single-cell RNA 
structure probing.

To quantitate RNA structure information in single cells, we devel-
oped a computational pipeline to analyze sc-SPORT data (Fig. 2a). We 
observed high levels of mappability of sequencing reads from sam-
ples that are generated from millions of cells to single cells (median  
mappability >0.85; Extended Data Fig. 2a and Supplementary  
Table 1), suggesting that our single-cell structure libraries are of good 
quality. As cells with poor sequencing quality typically contain high 
mitochondrial RNA amounts and few detected genes, we filtered 
out cells with fewer than 5,000 detected genes and more than 5% 
mitochondrial RNA (Extended Data Fig. 2b). We then calculated the 
RNA structural reactivities in each cell (Methods) and observed a 
2–3% modification rate in both bulk and single cells with NAI-N3 
treatment (Extended Data Fig. 2c). Finally, we obtained sequencing 
reads of around 1 kb from the 3′ end of the transcript (Extended Data  
Fig. 2d), as expected from the RNA size distribution after fragmenta-
tion (Extended Data Fig. 1f).

While, traditionally, unique molecular identifiers (UMIs) are added 
to single-cell RNA sequencing libraries to collapse PCR duplicates, 
our current library preparation strategy will only contain UMIs at the 
end of the transcript due to a tagmentation step before final library 
amplification (Extended Data Fig. 2e). As such, we did not include 
UMIs for our single-cell RNA structure libraries. However, to test the 
duplication rates of our library, we added UMIs at the ends of the tran-
scripts for 48 single cells. After PCR duplicate removal, we observed 
duplication rates of 24–39% for three transfected RNAs in our sc-SPORT 
library (Extended Data Fig. 2f). This falls within the usual range of 
duplication rates for single-cell RNA sequencing libraries, indicating 
that our libraries are not suffering from severe bottlenecking effects. 
Importantly, using the UMIs, we observed that reads with or without 
duplicate removal show a high correlation in their modification rates 
(Extended Data Fig. 2g), suggesting that duplication removal does not 
affect our SHAPE-reactivity calculation.

To determine the depth of sequencing required to calculate accu-
rate single-cell RNA structure data, we performed in vitro structure 
mapping on a series of tenfold dilutions of the Tetrahymena ribozyme 
and observed good structural correlation with bulk at ∼700 copies of 
RNAs in solution (Extended Data Fig. 3a). Additionally, we subsampled 
our single-cell RNA structure probing data and compared the reactivity 
signals obtained at different sequencing depths between technical rep-
licates of sc-SPORT. We observed a good correlation at a depth of 600 
reads per 10 bases (Extended Data Fig. 3b), confirming that this is a good 
cutoff for our downstream analysis in studying single-cell structures.

To show that sc-SPORT can capture RNA structure information 
accurately, we calculated the area under the curve–receiver operating 
characteristics (AUC–ROC) of 18S ribosomal RNA in bulk and single 
cells. We observed a high AUC–ROC of 18S rRNA in single-cell pseu-
dobulk (AUC–ROC of 0.74) and bulk cells (AUC–ROC of 0.72; Fig. 2b). 
Moreover, the identified single-stranded bases along 18S rRNA are 
accurate (Extended Data Fig. 4a,b) and consistent with low-throughput 
footprinting data (Extended Data Fig. 4c,d). We observed an AUC–ROC 
of 0.6–0.71 for 18S rRNA in single cells (Fig. 2c), indicating that we 
captured both known single-stranded regions, as well as intracellu-
lar variability along 18S rRNA. To show the reliability of sc-SPORT in 
mapping RNA structures in different numbers of cells, we performed 
RNA structure probing using millions, 100, 10 and single hESCs as 
starting material. RNA structure probing data of 18S rRNA showed 
highly consistent reactivity, regardless of the starting number of cells  
(Fig. 2d and Extended Data Fig. 4e), indicating that sc-SPORT is reli-
able. As an additional control, we transfected Tetrahymena ribozyme 
RNA into HEK293T cells and calculated its single-cell SHAPE reactivity. 
We observed high AUC–ROC values of 0.74–0.83 in single cells and 
pseudobulk for the Tetrahymena ribozyme (Fig. 2e and Extended Data  
Fig. 4f), confirming the robustness of our method.

insights into the role of RNA structures in diverse organisms and cel-
lular states14–19. However, the requirement for large amounts of start-
ing material (typically from 107 cells) makes it difficult to assess the 
diversity of RNA structures in small cellular populations or single cells, 
limiting our understanding of RNA structure and function.

In this Article, we developed a new method—single-cell structure 
probing of RNA transcripts (sc-SPORT)—to simultaneously determine 
RNA secondary structure and gene expression information in a single 
cell (Fig. 1a). We show that sc-SPORT is accurate and applied it to study 
RNA structures in human embryonic stem cells (hESCs) and different 
stages of neuronal differentiation. We observed that individual tran-
scripts can take on a variety of structures in different cells, differences 
in structural similarity can be regulated by RNA-binding proteins and 
structural variation in single cells can better define cellular identities. 
These single-cell studies provide first glimpses into the nature of RNA 
structure dynamics, regulation and function inside individual cells 
during neurogenesis.

Results
Sc-SPORT detects RNA structures in single cells
To perform single-cell RNA structure probing, we modified RNA in 
single-stranded regions using structure-probing compounds. We then 
isolated individual cells, lysed and fragmented the RNAs, enriched 
for poly(A)+ RNAs, and performed reverse transcription (RT) and PCR 
amplification (Fig. 1a). After high-throughput sequencing and mapping 
to the transcriptome, we calculated the mutation rate at each base. A 
high mutation rate represents a high accessibility of the structure prob-
ing compound and indicates increased single strandedness, while a low 
mutational rate represents a low accessibility of the structure-probing 
compound for the base and indicates decreased accessibility at the 
base (Methods).

Low modification and mutation rates along an RNA make it diffi-
cult to assess chemical-induced mutations in single-cell RNA structure 
probing. To identify conditions that result in high mutation rates, we 
tested several in vivo structure probing compounds together with 
different RT enzymes along the Tetrahymena ribozyme, which has a 
well-known secondary structure in vitro. We observed that the treat-
ment of RNAs with NAI-N3, a cell-permeable SHAPE compound16, 
together with RT using Superscript II (SSII), resulted in high mutation 
rates (3.86%; Fig. 1b,c) and is highly accurate in structure determination 
(Fig. 1d and Extended Data Fig. 1a). As SSII tends to result in very slow 
rates of RT in the presence of manganese, we used a long RT time to 
enable efficient complementary DNA production and PCR amplifica-
tion (Extended Data Fig. 1b). We also confirmed that the NAI-N3 con-
centration used in vivo does not result in cell death of hESCs (Methods 
and Extended Data Fig. 1c).

Another major challenge in developing single-cell RNA structure 
probing is that chemical modifications introduced on an RNA result in 
an increase in premature reverse transcriptase drop-offs. As such it is 
difficult for the RT enzyme to travel to the beginning of the transcript 
to undergo template switching for second-strand synthesis, resulting 
in low library yield. As most of the current fragmentation methods are 
designed for larger amounts of RNAs (>100 ng), it is challenging to 
fragment small amounts of RNAs (10 pg to 1 ng) to sizes of interest. To 
increase the efficiency of second-strand synthesis and library prepa-
ration, we tested different RNA fragmentation conditions to gently 
reduce the RNA length of long RNAs without breaking the shorter RNAs 
(Extended Data Fig. 1d). Surprisingly, we observed that the fragmenta-
tion at 95 °C in the presence of deoxyribonucleotides (dNTPs) for small 
RNA amounts resulted in the size distribution of RNA fragments that are 
centered around 1,000 bases (Fig. 1e and Extended Data Fig. 1d–f). The 
presence of dNTPs also enabled us to continue with RT directly, without 
introducing an additional purification step, saving time and mate-
rial. This mild fragmentation step enabled an increase in the amount 
of cDNA product generated from ten cells and single cells (Fig. 1f  
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In addition to detecting RNA structure information in a single 
cell, we tested whether we could also identify structural differences in 
RNAs between individual cells. To do this, we introduced three different 
RNAs (Tetrahymena ribozyme, Den1 and human immunodeficiency 
virus (HIV) RNA) into a population of HEK293T cells and separately 
introduced a structure mutant (MT) version of these RNAs, with a few 
disrupted paired bases, into another population of cells (Fig. 2f and 
Methods). After performing sc-SPORT, we first confirmed that we can 
observe structural differences between the wildtype (WT) and MT 

RNAs at the level of pseudobulk (Fig. 2f and Extended Data Fig. 5a,b). 
We then confirmed that we can cluster single cells using RNA structure 
differences (Extended Data Fig. 5c–e), suggesting that RNA structure 
information can be used to separate cellular populations (Fig. 2g–i).

To further show that sc-SPORT is highly reproducible, we per-
formed a control whereby we treated a single cell with NAI-N3 and 
split the modified cellular RNAs into two pools before performing the 
library preparation for each pool. We observed a very high correlation 
in SHAPE reactivity (R2 = 0.94) between the two technical replicates 
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Fig. 1 | Development of sc-SPORT to probe RNA structures in single cells.  
a, Experimental workflow of library preparation of sc-SPORT. b, Bar plots 
showing detected mutation rates on the Tetrahymena ribozyme using different 
RT enzymes (SSII and TGIRT) and different RNA modification compounds  
(DMS, NAI and NAI-N3) at different concentrations. c, A bar plot showing the 
average mutation rates along single-stranded regions of Tetrahymena ribozyme 
upon different treatments in b. d, ROC curves showing the accuracy of different 
treatments against the known secondary structure of Tetrahymena ribozyme. 

e, Bioanalyzer plots showing the size distribution of untreated RNA (top), RNA 
fragmented in water (middle) and RNA fragmented in water in the presence of 
1 mM dNTP (bottom). f, Bar plots showing the amount of DNA that is generated 
from PCR amplification in single cells before (left) and after fragmentation 
(right) and in the presence of different concentrations of NAI-N3. The center 
represents the mean, and the error bars show the standard deviation. N = 3 
biological replicates.
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from the same cell, indicating that sc-SPORT is highly reproducible 
(Extended Data Fig. 5f). Last, we observed that summing reads along a 
transcript from sc-SPORT correlates well with gene expression obtained 
from the pseudobulk of untreated cells, indicating that our sc-SPORT 
data captures both RNA expression information and RNA structural 
information accurately in a single cell (Extended Data Fig. 5g,h).

RNAs can fold into different structures in individual cells
We performed two biological replicates of sc-SPORT in hESCs by 
sequencing 5–10 million reads per cell for 40 cells in each replicate. 
We obtained RNA reactivities for an average of 3,146 genes, including 
2,986 messenger RNAs, 138 long noncoding RNAs and 2 rRNAs in each 
hESC (Extended Data Fig. 6a). To determine the amount of sequencing 
needed for single-cell RNA structure determination, we sequenced 
four single cells to a much higher depth of 20 million reads per cell. 
The number of transcripts with RNA structure information that we can 
detect increases linearly with sequencing up to around 10 million reads 
per cell, after which the transcript number starts to plateau (Extended 
Data Fig. 6b). At a standard single-cell sequencing depth of around 2 
million reads, we can obtain structural information of ∼1,000 genes 
in a single hESC.

One of the key questions in RNA structure is whether the same RNA 
can form different structures in individual cells. To address this ques-
tion, we calculated RNA structural heterogeneity along transcripts in 
each cell (Methods) and binned the transcripts into different quantiles 
of structure variability (Fig. 3a and Supplementary Table 2). As structur-
ally homogeneous transcripts show little variation in their reactivity, 
and heterogeneous transcripts show more variation in their reactivity 
across single cells (Fig. 3b,c), we can identify structurally homogene-
ous and heterogeneous transcripts in hESC single cells. As expected, 
18S rRNA is one of the most structurally homogeneous RNAs among 
all detected transcripts (Fig. 3a), agreeing with the importance of its 
structure for its function. Additionally, we observed that many mRNAs 
involved in translation, including ribosomal protein mRNAs and trans-
lation elongation factors, are more structurally homogeneous (Fig. 3a). 
Overall, Gene Ontology (GO) term enrichments of highly homogene-
ous genes are associated with ribosomal assembly, rRNA processing 
and translation-related biological processes (Fig. 3d), suggesting that 
transcripts associated with key cellular processes are tightly regulated 
at the structure level. In addition, the GO term enrichments of highly 
heterogeneous genes are associated with mRNA stability, the establish-
ment of RNA localization, protein localization and alternative mRNA 
splicing-related biological processes (Fig. 3d), linking RNA structure 
variability to gene regulation.

As structurally homogeneous transcripts also tend to be highly 
expressed, we confirmed that our calculated homogeneity is not due 
to our ability to calculate RNA reactivities more accurately in abundant 
transcripts, by subsampling the abundant transcripts to the median 
depth of all our detectable transcripts (Extended Data Fig. 6c,d). 

Subsampling of the abundant transcripts showed that they remain 
more structurally homogeneous than the less abundant transcripts, 
indicating that their homogeneity is not due to experimental limita-
tions (Extended Data Fig. 6e,f).

We observed that different windows along a transcript can display 
various extents of structural heterogeneity between individual cells 
(Extended Data Fig. 6g–j). To identify structurally homogeneous/
heterogenous regions, we calculated the variation in reactivity in 10 nt 
windows using linear regression in single cells (Methods). Indeed, RNA 
regions in transfected RNAs with structure mutations show lower R2 
values and exhibit higher variability across single cells (Fig. 3e and 
Extended Data Fig. 6k,l). Additionally, we show that structurally homo-
geneous transcripts, determined by variation of cosine distance, show 
a larger proportion of homogenous windows using R2 (Fig. 3f), confirm-
ing that our heterogeneity measurements are accurate.

To understand the properties underlying homogeneous or het-
erogeneous windows in the human transcriptome, we tested the 
correlation of these windows with SHAPE reactivity, GC content and 
abundance of that window (Fig. 3g–j). We confirmed that windows with 
low reactivity are correlated with increased GC content (Fig. 3g). Addi-
tionally, we observed that homogeneous windows are associated with 
higher GC content (Fig. 3h), have lower reactivity (Fig. 3i) and are inde-
pendent of the abundance of the window (Fig. 3j). We next examined the 
location of these structurally heterogeneous/homogeneous windows 
in mRNAs by calculating their frequencies in the coding region (CDS), 
5′ and 3′ UTRs. We observed that 3′ UTRs are significantly enriched for 
heterogeneous windows as compared with CDS, suggesting that they 
are more structurally variable in single cells (Fig. 3k,l).

Structural heterogeneity can better inform RBP binding
Human 3′ UTRs undergo extensive processing20, including alternative 
splicing, alternative polyA usage, RNA modifications and RNA binding 
protein (RBP) binding21–23. To evaluate the effect of alternative splic-
ing on RNA structure heterogeneity, we asked whether transcripts 
with high structure heterogeneity also show large changes in the rela-
tive proportions of transcript isoforms in single cells. We observed a 
weak correlation between the two (Extended Data Fig. 7a), indicating 
that alternative splicing is not a major contributor to structural het-
erogeneity. To identify other regulators that could modulate struc-
ture heterogeneity, we asked whether differentially heterogeneous 
regions could be enriched for RBPs. We analyzed the data using an 
enhanced crosslinking and immunoprecipitation (eCLIP) dataset from 
ENCODE24 and confirmed that more accessible regions are enriched 
for single-strand specific RBPs such as pumilio homolog 2 (PUM2)  
(ref. 25), insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) 
(ref. 26), SUB1 regulator of transcription (SUB1) (ref. 27), lin-28 homolog 
B (Lin28B) (ref. 28) and G3BP stress granule assembly factor 1 (G3BP1) 
(ref. 29) (Fig. 4a and Extended Data Fig. 7b). We also confirmed that 
less accessible regions are enriched for double-strand specific RBPs 

Fig. 3 | Single-cell RNA structure features in the hESC transcriptome.  
a, A density plot showing the distribution of structural heterogeneity at a 
transcript level for the hESCs. Red dashed lines indicate 25% percentile  
(most homogeneous) and 75% percentile (most heterogeneous) of transcripts. 
The names of selected genes are labeled, and 18S rRNA is labeled in red.  
b,c, A heatmap showing per base reactivity in hESCs for a stable (b) and variable 
(c) transcript. Each row is a nucleotide along the transcript and each column 
indicates a cell. The line plot on the right indicates the R2 value of each nucleotide 
in the heatmap. d, A bar plot showing the enriched GO terms for the most 
heterogeneous (yellow) and homogeneous (green) transcripts. P values were 
calculated using the Fisher exact test. e, Top: a line plot showing the difference 
in SHAPE reactivity between WT and MT Den1 RNA. Bottom: line plots showing 
the structural heterogeneity values (R2) for WT, MT and a mix of WT and MT Den1 
RNA. f, Violin plots showing the distribution of heterogeneous windows (R2) 
in genes with different extents of homogeneity (deviation of cosine distance). 

The bars in the violin plot represent the median and the interquartile range. 
The numbers are as shown. g, Box plots showing the distribution of the average 
reactivity of 10 nt windows with increasing GC content. The window numbers 
of different GC content are as shown. h, Box plots showing the distribution of 
the homogeneity (R2) of 10 nt windows with increasing GC content. The window 
numbers of different GC content are as shown in g. The box plots show the means 
and 25th to 75th percentile interquartile range, and the bars show the range from 
5th to 95th percentile. i, Density plot showing the correlation of homogeneity (R2) 
with the average reactivity of 10 nt windows (window no. 56,096). j, Density plot 
showing the correlation between homogeneity (R2) and read coverages of 10 nt 
windows. k,l, A metagene analysis of the distribution of 25% most heterogeneous 
(k) and homogeneous windows (l) centered on the start and stop codon of 
mRNAs. The background line indicates all detected windows. The P value was 
calculated by a one-sided hypergeometric test.
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such as staufen double-stranded RNA binding protein 2 (STAU2)  
(ref. 30), DEAD-box helicase 3 X-linked (DDX3X) (ref. 31), UPF1 RNA 
helicase and ATPase (UPF1)32, and DEAD-box helicase 55 (DDX55)  
(ref. 33) (Fig. 4a and Extended Data Fig. 7b), confirming that our single- 
cell data captures known patterns from bulk cells.

Calculating the enrichments of RBPs on heterogeneous and homo-
geneous regions identified 11 and 8 RBPs enriched in homogeneous 
and heterogeneous regions, respectively (Fig. 4a). RBPs enriched for 

homogeneous/heterogeneous RNA regions are generally associated 
with low and high reactivity regions, respectively (Fig. 4a,b). On the 
basis of our enrichments, we hypothesize that RBPs without clear 
structural preference in the literature, including A-kinase anchoring 
protein 1 (AKAP1), poly(rC) binding protein 1 (PCBP1) and poly(A) 
binding protein nuclear 1 (PABPN1), are likely to bind to low reactivity 
regions, and RBPs such as nucleolar and coiled-body phosphoprotein 
1 (NOLC1), BCL2-associated transcription factor 1 (BCLAF1), zinc finger 
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protein 622 (ZNF622), glutamate-rich WD repeat containing 1 (GRWD1) 
and ubiquitin C-terminal hydrolase L5 (UCHL5) are likely to bind to high 
reactivity regions on their targets. Additionally, we observed that RBPs 
that are enriched for structurally homogeneous substrates are more 
strongly associated with translation than RBPs that are enriched for 
structurally heterogeneous substrates (Fig. 4b). This coincides with our 
observation that structurally homogeneous transcripts are enriched 
for translation processes, suggesting potentially coordinated regula-
tion inside cells (Fig. 3d).

To show that RBP expression could regulate RNA structure in single 
cells, we focused our analysis on PUM2, which encodes a single-strand 
specific RBP with a highly conserved binding motif25. Our bulk struc-
ture analysis has shown that PUM2 binding to its substrates results 
in increased accessibility of its substrates12. To ask whether different 
levels of PUM2 in single cells can result in different reactivities in the 
same cell, we binned cells according to their respective PUM2 levels and 
calculated the reactivity of PUM2 target regions in each population of 
cells (Fig. 4c). We observed that PUM2 substrates present in cells with 
high PUM2 levels show an increase in accessibility as compared with 
PUM2 substrates in cells with low PUM2 levels (Fig. 4d), supporting 
that PUM2 levels impact structure accessibility in single cells. We addi-
tionally calculated the substrate reactivity of other RBPs in cells with 
high and low levels of the RBP and confirmed that RBP is an important 
class of structure regulators in single cells (Extended Data Fig. 7c–e).

To confirm that PUM2 regulates structural heterogeneity, we 
overexpressed or knocked down PUM2 in hESCs and determined 
the structural accessibility of PUM2 targets before and after24. Upon 
PUM2 overexpression, we observed that 69.9% of its targets showed an 
increase in accessibility and heterogeneity in single cells (Fig. 4e and 
Extended Data Fig. 7f). PUM2 knockdown showed an inverse effect 
from its overexpression, with 64.2% of PUM2’s targets becoming less 
accessible and more homogeneous (Fig. 4f). To determine whether 
structural heterogeneity can complement structural accessibility 
to better predict RBP binding, we sorted PUM2-binding motifs into 
three classes according to whether they have high or low reactivities, 
are structurally homo/heterogeneous or both. We then calculated the 
proportion of PUM2 binding, based on eCLIP data, in each category. 
As expected, accessible PUM2 motifs have a higher proportion of 
PUM2 eCLIP binding sites (32.9%) than inaccessible PUM2 motifs (25%;  
Fig. 4g). Structurally heterogeneous PUM2 motifs are also occupied by 
real PUM2-binding sites more frequently than homogeneous motifs 
(38.1% versus 14.8%; Fig. 4g). Importantly, PUM2 motifs that are both 
accessible and structurally heterogeneous contained the highest 
proportion of real PUM2-binding sites (48.8%; Fig. 4g), while motifs 
that are accessible and yet structurally homogeneous have the lowest 
percentage of real PUM2-binding sites (5.9%). These data indicate that 
structural heterogeneity information can be used to better predict real 
PUM2-binding sites and eliminate false PUM2-binding sites. To show 

that this observation is not limited to hESC, we repeated single-cell 
structure probing in a different cell type and observed a similar trend 
in HEK293T cells (Extended Data Fig. 7g).

PUM2 protein levels are increased during neuronal differentiation 
to regulate translation and decay12. To determine whether structural 
heterogeneity can provide additional insights into PUM2 gene regula-
tion, we identified transcripts that showed changes in accessibility, 
structural heterogeneity or both, upon an increase in PUM2 protein 
levels, and determined their half-lives in hESCs and neuronal pre-
cursor cells (NPCs). Interestingly, while transcripts with changes in 
accessibility in the presence of PUM2 showed decreased half-lives 
in NPCs, this trend becomes stronger in transcripts with changes in 
heterogeneity. Transcripts with both heterogeneity and reactivity 
changes in the presence of PUM2 showed the largest half-life differ-
ence between hESC and NPC (Fig. 4h), indicating that both structural 
heterogeneity and reactivity can impact gene regulation. In addition to 
PUM2, we identified three other RBPs (Y-box-binding protein 2 (YBX2), 
glutamate-rich WD repeat containing 1 (GRWD1) and apolipoprotein 
B mRNA editing enzyme catalytic subunit 3C (APOBEC3C)) whereby 
the structural heterogeneity of their targets impacts gene regulation, 
either at the level of translation or decay (Extended Data Fig. 8a–c), 
indicating that structural heterogeneity could be an important feature 
in RBP regulation.

RNA structures vary in single cells during differentiation
Neuronal differentiation is a complex process with extensive posttran-
scriptional gene regulation. We have previously observed extensive 
structural changes as hESCs differentiate into different cell stages12. 
However, whether all the cells in a population changed structure or 
only a subset of cells changed structure during differentiation remains 
unknown. To study RNA structure changes at a single-cell level during 
neuronal differentiation, we performed two biological replicates of 
sc-SPORT on 312 individual cells at different stages of neuronal differ-
entiation: hESC, NPC (7 days post-differentiation), immature neurons 
(iNeu, 8 days post-differentiation) and early neurons (NEU, 14 days 
post-differentiation) (Fig. 5a). Sc-SPORT pseudobulk reactivities of 
18S rRNA showed a good correlation with bulk cell reactivities in each 
cellular stage (Extended Data Fig. 9a), indicating that our data are of 
good quality. Additionally, we confirmed that regions with high reactiv-
ity in the pseudobulk of all four stages are enriched for single-strand 
specific RBPs, agreeing with these regions being unpaired for RBP 
binding (Extended Data Fig. 9b).

Globally, we observed that transcripts from hESCs are more struc-
turally homogeneous than transcripts from single cells in other dif-
ferentiated states (Fig. 5a), with transcripts from individual cells in the 
NPC stage showing the largest structural heterogeneity. This agrees 
with the observation that NPCs are the most morphologically and 
biologically diverse among the four cell types34. We observed that 7,373, 

Fig. 4 | RBPs regulate structure heterogeneity in single cells. a, A diagram 
illustrating the names of RBPs that are enriched in different accessible regions 
and heterogeneous regions. The table shows the number of RBPs shared 
in windows with different heterogeneity and accessibility levels. Homo, 
homogeneous; hetero, heterogeneous. b, A heatmap showing the −log10-adjusted 
P value (adj P value) of enrichment, for selected RBPs, in windows with different 
heterogeneity (left) and reactivity levels (right). The P values were calculated by a 
one-sided hypergeometric test. RBPs involved in translation are shown in purple 
on the left. * or ** represents known RBPs that bind single-strand or double-strand 
RNA, respectively. c, A swarm plot showing PUM2 expression levels in single cells. 
Cells are separated according to four different quantiles of PUM2 abundance 
(0–25% (blue), 25–50% (orange), 50–75% (green) and 75–100% (red)). The y axis 
indicates RNA expression levels of PUM2 in each cell. d, A volcano plot showing 
changes in structure reactivities between low and high PUM2 expressed cells for 
windows located within PUM2-binding regions. The x axis shows the log2-fold 
change of their reactivities in q1 and q4 quantiles. The P values were calculated 

using a two-sided Student’s t-test. e, Density plots showing the distribution of 
PUM2-binding motif heterogeneity and 50 nt flanking region in green fluorescent 
protein (GFP) overexpressed (OE, gray) and PUM2 overexpressed (yellow) hESCs. 
f, Density plots showing the distribution of PUM2-binding motif heterogeneity 
and 50 nt flanking region in control (CTRL) knocked-down (KD, gray) and PUM2 
knocked-down (blue) hESCs. g, Bar plots showing the percentage of PUM2 
motifs present in eCLIP experiments in high or low accessible regions (left), 
homogeneous or heterogeneous regions (middle) and accessible regions that 
are homogeneous or heterogeneous (right) in hESCs. h, A box plot showing 
the distribution of RNA half-life in hESC and neuronal precursor cell (NPC) 
(Supplementary Table 5) for transcripts that show reactivity changes (left, gene 
no. 127), heterogeneity changes (middle, gene no. 34) and both reactivity and 
heterogeneity changes (right, gene no. 145) upon overexpression of PUM2 in 
hESCs. The P values were calculated using a two-sided Mann–Whitney U test. The 
box plots show the means and 25th to 75th percentile interquartile range, and the 
bars show the range from the 5th to 95th percentile.
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7,331 and 7,288 windows demonstrated RNA structure heterogeneity 
changes, with 52.9%, 48.4% and 51.8% of the windows becoming more 
homogeneous, as hESC differentiated into NPCs, NPCs differentiated 
into iNeu and iNeu differentiated into neurons, respectively (Fig. 5b). 
Unsupervised clustering of RNA windows based on their structural het-
erogeneity identified six clusters (Fig. 5c and Supplementary Table 3), 

including consistently homogeneous regions (cluster 1), increasingly 
heterogeneous (clusters 3 and 4), increasingly homogeneous (clusters 
5 and 6) and heterogeneous regions in NPCs (cluster 2). Interestingly, 
consistently homogeneous RNA regions (cluster 1) are enriched in the 5′ 
UTRs of mRNAs (Fig. 5c), suggesting that their structures are conserved 
during neuronal differentiation.
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Fig. 5 | Sc-SPORT identifies single-cell RNA structure dynamics. a, Top: 
a schematic showing the timelines and cellular identities during neuronal 
differentiation in this study. Bottom: density plots showing the distribution of 
gene-level heterogeneity in single cells in each stage from hESC (day 0) to NPC 
(day 7), iNEU (day 8) and NEU (day 14, top to bottom). Heterogeneity is calculated 
using the deviation of cosine distance. Only shared genes across four stages were 
included in the distribution. b, Sankey plots showing the changes in window-
level heterogeneity during the neuronal differentiation process. To simplify, 
shared windows of four stages are grouped into four quartiles according to their 
heterogeneity values in each stage. c, K-means clustering with dynamic time 
warping by their heterogeneity across the four stages of neuronal differentiation. 
We identified six clusters that show different patterns of heterogeneity 
during differentiation. Left: violin plots show the distribution of structural 

heterogeneity in the four stages from left to right for each cluster. The bars in the 
violin plot represent the median and the interquartile range of heterogeneity. 
The numbers of windows in each cluster are as shown. Right: pie charts show the 
distribution of the windows present in 5′ UTR, CDS and 3′ UTR of mRNAs. d, Line 
plots showing per-nucleotide heterogeneity (R2) of 18S rRNA in 76 hESC cells.  
e, Zoomed-in view showing the location of our identified heterogeneous region 
in 18S rRNA in its three-dimensional model. The three-dimensional structure is 
obtained from PDB (PDB ID: 4v6x). We have colored the transfer RNA in green 
and our changing regions in red. f, A bar plot showing the ∆mutation rates of 18S 
rRNA between single cells in the S phase and G2/M phase (top). ∆Mutation rates 
are calculated by subtracting the pseudobulk reactivity of cells in the S phase 
and the G2/M phase. The black dashed box shows the heterogeneous region 
(1,590–1,830) and is zoomed-in as below.
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While 18S rRNA is one of the most structurally homogeneous 
transcripts in our dataset, we identified a highly heterogeneous 
region near the 3′ end, which corresponds to helix 44 and 45 in sin-
gle cells (Fig. 5d and Extended Data Fig. 9c). We used an orthogonal 
way to calculate heterogeneity and confirmed that these regions are 

indeed the most heterogeneous along 18S rRNA in both hESCs and 
HEK293T cells (Extended Data Fig. 9d,e). A deeper examination of 
these heterogeneous bases revealed that they are located at the mRNA 
tunnel in the 40S subunit (Fig. 5e and Extended Data Fig. 9f). As the 
mRNA tunnel is involved in translation initiation, we asked whether 
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Fig. 6 | Structures enable better delineation of cellular identity. a, Scatter 
plots showing the MOFA clustering using (1) RNA expression only (top left),  
(2) RNA expression and alternative splicing (bottom left) and (3) RNA expression, 
alternative splicing and structural heterogeneity (top right). Bottom right: ARI 
for the MOFA clustering results using different datasets as input. b, A heatmap 
showing reactivity of stage-specific structures across neuronal differentiation. 
Each row shows the reactivity of a 10 nt window, and each column is the reactivity 
for a single cell. Color scale: z-score transformed reactivity by row. Selected 
genes with structure-changing windows were labeled at the right of the heatmap. 
c, Top: pseudobulk reactivity of RPL41 in each stage of neuronal differentiation. 
The red dashed boxes indicate two structure-changing windows during neuronal 

differentiation. Single-nucleotide reactivity was smoothed using a 10 nt sliding 
window. Bottom: single-nucleotide reactivity is shown in the zoomed-in versions 
of the structure-changing regions. The blue curves were the average reactivity 
of cells in each stage. The light-blue shading indicates the standard error for 
each nucleotide. The cell number for each time point is labeled. d, Unsupervised 
clustering of RPL41 RNA structures in single cells during the neuronal 
differentiation process. The bar plot shows the number of cells that contain 
cluster 1 and cluster 2 in hESCs and different stages of neuronal differentiation. 
e,f, T-distributed stochastic neighbor embedding (TSNE) plot showing the 
distribution of reactivity of RPL41:160 (e) and RPL41:310 (f) in all single hESC and 
differentiated single cells.
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cells with different rates of translation could show differences in the 
reactivity of these bases. As we lack direct translation data in the 
same cells, we utilized the information that cells at different stages 
of the cell cycle exhibit different levels of translation35. As such, we 
separated hESCs into whether they are in G2/M or S phases based on 
their cell cycle expression markers and identified 40 and 35 cells in 
G2/M and S phases, respectively. We observed that the pseudobulk 
reactivity of the 18S rRNA in the G2/M and S phases is indeed differ-
ent (Fig. 5f), supporting the hypothesis that structural dynamics in 
helix 44 is associated with translation. These data demonstrate that 
sc-SPORT can identify regional regions of structural heterogeneity 
in the transcriptome in single cells.

Structure heterogeneity can separate cell populations
Refining cellular identities helps to better understand cellular func-
tions and cell fate trajectories. Traditionally, transcriptome informa-
tion including gene expression, alternative splicing and polyA usage 
can be used to delineate cellular populations36. To further investigate 
the role of RNA structural heterogeneity in defining cellular states, 
we employed multiomics factor analysis 2 (MOFA2) to jointly analyze 
the RNA expression, alternative splicing and structural heterogene-
ity to identify the main sources of variation from the data types in an 
unsupervised manner. We observed that the addition of structural 
heterogeneity to gene expression and alternative splicing information 
could greatly increase the adjusted-rank index (ARI) by ∼79% (from 
0.495 to 0.886; Fig. 6a), enabling us to better separate NPCs, iNeu and 
Neu cells. As these cell states could not be separated by gene expres-
sion and alternative splicing information alone, our data suggest that 
single-cell structure information can improve cell clustering or better 
define cellular populations.

As the same gene can exist in different conformations in different 
cells, we observed that the relative proportions of the structure popula-
tions in single cells can shift during differentiation and new structure 
conformations can emerge, resulting in observable aggregate structure 
changes during neuronal differentiation (Fig. 6b). To determine the 
functions of these structural shifts during neuronal differentiation, we 
overlapped transcripts with changes in structural heterogeneity and 
translation efficiency to identify 34 well-correlated genes (R (Spearman 
correlation) ≥0.9; Supplementary Table 4). One such gene encodes 
ribosomal protein L41 (RPL41), which shows an increased RNA structure 
heterogeneity and translation efficiency during neuronal differentia-
tion (Fig. 6c and Extended Data Fig. 10a,b). Unsupervised clustering of 
RPL41 based on its structure reactivity identified two different struc-
ture populations during neuronal differentiation (Fig. 6d and Extended 
Data Fig. 10c,d) and showed that bases 160 and 310 exhibited structure 
differences in single cells (Fig. 6c). While the majority of hESCs contain 
high reactivity around RPL41 base 160, differentiated single cells tend 
to show lower reactivity for the same region (Fig. 6c,e). Conversely, 
a higher proportion of the differentiated single cells showed higher 
reactivity around the region in RPL41 base 310 than single cells from 
hESC (Fig. 6c,f). To determine whether base pairing around 160 indeed 
impacts RPL41 translation, we cloned the 5′ end of RPL41 in front of the 
luciferase reporter gene and performed mutagenesis experiments to 
either ‘lock’ or ‘disrupt’ the paired structure around base 160 (Extended 
Data Fig. 10d). Our luciferase experiments showed that ‘locking’ the 
structure at base 160 resulted in a slight increase in luciferase activity, 
while ‘unlocking’ it decreased luciferase activity, indicating that RNA 
structure can contribute to changes in RPL41 translation efficiency 
during neuronal differentiation (Extended Data Fig. 10e). These data 
suggest that RNA structure could serve as biomarkers in single cells to 
inform gene regulation.

Discussion
Current methods for high-throughput RNA structure studies require 
millions of cells as starting material and cannot be used to study 

RNA structures in a very small number of cells. Here, we introduced 
sc-SPORT, a high-throughput approach to studying RNA structures in 
single cells. To do this, we optimized the protocol to identify conditions 
that increased mutation rates and efficiencies of library preparation. 
Importantly, fragmenting the RNAs in dNTPs helped us to concentrate 
RNA sizes to around 1,000 bases to enable efficient second-strand 
synthesis. Additionally, we developed a computational pipeline to 
analyze heterogeneous RNA structures, allowing us to identify them 
transcriptome wide.

We showed that RNA structure provides an additional layer of 
information in defining cellular identities and identified structurally 
variable regions in the transcriptome during different developmen-
tal states. We observed that RNA structures in hESC single cells are 
structurally more similar than RNA structures in differentiated cells. 
Structurally different regions are enriched in 3′ UTRs and associated 
with regulatory factors such as RBPs. Interestingly, we also observed 
a bimodal distribution in read density at the 3′ end of the transcripts 
in our single-cell analysis. We suspect that this bimodal distribution 
could be due to alternative 3′ UTR usage, which is a common form of 
gene regulation.

Importantly, we observed that RNA structural heterogeneity 
information can be used to inform RBP binding and gene regulation. 
We also observed that a heterogeneous region in the 3′ end of 18S rRNA 
is associated with translation. As this heterogeneous region is associ-
ated with the mRNA tunnel and can base pair with the mRNA during 
translation, we hypothesize that this variation reflects the translation 
status of the cell. As 18S rRNA structure can vary in individual cells 
due to biological states, we further hypothesize that this contributes 
to its slightly lower structural AUC–ROC of 0.6–0.7 in single cells, 
as compared with pseudobulk. As each cell can have its own unique 
structure and expression signature based on the cellular state that it is 
in, the combination of these two data types enriches our information 
on cellular identities.

One of the limitations of our current approach is that we capture 
only a few hundred cells (>300) in one experiment. Due to the need 
for manganese in our RT reaction, our protocol is incompatible with 
that used in 10X Genomics, making it challenging to directly apply 
10X Genomics to scale up our cell numbers. However, we believe that 
coupling RNA structure probing with modifications to the 10X Genom-
ics single-cell sequencing protocols or droplet sequencing will help to 
overcome this limitation in the long run.

Additionally, we did not incorporate UMI in our current pro-
tocol to remove PCR duplicates, as UMIs are added to the end of 
the transcript during RT and there is a fragmentation step before 
amplification. As such, only the reads at the end of the transcript will 
contain the UMI barcode. We confirmed that RNA structure reactiv-
ity is highly correlated with and without PCR duplicate removal, 
indicating that our data are robust to duplicate removal (Extended 
Data Fig. 2e–g). Further improvements in the protocol by using 
long-read sequencing can mitigate this shortcoming in improved 
versions of this method.

Overall, sc-SPORT transforms our understanding of RNA structure 
by revealing structure dynamics and regulation in single cells and in 
small rare cellular populations. Similar to single-cell RNA expression 
information, future applications of single-cell structure data can poten-
tially enable us to cluster cells and predict developmental trajectories 
to better understand and refine structure–phenotype relationships in 
diverse biological systems.
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Methods
Cell culture
H9 cells were cultured in mTeSR1 complete medium. To differentiate 
H9 cells into neurons12, we passaged H9 cells using dispase at a dilu-
tion of 1:10 and induced H9 cells using neural induction media (3 μM 
CHIR99021, 2 μM SB431542, 0.1 μM compound E, 20 ng ml−1 epider-
mal growth factor (EGF), 20 ng ml−1 basic fibroblast growth factor 
(bFGF)) 1–2 days later. H9 cells were changed with fresh medium every 
1–2 days. The cells were then split 1:3 using accutase and reseeded on 
Matrigel-coated plates 7 days later before culturing in a neural cell 
culture medium. These derived cells are NPCs, which were used for 
further neuron differentiation. Neuron progenitor cells were cultured 
in neuron differentiation medium (10 ng μl−1 brain-derived neuro-
trophic factor, 10 ng μl−1, glial cell line-derived neurotrophic factor, 
300 ng ml−1 cAMP and 0.2 mM vitamin C) for 1 day to obtain iNeus and 
7 days to obtain NEUs.

Sc-SPORT experimental workflow
We dissociated cells into a single-cell suspension and incubated them 
with a final concentration of 25 mM NAI-N3 for 10 min at 37 °C with 
constant rotation. We then removed the excess NAI-N3 from the cells 
by centrifugation for 5 min at 300g. We resuspended the cells in cold 
phosphate-buffered saline and diluted the cells to around 100 μl−1 
before picking single cells by mouth pipetting under a microscope 
(<0.5 μl). We then transferred the cells into a prepared eight-strip 
tube, with each cell in one tube. The eight-strip tube contains 3.5 μl 
of fragmentation and annealing buffer (0.2 U μl−1 SUPERase In RNase 
Inhibitor, 1 μM oligo dT (5′-AAG CAG TGG TAT CAA CGC AGA GTA C
T30VN-3′) and 1 mM dNTP). We placed the eight-strip tube in a ther-
mocycler and ran the fragmentation and primer annealing program 
(95 °C for 10 min, 4 °C for 10 min, 72 °C for 3 min, 4 °C for 10 min and 
4 °C hold). After primer annealing, we added 6 μl of RT reaction mix 
into each tube and mixed it gently. The composition of the RT reac-
tion mix is 1× first-strand buffer ((50 mM Tris pH 8.0, 75 mM KCl), 
1 μM TSO (5′-AAG CAG TGG TAT CAA CGC AGA GTA CAT rGrGrG-
3′), 1 U μl−1 SUPERase In RNase Inhibitor, 5 mM DTT, 6 mM MnCl2, 
10 U μl−1 SSII and 1 M betaine). We then ran the RT program using the 
following conditions: 25 °C for 5 min, 42 °C for 8 h, 70 °C for 10 min 
and 4 °C hold.

After RT, we added the PCR reaction mix (working concentration 
of 0.1 μM ISPCR primer (5′-AAG CAG TGG TAT CAA CGC AGA GT-3′) and 
1× HIFI KAPA master mix) to each tube and ran the following PCR pro-
gram: 98 °C for 3 min (98 °C for 20 s, 67 °C for 15 s and 72 °C for 3 min) 
and 72 °C 5 min), for 24–26 cycles for NAI-N3-treated samples and 22 
cycles for dimethyl sulfoxide (DMSO)-treated samples. The amplified 
PCR products were analyzed using an Agilent bioanalyzer 2100.

After PCR, PCR products were purified using Ampure XP beads 
twice, before being used for library preparation using the Illumina 
Nextra XT kit. Briefly, we diluted each sample to 0.6–0.8 ng μl−1 and 
transferred 1 μl of each sample into a 96-well PCR tube. We then added 
2 μl of the Tagmentation DNA buffer and 1 μl of amplicon tagmentation 
mix to the sample in the 96-well PCR tube and incubated the reaction at 
55 °C for 5 min. We immediately added 1 μl NT buffer from the Illumina 
Nextra XT kit to the mixture, mixed it up and down, and incubated 
the mixture at room temperature for 5 min to stop the tagmentation 
reaction. We then added 1 μl of i5 and 1 μl of i7 barcoded primers before 
adding 3 μl of NPM from the Illumina Nextra XT kit to each tube. We then 
ran the following PCR program: 72 °C for 3 min, 95 °C for 30 s (95 °C for 
10 s, 55 °C for 30 s and 72 °C for 30 s), 72 °C for 5 min and hold at 10 °C). 
The prepared libraries were sequenced using Illumina Hi-Seq 4000 
(sequencing type 2× 150).

Generating RNA structure data from 10 and 100 cells
Instead of picking a single cell by mouth pipetting, we diluted the 
cells into 20 cells μl−1 for ten-cell library preparation (200 cells μl−1 

for 100 cells) and transferred 0.5 μl of the mixture into prepared 
fragmentation and primer annealing buffer for downstream library 
construction.

Preparation of in vitro and in vivo structural benchmarks
For structure mapping of the Tetrahymena ribozyme in vitro, we PCR 
amplified the Tetrahymena ribozyme DNA that contains the T7 pro-
moter (Supplementary Table 6) upstream of the ribozyme. The DNA 
template was then in vitro transcribed using the NEB HiScribe Kit fol-
lowing the manufacturer’s instructions to generate the Tetrahymena 
ribozyme RNA.

To fold the Tetrahymena ribozyme in vitro, we heated the 1 μg RNA 
in 9 μl water at 90 °C s−1 for 2 min and chilled it on ice immediately for 
2 min. We then added 1 ul 10× RNA structure folding buffer (500 mM 
Tris pH 7.4, 100 mM MgCl2 and 1.5 M NaCl) to the RNA on ice, slowly 
increased the temperature to 37 °C at 0.1 °C s−1 and incubated the RNA 
at 37 °C for 20 min. To perform structure probing of the RNA in vitro, we 
added NAI-N3 (homemade), 2-methylnicotinic acid imidazolide (NAI) 
(913839, Sigma) or dimethyl sulfate (DMS) (D186309, Sigma) individu-
ally (Fig. 1b,c) to the folded RNA and incubated the reaction at 37 °C for 
10 min. We also performed a separate reaction using DMSO as a nega-
tive control for NAI-N3, NAI or DMS treatment. The structure probed 
RNA was purified using phenol:chloroform:isoamyl alcohol (25:24:1) 
and reverse transcribed before either running out on a sequencing gel 
or made into a sequencing library for high-throughput sequencing.

For structure probing of the Tetrahymena ribozyme and two 
other ribosNitches and their MTs (Supplementary Table 6) inside cells  
(Fig. 2f–i and Extended Data Fig. 5a–e). We pooled the three in vitro- 
folded WT RNAs as sample pool 1 and their MT RNAs as pool 2 and then 
transfected each RNA pool into HEK293T cells using Lipofectamine 
MessengerMAX transfection reagent (Thermo Fisher, LMRNA015). 
We then dissociated the cells 6 h after transfection and washed them 
three times using PBS to remove the excess RNA that did not enter 
the cells. We treated the cells with either 25 mM NAI-N3 or DMSO for 
10 min before performing single-cell RNA structure probing by picking 
individual cells into each well of a 96-well plate using mouth pipetting.

Overexpression of PUM2 in hESCs
We generated a Tet-On PUM2 expression system in H9 hESCs12 (Fig. 4e 
and Extended Data Fig. 7f). Lentiviral vectors (tetO–PUM2, pMDLg/
pRRE, pRSV–REV and pMG2.G) were cotransfected into HEK–293T cells. 
We changed the medium after 24 h posttransfection and kept culturing 
the cells for another 24 h before collecting the virus. We then infected 
H9 hESCs after concentrating the virus particles using centrifugal 
filters (Ultracel-100K, UFC910096).

Sc-SPORT data processing and analysis
We trimmed reads to remove adapter contamination and poor-quality 
reads using the software cutadapt (version 1.8.1) (ref. 37). The trimmed 
reads were then mapped to the human transcriptome using bowtie2 
(version 2.2.6) (ref. 38) according to the longest coding region tran-
scriptome annotation based on the human genome (GRCh38 and 
Ensembl 104 and Gencode version 38). The mutations were identified 
using bam-readcount (version: 0.8.0) and custom scripts together. 
The reactivities were then calculated by subtracting mutational rates 
in DMSO-treated samples from mutational rates in NAI-N3 structure 
probed samples.

The expression levels of each transcript were quantified using 
Salmon (v1.1.0) (ref. 39) with the annotation from ENSEMBL (GRCh38 
release 98). Following the quantification, expression levels were nor-
malized using the method described by Hafemeister and Satija40. On 
the basis of the normalized expression levels, cell cycle assignments 
were performed using Seurat (version: v3.6.3) (ref. 41). The alternative 
splicing per transcript was quantified by proportion spliced-in using 
SUPPA2 (version: v2.3) (ref. 42) based on the transcripts per million 
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values estimated by Salmon. As a quality control, we removed cells 
with (1) more than 5% of reads mapped to mitochondrial genes and 
(2) fewer than 5,000 detected genes. The rest of the cells were used 
for downstream analysis.

Calculating window-level structural heterogeneity along a 
transcript
We designed a computational pipeline to quantitate the amount of 
structural heterogeneity in the transcripts as follows: (1) we split the 
transcriptome into discrete windows of 10 nt in length; (2) we only 
considered a window as detected when it has a total coverage of more 
than 600 reads. This threshold was set by comparing the correlation 
between biological replicates at different sequencing depths (Extended 
Data Fig. 3b); and (3) we filtered away windows that are detected in 
less than 50% of cells. We then calculated an NAI-N3 modification rate 
by summing up the total read coverage and the total read number 
with mutations across a window of 10 nts. To calculate window-level 
structural heterogeneity, we assumed that the MT reads and the read 
coverage of each 10 nt window follow a simple linear model. The R2 of 
the linear model could be used as a measure of the deviation of the 
reactivities in each cell to their average reactivity. For each window:

mutant (c, s) = mod (s) × depth (c, s) + ε

where MT(c, s) is the number of MT reads in a cell c at the window s, 
the mod(s) is the expected modification rate by NAI-N3 at the window 
s and the depth(c, s) is the total read coverage in cell c at the window s.

We calculated R2 of the simple linear model using the python pack-
age scipy.stats.lineargress. As a perfectly homogeneous window will 
have the same modification rate by NAI-N3 in all cells, the proportion 
of variance explained by the R2 to the linear model should be close 
to 1. On the other hand, a heterogeneous window will have different 
modification rates; thus the R2 is close to 0. To account for the miss-
ing data in single-cell sequencing, we used the adjusted R2 (adj R2) 
as the measurement of structural heterogeneity at the window level  
(Figs. 3–6 and Extended Data Figs. 6e–l,7g,8,9).

Calculating gene-level structural heterogeneity in the 
transcriptome
We determined the extent of structural heterogeneity for each tran-
script by comparing the variation of structural reactivities in each 
cell to the pseudobulk reactivity of all cells. We applied a quantile 
normalization to the raw reactivity to minimize putative differences 
in modification efficiencies in single cells. We then computed the 
cosine distances (Di) for each transcript in each cell (Ri) against its 
pseudobulk reactivity (Rpseudo) (Fig. 3a,d,f and Extended Data Fig. 7a). 
The pairwise cosine distance was calculated using sklearn.metrics.
pairwise.cosine_distances.

DCi = DC (Ri,Rpseudo) =
(Ri ⋅ Rpseudo)

(||Ri|| × ||||Rpseudo||||)

The dispersion of the pairwise cosine distances is used as the 
measurement for transcript-level structural heterogeneity. The n 
represents the number of cells in the population.

Heterogeneity =
√√
√

∑n

i=1 D
2
Ci

n

Calculating AUC–ROC for positive controls
To calculate AUC–ROC using 18S rRNA and the Tetrahymena ribozyme 
as positive controls, we classified single-stranded nucleotides in their 
secondary structures as ‘True’ for truly modified and double-stranded 
ones as ‘False’ for falsely modified bases. We plotted the AUC–ROC 

curve and calculated the AUC–ROC score using reactivities of each 
nucleotide against the secondary structures using the roc_curve 
and roc_auc_score functions in scikit-learn (v1.0.2) package. For 18S 
rRNA, we used the protein data bank (PDB) structure (id: 6ek0) to 
calculate the solvent accessibility for 2′-OH of each nucleotide43. 
The bases with solvent accessibility ≥3 were then used to calculate 
the accuracy (Fig. 3b,c).

We also evaluated the distribution of reactivities at bases located 
base paired between adjacent base pairs, paired in terminal base pair 
and in unpaired regions of the Tetrahymena group I intron (Extended 
Data Fig. 1a) and 18S rRNA secondary structures (Extended Data Fig. 
4b)44. The reactivities in the paired regions are significantly lower than 
the reactivities in the unpaired regions, indicating that our single-cell 
structure probing method is accurate.

Enrichment analysis
The binding sites of 183 different RBPs determined by eCLIP24 were 
downloaded from ENCODE. The binding sites of microRNA were down-
loaded from TargetScan version 7.2 with default predictions45.

To calculate enrichment, we overlapped our windows of interest 
and background with the RBP binding windows and calculated the 
significance of the overlap using a hypergeometric test. The result-
ing P values were adjusted using the Bonferroni method. We identi-
fied a regulator as enriched when they have an adjusted P value ≤0.05  
(Fig. 4a,b and Extended Data Figs. 7b and 9b).

MOFA
MOFA46 was used to jointly infer the variation from multiple data types. 
We used multiple combinations of regulatory layers to train differ-
ent models in MOFA: expression only (EXP), expression and splic-
ing (EXP + AS), expression and structural heterogeneity (EXP + STR), 
and finally expression, splicing and structural heterogeneity 
(EXP + AS + STR) (Fig. 6a). The expression layer includes the top 1,000 
most variably expressed genes across all cells based on the normalized 
expression levels. The splicing layer includes the top 1,000 most vari-
ably spliced transcripts across all cells based on proportion spliced-in 
values. The structural heterogeneity layer contains 238 genes detected 
in all four neuronal differentiation stages. Training of the model was 
carried out using the default parameters. The latent factors inferred 
by MOFA were used to cluster the cells using k-means clustering with 
four predefined clusters. The clustering results were then compared to 
how cells are distributed in the four differentiation stages. An adjusted 
rand index (ARI) value was calculated to evaluate the clustering results 
against biological differentiation stages.

Structural modeling
Secondary structures were modeled by incorporating structural 
reactivities in the program RNAstructure (v6.3) (ref. 47). Briefly, 
we modeled the structure by incorporating SHAPE reactivity with 
sequence information. We used the function Rsample to calculate 
the partition function and generated a Boltzmann ensemble of 1,000 
structures. We then used RsampleCluster.R applied to calculate the 
optimal number of clusters and their centroid structures (Extended 
Data Fig. 10d).

Quantification and statistical analysis
All statistical analyses were performed in R (version 3.6.3) or Python 
(3.10.0) unless otherwise stated in the methods. Students’ t-tests were 
performed using the t.test() function in R. The hypergeometric tests 
were performed using the phyper() function in R. The hypergeometric 
tests were performed using the phyper() function in R and scipy.stats.
hypergeom() function in Python. The nonparametric statistic test was 
performed using scipy.stats.mannwhitneyu in Python. The error bars 
in the line plots of reactivity are standard errors of each nucleotide 
among cells.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The sequencing data were uploaded to the Sequence Read Archive at 
the National Center for Biotechnology Information. The accession 
numbers are PRJNA946372, PRJNA946273 and PRJNA946308. The 
translation efficiency and RNA decay data in human neural differen-
tiation come from the previous paper. Transcript efficiency and RNA 
decay data used in this paper were from Wang, J. et al.12. Source data 
are provided with this paper.

Code availability
Analysis code is available at https://github.com/noahpieta/scSports. 
See the details of data analysis in Methods.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Optimization of the experimental sc-SPORT workflow. 
a, Top: NAI-N3 reactivity of the Tetrahymena ribozyme was mapped to its 
secondary structure. The reactivity was normalized as previously described. 
Bottom: Boxplot showing the distribution of reactivities for bases in base-paired 
between adjacent base pairs (left), paired in terminal base pair (middle), and 
unpaired regions (right) along the Tetrahymena ribozyme RNA. The nucleotide 
numbers are as shown. The box plots show the mean and 25th to 75th percentile 
inter-quartile range, the bars show the range from 5th to 95th percentile. b, Gel 
image showing the distribution of the length of cDNA fragments after 4, 8, and 
16 hours of reverse transcription in DMSO and NAI-N3 treated RNAs. The first 
lane shows the DNA ladder (bases). c, Barplot showing the average fraction of 
viable cells after treatment with DMSO (grey), NAI-N3 (blue), and DMS (orange) 
at various concentrations. The center represents mean, and the error bars show 

the standard deviation. N = 4 biological replicates. d, Line plots showing the 
distribution of 5 ng hESC total RNA segment lengths before (black) and after 
fragmentation, by dNTP (orange) and Mg2+ (blue), under different conditions.  
e, Bioanalyzer plots showing the size distribution of 50 ng hESC total RNA 
segment lengths before (top) and after fragmentation with 1 mM dNTP (Middle 
left and Bottom left), or without dNTP (Middle right and Bottom right). f, Density 
plot of the RNA fragment length distribution treated with either DMSO (red), 
25 mM NAI-N3 (blue), or 50 mM NAI-N3 (green) using Agilent Bioanalyzer.  
g, Barplot showing the amount of DNA generated after library preparation when 
the starting RNA is unfragmented (left) or fragmented (right). Starting RNA is 
from 10 cells and is either treated with DMSO (blue), 25 mM NAI-N3 (orange), or 
50 mM NAI-N3 (grey). The center represents the mean, and the error bars show 
the standard deviation. N = 3 biological replicates.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Determining the data quality of sc-SPORT.  
a, Distribution of the fraction of mapped sequencing reads from hESC libraries 
constructed from millions of cells, 100 cells, 10 cells, and single-cell. DMSO and 
NAI-N3 treated cells are on the left and right, respectively. b, A joint scatter plot 
showing the percentage of reads mapped to mitochondrial genes (X-axis) and 
the number of transcripts detected (Y-axis) in each cell. Different time points are 
labeled with different colors. c, The mutant rates of each 10-nt window present 
in hESC transcripts when treated with NAI-N3 or DMSO, in bulk, 100-cells, 
10-cells, and single-cell samples respectively. The boxplots show the means and 
25th to 75th percentile inter-quartile range, the bars show the range from 5th 
to 95th percentile. The number of 10-nt windows is N = 93375 for each boxplot. 
d, Barplot showing the average detected gene lengths grouped by the gene 
lengths in DMSO and NAI-N3 treated samples. The annotated transcript length 
is green, the detected length from DMSO-treated libraries is in brown, and the 

detected length from NAI-N3-treated libraries is in orange. The genes were 
assigned to their groups according to the size of their full-length transcript. The 
detected regions were defined as regions with more than 600 reads in at least 
one cell in 76 hESC cells. The number of transcripts for each group is labeled on 
top of the bars. e, Schematic showing the single-cell RNA structure workflow 
and the locations of the UMIs when they are incorporated into the protocol. 
f, Boxplots showing the distribution of read depth on the 3’end of HIV, DEN1, 
and Tetrahymena ribozyme before (black) and after (blue) duplicate removal. 
The duplication rates of these three transfected RNAs range from 24–39%. The 
boxplots show the means and 25th to 75th percentile inter-quartile range, the 
bars show the range from 5th to 95th percentile. The boxplot represents read 
coverage from N = 24 single cells for each gene. g, Histogram showing the 
distribution of SHAPE-reactivity correlation before and after duplicate removal.
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Extended Data Fig. 3 | Determining minimal read depth for sc-SPORT 
downstream analysis. a, In vitro serial dilution and structure mapping of the 
Tetrahymena ribozyme. Scatterplots show per base SHAPE-reactivity correlation 
between 5×10^5, 1.8×10^4, 1.6×10^3, 7.7×10^2 and 1.1×10^2 to 10^7 copies of 
Tetrahymena ribozyme along the RNA. b, Boxplot showing the distribution 
of correlation of mutation rates between two technical replicates at different 

coverage depths for a window size of 10 nucleotides. The correlation at a 
coverage filter of 600X becomes similar to that of a coverage filter of 1000X, 
and we used this filter for all our downstream analyses. P-values were calculated 
using a two-sided Student’s T-test. The boxplots show the means and 25th to 75th 
percentile inter-quartile range, the bars show the range from 5th to 95th percentile. 
N = 8 biological replicates.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-02128-y

Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | sc-SPORT can identify RNA structures of 18S rRNA.  
a, Pseudobulk reactivity of 18S rRNA in hESC was mapped onto the known 18S 
rRNA secondary structure. We performed gene-level normalization for 18S 
rRNA for each cell. The secondary structure image of 18S rRNA is adopted from 
RiboVision. The red and orange bases indicate high and medium reactive bases 
respectively from sc-SPORT. b, Boxplot showing the distribution of reactivities 
from bases that are base-paired between adjacent base pairs (left), paired in 
terminal base pair (middle), and unpaired regions (right) along 18S rRNA. The 
boxplots show the means and 25th to 75th percentile inter-quartile range, the 
bars show the range from 5th to 95th percentile. P-values were calculated using  
a two-sided Mann-Whitney U test. The numbers of nucleotides are as shown.  
c, Left, Line plot showing the structure reactivities of 18S rRNA from bases 50 to 
290, in bulk, 100 cells, 10 cells, and single cells (from top to bottom). The error 

bars represent the standard error. Right, Footprinting gel of 18 s rRNA using 
NAI-N3. We are showing DMSO-treated RNA (lane 2), and NAI-N3-treated RNA 
(lane 3). lane 1 (U ladder) shows the base position of Us. The cell number for 
each condition is labeled. N = 3 independent biological replicates. d, Zoomed-
in version of a region of 18S rRNA with hESC single-cell pseudobulk reactivity 
mapped onto the structure. The red and orange bases indicate high and medium 
reactive bases respectively from sc-SPORT. Blue arrows indicate single-stranded 
bases from SAFA footprinting data in A. e, Scatterplots showing the Spearman 
correlation of the SHAPE-reactivity 18S rRNA (50–1700nt) in 100 cells, 10 cells, 
and single cells versus its SHAPE-reactivity in bulk cells. The mutational rate 
of bases <0.0002 were filtered out. f, The AUC-ROC curve of the pseudobulk 
reactivities of the Tetrahymena ribozyme that is transfected into HEK293T cells.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-02128-y

Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | sc-SPORT can accurately identify transfected RNA 
structures. a, SAFA gels showing the reverse transcription stoppage sites along 
the Tetrahymena ribozyme (left), HIV RNA (middle), and Den1 3’UTR (right). We 
show NAI-N3 reactivities in the wildtype (WT, lane 2), and NAI-N3 reactivities in 
the mutant RNA (MT lane 3). lane 1 (G ladder) of each gel shows the base position 
of Gs. The red dashed boxes show the structural differences between the wildtype  
and mutated regions. N = 3 independent biological replicates. b, Line plots 
showing the pseudobulk reactivity of transfected wildtype (WT, blue) and mutant 
(MT, orange) RNAs inside single cells. Top: Tetrahymena ribozyme, middle: HIV 
RNA, bottom: dengue 3’UTR RNA (Den1). c–e Unsupervised clustering based on 
the structure reactivity at each base of Tetrahymena (c), HIV (d), and Den1 (e) in 
single cells. The dendrogram was calculated with Euclidean distances and the 
ward method. Left: The heatmap showed the reactivity of transfected WT  
and mutant tetrahymena RNA(c), HIV RNA(d), and Den1 (e) in single cells.  

Each column is a cell and each row is the reactivity for that base. Middle: Line 
plot showing the difference in average reactivity between wildtype and mutated 
transcript. Right: Line plot showing the significance of structure difference 
between WT and MT reactivities, calculated as -log10(FDR) using a two-sided 
Student’s T-test. The black dashed line indicates p = 0.05. f, The schematic (left) 
shows how the RNAs from a single cell were separated into two populations 
for downstream library preparation. The scatter plot shows the correlation 
in reactivity from two technical replicates of an NAI-N3-modified single cell. 
g, Density plot showing the distribution of the correlation between TPM per 
transcript from NAI-N3 treated single cells and from the pseudobulk of DMSO 
treated cells. h, Scatterplot showing the correlation between gene expression 
(TPM) for transcripts from a selected NAI-N3 treated cell and gene expression 
(TPM) for transcripts from the pseudobulk of DMSO treated cells. We observed a 
high correlation of R2 = 0.74.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | sc-SPORT identifies structurally heterogeneous 
regions. a, Pie chart showing the average number of transcripts that we can 
detect structure information in single hESC cells. b, Boxplot showing the 
distribution of the number of detected genes at various depths of sequencing 
reads, from sub-sampling. Each boxplot represents 4 replicates of subsampling. 
c, d, Boxplots showing the distribution of read coverage per nucleotide in genes 
that are present in different abundance groups in hESCs before (c) and after 
subsampling (d). The p-values were calculated by a two-sided Mann-Whitney 
U test. We subsampled the reads from the genes of the two highest abundance 
groups so that their coverage is similar to the genes of the other three abundance 
groups. e, f, Boxplots showing the distribution of structural heterogeneity 
for transcripts before (e) and after (f) subsampling of their abundance. The 
p-values were calculated by a two-sided Mann-Whitney U test. The box plots 
show the means and 25th to 75th percentile inter-quartile range, the bars show 

the range from 5th to 95th percentile. The numbers of genes in each percentile 
are 194, 193, 193, 193, 193 respectively. g-j, Scatter plots of the total read count 
and the total mutant read count for two structurally homogeneous windows in 
RPL27 (ribosomal protein L27, pos=90, g), and RBP13A (ribosomal protein L13a, 
pos=260, h), and two structurally heterogeneous windows in RPL41 (pos=30, i) 
and RPL13A (pos=540, j). The window-level structural heterogeneity (adjusted R2 
values) is labeled inside each plot. The error bands represent the 95% confidence 
intervals of linear regression. k, l, Top: Line plots showing the difference in 
SHAPE-reactivity between WT and mutant Tetrahymena (k) and HIV (l) RNAs. 
Bottom: Line plots showing the structural heterogeneity values (R2) for WT, MT, 
and a mix of WT and MT Tetrahymena ribozyme (k) and HIV (l). We only observe 
low R2 values at structure-changing regions when WT and MT RNAs are mixed, 
indicating that we are detecting heterogeneity correctly.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | RNA structural heterogeneity is associated with RBP 
binding. a, Scatter plot showing the correlation between changes in splicing 
heterogeneity and structural heterogeneity in hESC single cells. The splicing 
heterogeneity was defined as the Shannon entropy of isoform proportions in 
hESC single cells, and structure heterogeneity was measured as the deviation 
of cosine distance for each gene. b, Heatmap showing enriched RBPs at more 
accessible and less accessible regions along the hESC transcriptome. The more 
and less accessible regions are calculated from the pseudobulk reactivities in 
the hESC transcriptome. P-value is calculated using a one-sided Fisher’s Exact 
Test. * represents Known RBPs that bind to single-stranded target regions and 
** represents known RBPs that bind to double-stranded target regions. c-e, 
Left, Swarm plot showing the G3BP1 (c), BCLAF1 (d), and LIN28B (e) expression 

levels in cells that express the first and last quantiles of the RBP. Right, Volcano 
plot showing the structure reactivity changes from low-RBP expressed cells 
and high-RBP expressed cells for windows located within G3BP1 (c), BCLAF1 
(d), and LIN28B (e) binding regions. The binding regions were determined from 
eCLIP peaks from ENCODE. P-values were calculated by a two-sided Wald test in 
DESeq2. f, Heatmap shows the structural differences between control and PUM2 
overexpressed cells. The significant structural differences were calculated using 
Student’s T-Test between RNA reactivity in 20 control cells (GFP) versus 20 PUM2 
overexpressed cells. g, Barplots showing the percentage of PUM2 binding sites 
from eCLIP data that exist in more accessible or less accessible regions (left), 
homogeneous or heterogeneous regions (middle), and more accessible regions 
that are structurally homogeneous or heterogeneous (right) in HEK293T cells.
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Extended Data Fig. 8 | RNA structural heterogeneity impacts gene 
regulation. a, b, Boxplots showing the distribution of change in translation 
efficiency between YBX3 (a) or GRWD1 (b) target transcripts in hESC and NPCs 
when we separate YBX3 (a) or GRWD1 (b) target windows according to whether 
they are less or more accessible (left), homo or heterogeneous (middle), or 
both (right) in hESC. c, Boxplots showing the distribution of change in half-life 
between APOBEC3C target transcripts in hESC and NPCs when we separate 

APOBEC3C target windows according to whether they are less or more accessible 
(left), homo or heterogeneous (middle), or both (right) in hESC. The boxplots 
show the means and 25th to 75th percentile inter-quartile range, the bars show 
the range from 5th to 95th percentile. The numbers of genes in each boxplot are as 
shown. All the p-values were calculated by the two-sided Mann-Whitney U test in 
this figure.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | sc-SPORT identifies structural dynamics in single cells. 
a, Scatter plots showing the correlation between structure reactivities of 18S 
rRNA (50–1700 nt) pseudobulk and bulk data for ESC, NPC, iNEU, and NEU. The 
bases with negative reactivities were filtered out. b, Heatmap showing the Phred 
scores of RBP enrichment in the 25% most accessible and 25% least accessible 
windows in each stage. The P-value is calculated using Fisher’s Exact Test.  
c, Scatter plots showing the total coverage depth (X-axis) and total mutant read 
counts (Y-axis) for a structurally heterogeneous window on position 1710 (left) 
and a structurally homogeneous window on position 200 (right), on 18S rRNA, in 

hESCs. The error bar represents the 95% confidence intervals of linear regression. 
d, Scatter plot showing the mean mutation rate and standard deviation for each 
nucleotide of 18S rRNA from hESC cells. The nucleotides which are far away 
from the regression lines are labeled with their positions. The positions that 
belong to Helix 44 and 45 are highlighted in red. The error bar represents the 
95% confidence intervals of linear regression. e, The heterogeneity (R2) of each 
nucleotide on 18S rRNA in HEK293T cells. f, The secondary structure diagram of 
18S rRNA from Ribovision. Helix 44 and 45 are labeled with a red rectangle box.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | RPL41 shows structural heterogeneity. a, Heatmap 
showing the reactivity of RPL41 during neuronal differentiation. Each row 
indicates the reactivity for the base, after 10nt smoothing, along the gene, and 
each column indicates the reactivity in a single cell in each stage. b, Translation 
efficiency of RPL41 in hESC cells (blue) and NEU cells (orange). c, RPL41 forms 
two clusters based on its reactivity. Top, pseudobulk reactivity of RPL41 in each 
cluster. The cells were clustered by K-means with dynamic time warping. Red 
boxes show the significant structural changing windows (10-nt) between cluster 
1 and cluster 2 pseudobulk reactivities. The shadow shows the structurally 

heterogeneous regions, in which 3 shadow regions are zoomed-in at bottom. 
Data are presented as mean values +/- SEM. d, Secondary structure model of 
400 bases of RPL41 using the program RNAStructure and incorporating NAI-N3 
pseudobulk reactivity in hESC (left) and NEU (right) as soft constraints. The bases 
that we strengthen are labeled as ‘lock’ in red (left) and ‘unlock’ in blue (right). 
e, Barplot showing luciferase units for WT and mutant RPL41 RNA structure in 
HEK293T cells after we locked (left) or unlocked (right) the structure. The center 
represents the mean, and the error bar shows the standard deviation. The  
p-values were calculated by one-tail Student’s T-Test. N = 8 biological replicates.
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