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Image restoration of degraded time-lapse 
microscopy data mediated by near-infrared 
imaging

Nicola Gritti    1,2,7, Rory M. Power    1,3,7, Alyssa Graves1 & Jan Huisken    1,4,5,6 

Time-lapse fluorescence microscopy is key to unraveling biological 
development and function; however, living systems, by their nature, permit 
only limited interrogation and contain untapped information that can only 
be captured by more invasive methods. Deep-tissue live imaging presents 
a particular challenge owing to the spectral range of live-cell imaging 
probes/fluorescent proteins, which offer only modest optical penetration 
into scattering tissues. Herein, we employ convolutional neural networks 
to augment live-imaging data with deep-tissue images taken on fixed 
samples. We demonstrate that convolutional neural networks may be used 
to restore deep-tissue contrast in GFP-based time-lapse imaging using 
paired final-state datasets acquired using near-infrared dyes, an approach 
termed InfraRed-mediated Image Restoration (IR2). Notably, the networks 
are remarkably robust over a wide range of developmental times. We 
employ IR2 to enhance the information content of green fluorescent protein 
time-lapse images of zebrafish and Drosophila embryo/larval development 
and demonstrate its quantitative potential in increasing the fidelity of cell 
tracking/lineaging in developing pescoids. Thus, IR2 is poised to extend live 
imaging to depths otherwise inaccessible.

Time-lapse imaging provides a uniquely dynamic view of biological 
processes in living systems1–7. Powerful insights into development 
and function have followed through a union of modern microscopes 
and genetically encoded fluorescent proteins8,9. Nevertheless, this 
approach has its limits in terms of the type of information that can  
be extracted. For example, the ability to resolve deeply situated  
tissues in living animals or three-dimensional (3D) cultures is circum-
scribed by the poor penetration of visible light therein, a challenge exac-
erbated by the need to maintain physiological conditions. However, 
in pursuit of a richer biological understanding, we should maximally 
leverage each specimen to extract complementary information that 

is so often left on the table as living samples are typically discarded 
following a time-lapse. For example, expended samples could exploit 
the less constrained toolbox available to fixed tissue imaging (multi-
plexed staining10/clearing11/expansion12 or even physical sectioning13) 
or harsh imaging modalities that are less compatible with live imaging 
but may provide additional information of the specimens final state, 
such as those that use high illumination intensities14, long recording 
times15, harmful radiation16 or restrictive mounting17. Captured in situ 
(in a single instrument), this approach can yield multimodal datasets 
that are useful unto themselves18. An intriguing question is whether 
this additional information extracted from the final state, which is 
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requiring only GFP contrast for live imaging and post-fixation staining 
against GFP with NIR dyes. IR2 could thus provide a route to studies of 
biological dynamics in deeply located tissues and across later devel-
opmental stages than hitherto accessible.

Results
Restoration of contrast using IR2 requires a 1:1 correspondence between 
the endogenous GFP contrast (live and fixed) and the NIR staining 
(fixed). First, the instrumentation must be simultaneously capable of 
fast and gentle imaging of the live state and subsequent capture of the 
fixed state across a broad spectral region below and above 750 nm. We 
therefore developed a custom selective plane illumination microscope 
(IR-mSPIM; Methods), capable of high-resolution imaging over this 
wide spectral range (Supplementary Note 1; chromatic performance 
and calibration of the IR-mSPIM). Although a light-sheet microscope 
compatible with dyes emitting up to 1,700 nm has been reported38, 
absorption from water increases substantially from the visible to NIR-I 
and from NIR-I to NIR-II. While absorption is already appreciable in the 
NIR-I, this range is commonly considered an optimal window, where 
scattering and autofluorescence are strongly suppressed relative to 
the blue-green, while the increased absorption does not cause major 
heating of tissue or attenuation of the excitation/emission light. Fur-
thermore, the deep-cooled InGaAs cameras required to image beyond 
1,000 nm have unfavorable noise characteristics and a cost per pixel 
>50× that of widespread silicon technologies. For these reasons and the 
desire to maintain performance in the visible, the IR-mSPIM achieves 
visible/NIR-I excitation at 488/640/808 nm and efficient collection 
at bands centered at 525/697/845 nm, alongside compatibility with 
moderate-to-high NA water-dipping optics, suited to high-resolution 
live imaging.

Second, staining must be achieved with high specificity and pen-
etration into tissue without harsh treatments that would compromise/
deform structures from the organismal level down to the resolution 
limit of the microscope. Notably, this latter point precludes the use of 
clearing protocols, which non-uniformly shrink or expand tissues11. 
Nevertheless, due to the diverse compositions of the different bio-
logical tissues and organisms, we are unaware of any staining protocol 
that preserves organismal structures and provides a homogeneous 
labeling for all tissue types. Rather, protocols need to be finely tuned 
specifically to each organism and transgenic line (for a description of 
the protocols used in this work; Methods). This aspect should not be 
overlooked as, for instance, overfixation of the tissues may decrease 
the relative brightness of GFP and increase background autofluores-
cence44. Likewise, aggressive permeabilization is precluded by the need 
to maintain tissue structure/integrity down to the resolution level of 
the microscope, thus presenting limits to the passage of dye-tagged 
macromolecules. A discussion of the optimization of the protocols 
used in this work is provided in Supplementary Note 2.

Deep-tissue NIR staining and light-sheet imaging
Using IR-mSPIM, we first sought to demonstrate that NIR dye stain-
ing against GFP could be achieved with a high degree of selectivity 
throughout mm-sized embryos/larvae. A fixed transgenic zebrafish 
larva expressing GFP in the vasculature (Tg(kdrl:GFP)) was imaged 
after immunostaining with AlexaFluor800 (AF800; Thermo Fisher) 
(Fig. 1a and Supplementary Table 1). To perform an objective quan-
tification of the quality of infrared (IR) staining, we extracted small 
volumes (patches of 128 × 128 × 32 pixels each) from the full volumes 
of visible and IR images, avoiding dark regions of the images, and 
computed the pixelwise Pearson correlation between the two (Fig. 1b;  
Methods). As we anticipated better depth penetration in the NIR, 
we computed the Pearson correlation only for patches within 25 µm 
from the sample surface. As such, this metric is primarily influenced 
by the quality of staining as shown under conditions of poor selectivity  
(Supplementary Fig. 3). Overall, we obtained a Pearson correlation 

inaccessible to live imaging, can be leveraged to directly enhance the 
dynamic time-lapse data, ideally, merging the high spatial resolution 
data obtained at the final time point with the temporal information 
gained during the time-lapse. Such an approach has been out of reach in 
the absence of a translation layer between the time-lapse and final-state 
data; however, supervised machine-learning approaches and in par-
ticular, deep neural networks are capable of learning complex, highly 
nonlinear relationships between two associated datasets19 and have 
been applied to a range of bioimage restoration20–22, segmentation23–25 
and classification tasks7,26. Consequently, multimodal microscopy 
and convolutional neural networks may be used to enhance in vivo 
time-lapse microscopy images. The deep-learning network could even 
be trained for cases featuring a single dataset characteristic of snap-
shots of the live and fixed states and subsequently applied to dynamic 
live-imaging data.

As an illustrative use case, we consider the origin of image quality  
degradation deep in tissue. The poor penetration of visible light limits  
high-resolution fluorescent protein-based imaging to superficial 
regions in all but the smallest, most transparent embryos or isolated 
cells. Conversely, near-infrared (NIR; 750–1,750 nm, comprising 
NIR-I 750–1,000 nm and NIR-II 1,000–1,750 nm) light maintains its 
directional propagation deeper into tissue27, as leveraged by two/
three-photon microscopy, which relies on the absorption of multi-
ple NIR photons to excite fluorophores with emission spectra in the 
visible range. Multiphoton microscopy28 provides sufficient depth 
penetration for in toto imaging of small animal models such as embry-
onic/larval zebrafish29 and Drosophila30; however, while the energy 
deposited and temperature changes induced by the intensely pulsed 
light have been shown to be safe for imaging small subvolumes of the 
brains of adult zebrafish31 and mice32,33, phototoxic effects take hold 
long before physical damage is noticeable34,35 and for in toto imaging 
of delicate developing embryos and larva, the deleterious influence 
of multiphoton imaging is often apparent despite efforts to reduce 
photodamage30. Furthermore, serially point-scanned schemes are 
typically too slow to capture developmental processes. Nevertheless, 
multiphoton techniques remain a powerful tool in the light micro-
scopy arsenal for intravital imaging and remain the gold standard for 
deep-tissue fluorescence imaging.

For deep-tissue imaging in developing embryos it is desirable 
to employ techniques that benefit from the penetration at NIR wave-
lengths, coupled with the speed and low-intensity requirements of 
camera-based widefield techniques; however, single-photon NIR 
schemes are limited by a comparative paucity of live-imaging com-
patible fluorophores. Although dyes such as indocyanine green are US 
Food and Drug Administration-approved for use in humans, they36,37 
and other large-molecules38,39, macromolecular40 or nanoparticle 
dyes41 are not cell-permeable. The imaging of developmental dyna mics 
in small embryos, however, requires that subcellular components or 
populations of cells can be induced to express fluorescent proteins or 
selectively labeled. Although improved NIR fluorescent proteins are 
currently being developed, the most established of these tools only 
extend partially into the NIR-I with their emission spectra, require vis-
ible excitation and suffer from being dim, weakly photostable, often 
dimeric and require exogenous biliverdin as a chromophoric cofac-
tor42. The self-labeling Halo- and SNAP-tagging systems provide the  
required selectivity and have been used with red dyes to image 
developing embryos43 but are limited for NIR imaging by the 
cell-impermeability of NIR dyes. Likewise, these highly specialized 
genetically encoded tools are not widely available in animal models, 
limiting their applicability.

Herein, we demonstrate in vivo time-lapse microscopy with 
enhanced information content on the basis of paired live (green fluo-
rescent protein; GFP) and final-state (NIR) datasets augmented by 
a convolutional network to enhance image quality. This technique, 
termed IR2, is broadly applicable to a multitude of biological systems 
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Fig. 1 | Highly selective near-infrared staining and light-sheet microscopy 
affords superior imaging at depth in tissue. a, Maximum intensity projected 
(MIP) z stacks acquired for a fixed Tg(kdrl:GFP) (vascular marker) zebrafish 
larva (72 hpf) stained against GFP via conventional indirect immunostaining 
with AlexaFluor800 (AF800). hpf, hours post fertilization. Visible (GFP) left, 
NIR (AF800) right. Scale bar, 100 µm. a′, A single superficial z plane from a fixed 
Tg(h2b:GFP) (nuclear marker) zebrafish larva/embryo (96 hpf) stained against 
GFP via nanobody-conjugate CF800. Visible (GFP) left, NIR (CF800) right. Scale 
bar, 100 µm. b,b′, Selected superficial patches shown by the dashed boxes in 
a,a′, respectively (visible (GFP) top, NIR (AF800/CF800) bottom) and pixelwise 
correlation plots for all 125 extracted patches. Scale bar, 5 µm. a.u., arbitrary 
units. c, Multiple deeper z planes acquired for the same nuclear marker (h2b) 
zebrafish embryo/larva shown in b. Scale bar, 100 µm. d, Pearson correlation and 

SSIM for the full z stacks acquired for the vascular (kdrl) and nuclear (h2b) marker 
zebrafish from a,a′, respectively. Dashed lines represent 25/50/75th quartiles. 
e,e', Selected deeper patches for the vascular (kdrl) and nuclear (h2b) marker 
zebrafish from a,a′, respectively. Scale bar, 5 µm. f, Pearson correlation and SSIM 
for all patches extracted at different z planes from the full z stacks of the vascular 
(kdrl) and nuclear (h2b) marker zebrafish. The z depth provided is the maximum 
z depth into tissue for each image in the stack. The uncertainty envelope is given 
by the s.d. and the inner thick line represents the mean value. g, The information 
content gain (Methods), between the visible (GFP) and IR channels (IIR/IGFP) for all 
patches extracted at different z planes from the full z stacks of the vascular (kdrl) 
and nuclear (h2b) marker zebrafish. The uncertainty envelope is given by the s.d. 
and the inner thick line represents the mean value.
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coefficient close to 1, demonstrating that staining proceeds with 
high selectivity and without increasing background. The vascular sys-
tem is highly accessible to large percolating antibodies and so even 
staining of large samples (mm-sized) can be achieved quickly. We  
found denser, thicker tissues such as densely packed cell nuclei in the 
brain, to be more difficult to penetrate. As such we sought alternative 
staining strategies (Supplementary Note 2; Fixation, permeabiliza-
tion and staining strategies). Compared to conventional antibodies, 
nanobodies are substantially smaller and thus potentially better suited 

in this regard45,46. To explore whether nanobodies could be used to 
achieve homogenous staining of thick and dense tissues, we conjugated 
a GFP nanobody (Chromotek) with an NIR cyanine-based fluorescent 
dye (CF800, Biotium) via maleimide chemistry and stained a zebrafish 
expressing a histone-GFP fusion Tg(h2b:GFP) (Fig. 1a′ and Supplemen-
tary Table 1). Selected patches and Pearson correlation demonstrated 
comparable selectivity to antibody staining (Fig. 1b′). While traditional 
immunostaining failed without a more destructive permeabilization 
(Supplementary Fig. 4), even deeply located tissues showed uniform 
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Fig. 2 | Infrared-mediated image restoration improves image quality of 
degraded GFP images. a, Single GFP and IR images (left) extracted at increasing 
detection depth in a 96 hpf Tg(h2b:GFP) zebrafish larva restored with either 
IR2 or Noise2Void (N2V) (right). Scale bar, 100 µm. b, Example patches for the 
same zebrafish dataset shown in a arranged by increasing cell density. Scale 
bar, 5 µm. c, Violin plots of information content gain (relative to GFP) in patches 
extracted from the ground-truth (IR, dark red), IR2-reconstructed (IR2, orange) 
and N2V-reconstructed (N2V, yellow) images. Vertical gray lines indicate s.d.  
d, Pearson correlation and SSIM obtained for patches extracted in the GFP, IR2- 
and N2V-restored images when compared to the ground-truth image (IR).  
e, SSIM relative to IR image as a function of detection depth for patches extracted 
throughout the sample. Data are presented as mean ± s.d. f, Single z planes at 

increasing detection depth for a Tg(His2AV-GFP) fly larva (8 hpf) extracted from 
the input (GFP) and ground-truth image (IR), as well as from restored images 
obtained from IR2 and Noise2Void. Scale bar, 100 µm. g, Example patches for the 
same fly dataset shown in f. White asterisks indicate patches where artifacts were 
introduced or features were not reconstructed by the Noise2Void network. Scale 
bar, 5 µm. h, Violin plot of information content gain (relative to GFP) in patches 
extracted from the ground-truth (IR, dark red), IR2-reconstructed (IRIR, orange) 
and N2V-reconstructed (N2V, yellow) images. Vertical gray lines indicate s.d.  
i, Pearson correlation and SSIM relative to IR image, for GFP, infrared-mediated 
and Noise2Void reconstructions. j, SSIM relative to NIR images as a function of 
detection depth. Data are presented as mean ± s.d. In all violin plots, dashed lines 
represent 25/50/75th quartiles.
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staining for this challenging case where the dye/nanobody must pen-
etrate through multiple, mildly permeabilized cell membranes and a 
nuclear envelope (Fig. 1c′).

It is worth noting that the achievable diffraction-limited  
spatial resolution scales inversely with wavelength; however, the 
diffraction-limited spatial resolution is really only achieved within a 
cell layer or two of the surfaces. As such, it is a common practice in 
light-sheet microscopy to undersample with respect to the Nyquist–
Shannon sampling criterion to maximize the field of view. The data of 
Fig. 1a,b were collected under undersampled conditions for both the 
GFP and NIR spectral regions. For the denser nuclear data and all data 
that follow, the spatial sampling was increased to potentially allow finer 
features to be resolved. In fact, the decrease in spatial resolution in the 
NIR relative to GFP was less than expected (31/17% in xy/z) from a direct 
comparison of imaging wavelength as described in Supplementary 
Note 1. The degraded resolution owing to the light-tissue interaction 
will dominate in any case for the deeply located tissues of interest.

The improvement in image quality in the IR is clearly apparent at 
depth into tissue and provides a sound basis for image restoration. For 
both vascular and nuclear transgenic lines, the Pearson correlation 
clusters strongly toward 1, highlighting that staining is accomplished 
evenly throughout (Fig. 1d; note the tail toward lower values corres-
ponds to patches dominated by noise (dark regions) of the image and 
Supplementary Fig. 5). The structural similarity index measure (SSIM; 
a measure of similarity between two images based on their texture 
properties47; Methods) for the vascular label is also close to 1 (Fig. 1d); 
the more deeply situated patches demonstrate that due to favorable 
feature sparsity and size, one can follow individual vessels throughout 
even for GFP (Fig. 1a,e); however, for the nuclear marker, the majority 
of patches are clustered around a SSIM of approximately 0.8 (Fig. 1d). 
In this case, the deeply situated patches are notably different for the 
GFP and IR channels (Fig. 1e′).

The depth-dependence of the SSIM demonstrates that the devia-
tion between GFP/IR images occurs primarily at depth (Fig. 1f), while 
the near-depth invariance of the Pearson correlation again highlights 
its suitability to assess stain penetration. As staining is achieved with a 

high degree of uniformity, the difference must arise from an improved 
image quality for the IR channel at depth. To obtain an absolute meas-
ure of image quality, we computed entropy-based information content 
as previously described48 (Methods), with the IR images at depth show-
ing as much as 2.5× the information content of their GFP counterparts  
(Fig. 1g). We note that commercially available nanobodies conjugated 
to the far-red dye AlexaFluor647 (excitation/emission peaks approxi-
mately 650/670 nm) performed comparably for staining and offered  
a more modest improvement to image quality at depth, with the  
advantage that more common hardware for imaging in the visible 
spectrum can be used.

Application of IR2 to restore degraded GFP images
Having demonstrated that the IR staining pipeline preserves structure 
while labeling uniformly throughout tissue depth and selectively for 
GFP, we considered whether a supervised deep-learning approach49 
could be used to restore a high-contrast image from tissue-scattered 
GFP images. Image degradation resulting from scattering of a light 
sheet has been restored using complementary images from two 
opposed illumination directions50; however, this method, proposed 
also by others51 remains limited in terms of depth penetration as the 
associated ground truth arises from comparably superficial regions, 
whereas tissues that are deeply situated with respect to both illumina-
tion directions remain inaccessible. In contrast, we use the superior 
IR images as a ground truth, thus attempting restoration of images 
degraded by scattering induced in both illumination and detec-
tion. To test whether this approach is generalizable to other model  
organisms, we used transgenic lines from both zebrafish and  
Drosophila embryos where the cell nuclei are labeled with GFP 
(Tg(h2b:GFP) and Tg(His2AV-GFP), respectively) and stained them 
with a GFP nanobody conjugated to the NIR dye CF800. We used these 
datasets in combination with a common convolutional neural net-
work from the CARE package20. First, we implemented an optimized 
patch extraction routine to minimize the number of dark patches in 
the training dataset (Supplementary Fig. 6) and to ensure that the IR 
and GFP patches are maximally aligned locally (Methods). Next, we 
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used a U-Net deep-learning network52 and trained it using the GFP and 
IR images of the nuclear marker as degraded and ground-truth data-
sets, respectively (Methods). Upon application of the network to the 
degraded GFP data, restored images emerged with visibly enhanced 
contrast for both zebrafish and Drosophila subjects (Fig. 2a,b,f,g), 
thus suggesting that the IR2 approach could be applied to two model 
organisms with distinct optical properties.

To benchmark IR2 against current restoration methods, we 
restored both zebrafish and Drosophila images using Noise2Void, a 
self-supervised deep-learning algorithm for image denoising21 and 
visually compared the absolute difference map for individual planes 
and example patches (Methods and Supplementary Fig. 7). To perform 
a more quantitative analysis, we computed image quality by measur-
ing the gain in information content of IR-, IR2- and N2V-reconstructed 
images relative to the information content of the input GFP image 
(Methods show a definition of information content). We observed 
that the information content gain of N2V images did not outper-
form that of IR2 images, and even showed a lower value for zebrafish  
samples, suggesting that the degradation of the input GFP images was 
not dominated by noise (Fig. 2c,h). Instead, we observed that the IR2 
images from the same samples had significantly higher information 
content gain, conversely suggesting that scattering at depth was the 
major source of degradation, and could efficiently be restored using 
IR2 networks (Fig. 2c,h and Supplementary Table 2). The Pearson cor-
relation of IR2 images, being primarily sensitive to the staining quality,  
remained similar across all patches, while we observed a notable 
decrease for N2V images for both zebrafish and Drosophila samples 
(Fig. 2d,i and Supplementary Table 2). Notably, N2V reconstructions 
of both samples also displayed a lower SSIM with the ground truth 
(IR) (Fig. 2d,i and Supplementary Table 2) at all detection depths  
(Fig. 2e,j), thus suggesting that while N2V networks may learn to effi-
ciently denoise images, they are prone to introduce artifacts (shown 
for example in Fig. 2g; white asterisks). Additionally, we set out to 
compare the metrics on a patch-by-patch basis and perform statisti-
cal analysis under the null hypothesis that N2V outperforms our IR2 
approach. This hypothesis was strongly rejected for both zebrafish 
and Drosophila datasets, where we observed that the few images in 
which N2V outperformed IR2 comprised low-information content and  
were dominated by noise (P < 0.001; Supplementary Note 3 and 
Supplementary Fig. 8 provide details). Overall, both for zebrafish 
and Drosophila samples, we observed a remarkable improvement 
in the IR2-restored images compared to both the input GFP images  
and images restored with another deep-learning strategy, which is 
attributable to a contrast enhancement following restoration.

Robustness of IR2 over long developmental windows
The success of deep-learning-based restorative strategies relies  
on training data that are representative of the degraded data. When 
considering the restoration of dynamic time-lapse data from static end 
point training data, one must consider the efficacy of the restoration 
over the full time series, over which substantial developmental pro-
cesses may render morphological changes in the sample. To explore 
the effect of the developmental interval between the capture of live/
degraded and fixed/ground-truth training data, GFP and IR images 
were captured for nuclear marker zebrafish (h2b:GFP) at 2, 3 and 4 d 

after fertilization (Fig. 3a). The GFP/IR from each age group were used 
to train restoration networks, each of which was subsequently applied 
to the task of restoring the degraded GFP images for all ages (Fig. 3b 
and Supplementary Fig. 9). As expected, the network corresponding 
to the actual age produced the best restoration in all cases between 
the IR ground truth and GFP degraded data on the basis of normal-
ized root mean square error (NRMSE; Methods) and SSIM (Fig. 3c). 
Nevertheless, the difference with the restoration based on dissimilar 
aged training data were small and all restoration networks resulted in 
an improved similarity with the IR images regardless of age. This sug-
gests that the restoration networks can be successfully applied even 
over long developmental time windows, while a superior restoration of 
time-lapse data may be achieved by applying several trained networks 
over their respective developmental time window. We attribute this 
robustness to developmental time as a result of the origin of the signal 
to be restored, in this case, small-scale punctate features arising from 
cell nuclei largely dominating over large-scale morphological changes.

Application of IR2 for deep-tissue time-lapse imaging
Having demonstrated that IR2 performs well over wide developmental 
periods, we next set out to test whether this approach is applicable to 
continuous acquisitions of time-lapse live-imaging data. To this end, we 
performed long-term time-lapse microscopy of developing zebrafish 
and Drosophila embryos whose nuclei are labeled with GFP (Fig. 4a,e), 
and used IR2 networks trained on static images obtained via fixation 
and nanobody staining of a sample. For both zebrafish and Drosophila, 
we observed a qualitative increase in image contrast throughout the 
duration of the time-lapse experiment (Fig. 4b,c,f and Supplementary 
Video 1). To quantify the improvement, we computed the information 
content gain, defined as the information content of IR2 images rela-
tive to the information content of the corresponding GFP input for all  
z slices and time points (Supplementary Fig. 10 and Fig. 4g,h). We then 
computed the average information content gain in every plane of  
the z stack and for every time point, thereby obtaining a kymograph  
representing the spatiotemporal evolution of the quality metric 
throughout the time-lapse experiment (Fig. 4d,i). In both the zebrafish 
and the Drosophila cases, we observed an improvement in the informa-
tion content gain with image detection depth. Conversely, the same 
quantity showed only a minor improvement with time, attributable  
to a general increase in the sample volume and so a relative improve-
ment for the NIR imaging. This finding is consistent with the observa-
tions of Fig. 3, that a single IR2 network maintains a similar restoration 
performance throughout a wide developmental range.

Following demonstration of the image quality improvement 
achieved by IR2 on time-lapse live-imaging data, we next sought to 
demonstrate how this approach can aid a quantitative analysis com-
mon in biological imaging, namely, cell-lineage reconstruction. To this 
end, we used a new organoid model system, termed pescoids, which 
consists of zebrafish embryonic explants53. Furthermore, to explore the 
applicability of our approach using more widely available optical and  
biochemical tools, we used a commercial antibody conjugated with 
a dye in the far-red (anti-GFP:AlexaFluor647) and a commercially 
available multiview light-sheet microscope (MuVi-SPIM; Methods). 
The images showed a clear increase in image contrast at depth (Sup-
plementary Fig. 11). We then trained an IR2 network and applied it to  

Fig. 4 | Infrared-mediated image restoration provides high-contrast deep-
tissue time-lapse imaging of living biological systems. a, 3D reconstruction 
of live Tg(h2b:gfp) zebrafish larva images. Orange boxes represent the regions 
shown in b,c. Scale bar, 100 µm. b,c, Individual z planes at detection depth of 
100 µm and 250 µm, respectively for the fish larva shown in a. Endogenous GFP 
(top), IR2 reconstructed images (bottom). Scale bar, 100 µm. d, Kymograph 
representing the information content gain relative to the GFP images, for all 
the images in the time-lapse dataset and as a function of detection depth. 
Line plots to the right and the bottom represent the depth- and time-average 

information content gain. e, 3D reconstruction of live (Tg(His2AV-GFP)) fly larva 
images. Green opaque planes represent the sample sections shown in f. Scale 
bar, 100 µm. f, Individual z plane for the fly images shown in e. Endogenous GFP 
(top), IR2 reconstructed images (bottom). Red-highlighted time points are shown 
in g,h. Scale bar, 100 µm. g,h, Spatial mapping of the information content gain 
for the two individual z planes shown. Scale bar, 100 µm. i, Kymograph of the 
information content gain as a function of time and detection depth. Line plots 
represent the depth- and time-average information content gain.
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time-lapse data of pescoids54 (Methods provides details on moun-
ting and imaging conditions). We observed an increased contrast in 
the IR2 images compared to live GFP data (Fig. 5a and Supplementary 

Video 2), also quantitatively confirmed by plot profile analysis  
(Fig. 5b), which persists for all time points (Supplementary Video 3). 
Next, we used well-established software based on a Gaussian mixture 
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model to perform cell tracking on both GFP and IR2 time-lapse datasets 
(TGMM)55. We observed that TGMM was able to detect a substantially 
larger number of cells in the IR2 images compared to the GFP data  
at all time points, suggesting that the increased contrast obtained in  
the reconstructed data greatly aids cell detection (Fig. 5c). Further-
more, as IR2 images are expected to provide substantial image quality 
gain deeper in the sample tissues, we also observed that TGMM was 
capable of detecting cells in the IR2 images in regions where the GFP 
dataset showed only few detected cells (Fig. 5d). As a consequence  
of the improved cell detection at all time points, we observed a clear 
benefit in whole-lineage reconstruction in IR2 images, where we 
obtained substantially longer tracks (Fig. 5e). Evidently, the higher 

fidelity on track reconstruction from IR2 images is a direct benefit 
of increased image quality, as observed when visualizing a random 
subset of all the cell tracks obtained from the reconstructed data in 
both datasets (Fig. 5f,g).

Taken together, our results demonstrate that the information 
content of degraded time-lapse microscopy datasets containing only  
a visible contrast can be augmented by training a neural network on  
the basis of the relative benefits of deep-tissue NIR imaging and  
applying it to the task of image restoration to allow time-lapse imag-
ing with high contrast even deep into tissue. Notably, the augmented 
datasets constitute the basis for better and more accurate quantitative 
analysis such as for cell-lineage reconstruction.
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Fig. 5 | Image restoration of developing pescoid. a, MIPs of z planes between 
240 and 280 µm deep inside a pescoid (cartoon) developing over the course of 
approximately 10 h. Live GFP images (top) and the images reconstructed using 
IR2 (bottom). Scale bar, 50 µm. b, A single z plane from the volume acquired at the 
first time point, where GFP and IR2 images have been alternated in vertical stripes 
(top). The plot profile along the white dashed line in the GFP (blue) and IR2 images 
(orange) (bottom). Scale bar, 50 µm. c, Number of cells detected over time in the 
GFP (blue) and IR2 (orange) volumes. d, Number of cells detected in GFP (blue) 

and IR2 (orange) images at the first time point as a function of the distance from 
the center of mass (c.m.) (inset). e, Distribution of track lengths in GFP (blue) 
and IR2 (orange) time-lapse images. f, Example of images from cell tracks in GFP 
and IR2 time lapse. Scale bar, 5 µm. g, 3D representation of tracks longer than 50 
time points, color coded for time (light blue indicates early time points and violet 
indicates late time points). Black lines indicate tracks represented in f. Scale bar, 
50 µm.
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Discussion
We have demonstrated that supervised deep learning can be used to 
restore image quality in deep-tissue images given suitable ground-truth 
and degraded images. As a first illustration of this concept, we intro-
duce IR2, which exploits NIR dye labeling of GFP as a route to paired 
degraded and ground-truth datasets, alongside light-sheet microscopy 
to provide fast and gentle live imaging. Unlike others who have used 
convolutional neural networks to restore image quality on the basis 
of reduced scattering at longer wavelengths56, IR2 offers the following 
advantages. First, imaging is performed using well-corrected immer-
sion optics with a 3D PSF that is as much as 250× smaller by volume 
based on the measured resolution in either case38. While much of this 
resolution scaling can be understood by comparison of the numerical 
apertures and imaging wavelengths employed, we note that achieving 
resolution congruent with the higher NA of our study, requires careful 
consideration of aberrations. Nevertheless, a direct comparison is dif-
ficult as previously reported NIR-II light-sheet systems define the reso-
lution as measured in tissue, which introduces a sample dependency. 
The resolution in tissue for IR2 is explored in Supplementary Note 4.  
Second, IR2 relies on genetically encoded fluorophores and their  
cognate antibody/nanobody-tagged NIR dyes thus ensuring molecu-
larly precise correspondence between the ground truth and degraded 
data. Furthermore, the labeling scheme achieves cell permeability  
and complete staining in a few hours in fixed tissues and so samples 
may be stained via simple immersion rather than requiring intrave-
nous injection as a delivery mechanism. Coupled with the selectivity  
noted, one may image arbitrary tissues and subcellular compo-
nents rather than being limited to imaging the vasculature through 
non-selective dispersion of the dye in the bloodstream or to cell-surface 
receptors where circulating dye may bind. Third, IR2 has been devel-
oped specifically for the restoration of time-lapse images and has 
been shown to be robust across wide developmental windows. From 
a practical implementation point of view, IR2 relies on deep-learning 
networks that are easy to utilize using a widely used, well-established 
deep-learning library (CARE)20. Implementations for this and similar 
deep-learning libraries exist for a variety of image analysis ecosystems, 
including Fiji57,58, Python and napari plugins59,60. Taken together, these 
aspects open the NIR/deep-learning toolbox to cell and developmental 
biologists wishing to push live-imaging deeper into tissue. Conversely, 
IR2 is more limited in terms of maximum imaging depth owing to the 
NIR-I versus NIR-II operating range. Nevertheless, for imaging with 
cellular resolution in mm-sized models, the loss of spatial resolution 
at longer wavelengths likely dominates in a tradeoff as the optical 
penetration in the NIR-I is typically sufficient for in toto imaging of 
small embryos/larva.

In contrast to existing restorative deep-learning pipelines such 
as Noise2Void, which, while powerful in their own domains, are 
not designed to enhance depth penetration in optical imaging, IR2 
has been developed specifically to restore deep-tissue contrast to 
live-imaging data from zebrafish and Drosophila embryos/larvae as 
well as zebrafish-derived embryonic organoids. En route, we have 
demonstrated the utility and robustness of this approach to resolve 
features of embryonic/larval development across wide developmental 
time windows and which would otherwise be inaccessible owing to the 
limited penetration of visible light into tissue.

The methods reported can be generalized, requiring only wide-
spread GFP lines and some optimization of staining protocols. Even 
in the absence of a specialist microscope capable of visible-IR imag-
ing, we showed that improvements to image quality can be made for 
commercially available GFP-antibody tagged dyes that are efficiently 
excitable in the far-red range of the spectrum and an appropriate micro-
scope (Supplementary Figs. 4 and 11). The deep-learning networks 
themselves require only modest computational resources. In this 
regard, hardware requirements, software and datasets are provided 
to aid uptake of these restorative abilities by biologists seeking to  

perform minimally invasive live deep-tissue imaging (Methods and 
Code Availability provide details).

A potent direction for the future would be to explicitly incorporate 
a depth dependent component to the restoration, using the detection 
depth as an additional channel of the input images. Furthermore, model 
training has been carried out using only single samples, rather than by 
combining ensembles. Limited training data are a general challenge to 
deep-learning methods; however, light-sheet techniques are able to 
generate vast quantities of data rapidly. As no annotation is required, 
several datasets could be combined to learn additional features for 
restoration at the cost of increased training time.

We expect further improvements to the performance of IR2 com-
mensurate with developments in fixation protocols that better main-
tain tissue structure and GFP fluorescence. Similarly, more photostable 
and brighter IR dyes, red shifted toward the NIR-II41,61,62 (alongside  
commensurate developments in low-noise cameras) may allow even 
deeper tissue imaging. Furthermore, for widely distributed/shared 
technologies63, a library of images and restoration networks could 
be curated for given transgenic lines and shared with other users 
thus allowing restoration to be applied as an optional part of their 
post-processing pipeline.

The IR2 restoration network is not limited to the basis of GFP/IR 
images as degraded/ground-truth pairs and could prove similarly power-
ful for ground-truth images arising from the use of adaptive optics, 
multiphoton excitation or indeed chemical clearing if tissue distortions 
can be obviated. In pursuit of minimizing animal usage, the scheme out-
lined provides one route by which the information contained in a single 
subject may be additionally leveraged rather than lost when discarding 
samples after time-lapse imaging. We anticipate that IR2 can provide 
a powerful tool in the biologist’s arsenal for deep-tissue live imaging.

Online content
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maries, source data, extended data, supplementary information, 
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Methods
Zebrafish husbandry and transgenic lines
Zebrafish (Danio rerio) were handled according to established proto-
cols approved by the University of Wisconsin-Madison Animal Care 
and Use Committee. Zebrafish adults and larvae were maintained on 
a 14 h/10 h light–dark cycle at 28 °C. Zebrafish embryos were raised in 
E3 medium at 28 °C. Transgenic lines Tg(kdrl:GFP) and Tg(H2b:GFP) 
were outcrossed to a casper background to reduce pigmentation where 
possible. Phenylthiourea was used for depigmentation otherwise. 
Individual positive embryos were chosen randomly from a clutch of 
100–300 embryos (at a density of ~0.5 fish per ml) or from pooled 
clutches where necessary.

Fixation and immunostaining of zebrafish
The standard protocol was employed for fixation/staining of trans-
genic lines that did not show appreciable limitations to penetration 
of antibodies. Embryos/larvae were fixed in 1.5% paraformaldehyde 
in phosphate-buffered saline (PBS) + 0.5% Triton (PBST) for 2 h at 4 °C 
and then washed overnight in aldehyde block (0.3 M glycine in PBST) at 
4 °C. The fixed fish were briefly washed in aldehyde block before being 
permeabilized in PBST for 4 h at room temperature (RT). Subsequently, 
fish were washed for 1, 2, 5 and 30 min at RT in PBST and blocked for  
2 h RT in 0.05% Tween, 0.3% Triton, 5% normal goat serum, 5 % bovine 
serum albumin (BSA), 20 mM MgCl2 and PBS. After a brief wash in 
PBST, fish were incubated consecutively overnight at 4 °C and 2 h at 
RT in primary and secondary antibodies respectively (diluted 1:500) 
in PBST + 5% goat serum. Finally, embryos/larvae were washed in PBS 
until they were ready for imaging. In the case of nanobody staining, 
after the blocking step, fish were incubated for 2 h at 4 °C (diluted 1:500 
or 1:100) and then washed in PBS until they were ready for imaging.

The trypsin protocol was carried out for fixation/staining of trans-
genic lines for which antibodies failed to penetrate tissue when using 
the standard protocol, the rationale being that a more aggressive per-
meabilization with trypsin could aid penetration. Embryos/larvae were 
fixed and washed overnight following the standard protocol. Next, the 
fish were permeabilized in 0.25% trypsin in PBS for 5 min on ice, washed 
briefly in PBST and continued from the blocking step from the standard 
protocol to completion (protocol modified from elsewhere64). The 
protocol was not effective in enhancing penetration of the antibodies 
(Supplementary Fig. 4).

Zebrafish mounting
Live embryos and larvae were first anesthetized in E3 medium  
(without methylene blue) containing 0.16 mg ml−1 tricaine (Sigma) and 
embedded for imaging in fluorinated propylene ethylene (FEP) tubes 
(ProLiquid, internal diameter (i.d.) 0.8 mm and outer diameter (o.d.) 
1.2 mm) containing 1% low-melting-point agarose/E3 (Sigma). Imaging 
was carried out at RT and the chamber was filled with reverse osmosis 
(RO) water for fixed samples and tricaine/E3 medium for live samples.

Drosophila husbandry and transgenic lines
Fly stocks were maintained by the laboratory of J. Wildonger at the 
University of Wisconsin-Madison according to established protocols 
approved by the University of Wisconsin-Madison Animal Care and Use 
Committee. Flies were kept on a 12-h light–dark cycle and transferred 
to fresh vials with food every 2 d. The Tg(His2AV-GFP) transgenic line 
was used.

Fixation and immunostaining of Drosophila
Embryos were collected at the desired developmental stage, rinsed 
in RO water and placed for 90 s in a Petri dish with 100% bleach to 
weaken the outer shell. A paint brush was used to roll the embryos 
on the Petri dish surface and remove the shell before rinsing with RO 
water. Embryos underwent a first fixation of 1:1 of 9% paraformalde-
hyde in PBS:heptane for 30 min RT. The inner vitelline membrane of 

embryos was removed by filling the embryo-containing vial with 55% 
heptane and 45% methanol and striking the vial against a table surface 
for 2 min, settling for 2 min and repeating three times. Supernatant 
and floating non-cracked embryos were removed and an aldehyde 
block (0.3 M glycine in PBST) was added for an overnight incubation 
at 4 °C. Next, embryos underwent a second fixation with PBST for 4 h 
at RT, washed with methanol and then ethanol, and blocked with 0.3% 
Triton X-100, 3% BSA, 10 mM glycine, 1% goat serum, 1% donkey serum 
and 2% dimethylsulfoxide in PBS at 4 °C overnight. The embryos were 
incubated in primary antibody (1:500 dilution) overnight at 4 °C in 
PBS + 5% goat serum, washed twice and then stored in wash buffer over-
night at 4 °C (consisting of 0.1% Triton X-100, 3% BSA, 10 mM glycine in 
PBS and adjusted with NaOH-HCl to pH 7.2. After a brief wash of PBST, 
the embryos were subsequently incubated for 2 h at RT in secondary 
antibody solution (1:500 dilution) in PBS + 5% glycine. When using 
nanobodies, after the blocking step the embryos were incubated for 
2 h at 4 °C (1:500 or 1:100 dilution). After antibody/nanobody incuba-
tion, embryos were washed in PBS until ready for imaging (protocol 
modified from elsewhere65).

Drosophila mounting
Live and fixed embryos were embedded for imaging in 2% 
low-melting-point agarose/PBS in FEP tubes with an i.d. of 0.8 mm 
and an o.d. of 1.2 mm (ProLiquid). Imaging was carried out at RT and 
the chamber was filled with RO water for fixed samples and PBS for live 
samples. A number of embryos were mounted in each tube to identify 
suitably oriented candidates for imaging (with their body axis approxi-
mately aligned along the tube axis).

Fixation and immunostaining of pescoids
Pescoids were generated and collected as previously described53. 
Briefly, zebrafish embryos were cultured at 28 °C in E3 medium until 
they reached the 256 cell-stage. Embryo cells were then explanted using 
an eyelash tool, and immediately transferred in L15 medium (Thermo 
Fisher, 11415049). For fixation, samples were gently washed twice in 
PBS, transferred in 4% (w/v) paraformaldehyde diluted in PBS and 
fixed at 4 °C overnight. Next, pescoids were transferred in a glass well 
and gently washed with PBS (three times, 10 min each) and PBSFT (PBS 
supplemented with 10% fetal bovine serum and 1% Triton X-100) (three 
times, 10 min each). Immunostaining was performed by incubating 
the pescoids overnight at 4 °C in a polyclonal antibody (aGFP:AF647, 
Thermo Fisher, A-31852, 1:500 dilution in PBSFT). The day after, pes-
coids were washed three times (10 min each) in PBS before imaging.

Mounting of pescoids
Fixed pescoids were embedded in FEP tubes in 1% low-melting-point 
agarose/E3 (Sigma) and mounted on a glass capillary with an i.d. of 
0.8 mm and o.d. of 1.2 mm (Luxendo/Bruker). Imaging was performed 
at RT filling the chamber with E3 medium. Live pescoids were embed-
ded in FEP tubes in E3 medium and imaged at 28 °C.

IR-mSPIM
Visible and NIR excitation was provided by a Toptica MLE laser engine 
(SM-fiber-coupled: 405 nm, 488 nm, 561 nm, 640 nm all 50 mW) and 
Omicron, LightHub-4 laser combiner (free-space, LuxX: 685 nm, 50 mW, 
785 nm, 200 mW, 808 nm and 140 mW). The collimated laser outputs 
were expanded in one dimension using pairs of cylindrical lenses. The 
visible and NIR lasers were combined via a shortpass dichroic mirror. 
The light sheets were produced by cylindrical lenses, using a galvo 
mirror-based (Scanlab Dynaxis 3 S) mSPIM scheme to pivot the indi-
vidual light sheets for efficient stripe suppression66. Ultra-broadband 
achromatic doublets (400–1,000 nm) were used where possible to 
relay and deliver the light sheets into a sample chamber with coverslip 
windows via two opposed water-corrected air immersion illumination 
objectives (Zeiss, LSFM ×10/0.2)
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The emission path was optimized for visible-NIR transmission. 
A multiphoton objective (Olympus XLPLNS10XSSVMP ×10/0.6, 
8 mm WD) provided good transmission and moderate NA with a large 
field of view. Nevertheless, axial chromatic aberration at <650 nm 
required correction via automatic refocusing of the lens and immer-
sion chamber using a motorized stage Physik Instrumente, M-111.1DG) 
(typical change in focal plane ± 10 µm). The light sheet remains at 
a single z plane throughout refocusing and as such the location of 
the imaged plane does not change as the objective and chamber are 
moved. The chromatic calibration procedure and performance are 
discussed in Supplementary Note 1. A tube lens (400–1,300 nm, Thor-
labs TTL200MP, 200 mm focal length) was used to produce an image 
of the sample at ×11.1 magnification on an sCMOS camera (Andor Zyla 
4.2), which provides sufficient sensitivity (quantum efficiency >10%) 
up to ~950 nm. The magnification of the system could be increased to 
×22.2 by exchanging the tube lens with an ultra-broadband achromatic 
lens (Thorlabs, AC508-400-AB-ML). Fluorescence was spectrally fil-
tered from the excitation using bandpass filters (Chroma ET525/50 m, 
ET697/60 m, ET845/55 m for GFP, AlexaFluor647 and AlexaFluor800/
CF800, respectively) mounted on a motorized filter wheel (Ludl 
96A351, MAC6000 controller). The reference spectra of the NIR dyes 
used (AlexaFluor800/CF800) suggest that a combination of a 785-nm 
laser line and bandpass centered around 820 nm (for 55 nm full-width 
at half maximum width) would be optimal; however, both antibody/
nanobody conjugation were associated with a strong redshifting of 
the excitation and emission spectra of the IR dyes and the 808-nm laser 
line and emission filter centered at 845 nm were found to be optimal. 
This redshifting has been observed in dyes and their conjugates67,68 
and for our purposes is expected to be beneficial resulting in further 
decreases in scattering and autofluorescence with a small increase 
in absorption from water. Samples were mounted in FEP tubes via 
a custom sample holder. Three translation stages and one rotation  
stage (Physik Instrumente M-111.1DG, U-651 with C-884, C-867  
controllers) were used to orient the sample and acquire z stacks. 
Hardware control and synchronization were provided by custom  
LabVIEW software and a USB-6343 Multifunction DAQ device (National 
Instruments).

Nanobody conjugation
The anti-GFP VHH/Nanobody (Chomotek) underwent site-directed 
conjugation with the CF680R maleimide (Biotium). The nanobody at 
concentration of 100 µM was incubated for 2 h at RT with an equimolar 
amount of dye. Labeled protein was separated from unlabeled protein 
by size exclusion chromatography.

Sample imaging
Imaging of zebrafish and Drosophila fixed samples was performed on 
IR-mSPIM (Methods) using 488 nm (GFP) and 808 nm (CF800 dye) 
excitation wavelengths. The laser powers were chosen to make sure that 
CF800 images would have an absolute brightness comparable to the 
GFP ones. For the zebrafish samples, stacks were generated acquiring 
a z plane every 5 µm using laser powers of <2.2 mW (GFP) and <3.4 mW 
(CF800) and exposure times of 100 ms for both. Note, laser powers are 
given as measured in sample medium downstream of the illumination 
objective. For the Drosophila samples, volume stacks were generated 
acquiring a z plane every 2.5 µm using laser powers of <1.1 mW (GFP) 
and <3.4 mW (CF800) and exposure times of 100 ms for both.

Live zebrafish and Drosophila samples were imaged using laser 
powers in the previously stated range for fixed tissue GFP imaging; 
however, the exposure time was set to 20 ms, which is more typical for 
light-sheet-based live imaging. The laser powers used are comparable 
to those of previous studies of unimpeded biological development 
and function using light-sheet microscopy (Supplementary Note 5).

Imaging of fixed pescoids was performed on a commercial 
light-sheet system (Luxendo MuVi-SPIM, Olympus ×20/1.0NA detection 

objective, ×16.7 effective magnification, 0.39 µm per pixel), using 
10 mW laser power and 50 ms exposure time for both GFP (488 nm 
wavelength) and AlexaFluor647 (642 nm wavelength). Imaging of live 
pescoids was performed on the same microscope using 3.5 mW laser 
power and 50 ms exposure time. In both cases, stacks were generated 
acquiring a z plane every 2 µm. Live images acquired by the two oppos-
ing camera views were registered and fused using the Image Processor 
module of the Luxendo software (Luxendo processor software v.3.0).

For all images, 3D reconstructions and videos were performed 
using the Fiji plugin 3DScript69.

Deep learning
Upon acquisition of the GFP images and their IR counterparts, we 
obtained training samples by generating patches of dimension 
128 × 128 × 32 pixels throughout the z stack. Patches were extracting 
using either homogeneous distribution, using a probability of extrac-
tion per pixel equal to:

P(i, j, k) = 1
N

Where N is the total number of pixels in the z stack, or using a selective 
probability:

P(i, j, k) = B
Nf
,P(i, j, k) = (1 − B)

Nb

In this case, a threshold was computed using the Otsu threshold-
ing and pixels were classified as foreground (pixel value higher than 
threshold) or background (pixel value lower than threshold). Nf and 
Nb represent the total number of foreground and background pixels,  
respectively. B is a tunable parameter used to adjust the fraction  
of patches extracted in foreground regions, where a value of B = Nf/N = 
(N−Nb)/N corresponds to the homogeneous probability distri bution. 
Throughout the experiments, we used B = 0.9, thus including only 
10% of background patches in the extracted training dataset. Sample 
coverage was iteratively monitored by comparing the number of fore-
ground and background pixels extracted in the training set, and patch 
extraction was interrupted when sample coverage reached a value of 
95% (Supplementary Fig. 6).

To avoid a misalignment between input and ground-truth  
datasets due to residual chromatic aberrations, we subsequently  
performed a correlation-based registration using local translations 
of the patches and found the (dx, dy, dz) translation that maximized 
the functional:

C(dx,dy,dz) = R(Ii(x, y, z),GTi(x + dx, y + dy, z + dz))

Where R represents the image cross-correlation function, and Ii, GTi 
represent the input and ground-truth patch, respectively.

With the training dataset thus obtained, we subsequently 
trained a deep-learning network using the CARE framework20. In par-
ticular, throughout all experiments, we used a U-Net algorithm with 
one-channel input and one-channel output, two hidden layers and soft-
max output layer (Supplementary Fig. 6). The weights of the network 
were iteratively updated at every epoch using the mean squared error 
computed between the output of the network and the IR ground truth 
as a loss function. The input GFP image is thereby transformed at every 
subsequent layer into a new image with decreased spatial dimensions 
and increased channel dimension. Patches were divided into training 
and validation datasets with a ratio of 9:1 and the networks were trained 
over 100 epochs using a batch size of 8. Depending on the number of 
patches, training lasted approximately 12–24 h using a GPU Quadro 
P5000 (16 GB memory) on a CentOS system (512 GB RAM). Predic-
tion of new images was performed on the same computational setup.  
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All subsequent CPU-based image-based analysis, such as image infor-
mation content, SSI and root mean square error, were parallelized to 
use the 80 cores available.

Image quality assessment
Throughout the paper, we have used four main metrics for image  
quality and comparison: NRMSE, Pearson correlation coefficient, SSI 
and entropy-based information content.

Normalized difference map. The normalized difference maps shown 
in Supplementary Fig. 7 are obtained by normalizing the GFP, IR, IR2 and 
N2V with their respective 0.3 and 99.9 percentiles, to obtain images with 
identical dynamic range. Next, the absolute values of the difference 
between pairs of images were computed and shown. For visualization, 
we randomly chose patches in which the IR image showed substantial 
image quality improvement compared to the GFP image (patches in 
which the IR image had an information content gain higher than 1.2).

Normalized root mean squared error. This metric is defined as:

NRMSE(x, y) = √< (x − y)2 >
< y >

Where x and y are the two images to be compared and <> denotes mean 
values. Specifically, we used the implementation of NRMSE from the 
Python package scikit-image70.

Pearson correlation coefficient. Pearson correlation between pairs 
of images was computed on patches of (128 × 128 × 32) pixels extracted 
from the whole 3D images avoiding dark regions.

For the comparison between GFP and antibody-stained IR images 
in Fig. 1b,b′, we extracted patches within 20 µm from the surface of the 
sample. The sample mask was computed with a manually set threshold 
and the edge mask was obtained subtracting a binary erosion of the 
mask itself.

Structural similarity index metric. SSI is a metric used in image analy-
sis to compare the similarity between two images47. As opposed to 
easier-to-implement measures such as NRMSE and Pearson correlation 
that rely on absolute pixel values, SSIM is primarily influenced by the 
structures (or textures) within the images. Briefly, the SSIM between 
two images x and y is the multiplication of the measures of luminance, 
contrast and structure. Throughout this work, we have used the imple-
mentation of SSIM from the popular Python package scikit-image70.

Entropy-based information content.  Similar to previous 
approaches48,71, we measured image information content by comput-
ing the Shannon entropy of the discrete cosine transform (DCT) of 
the image patch:

IIC = −∑
i, j

pi, j ⋅ ln (pi, j)

pi, j =
F(i, j)

∑i, j F(i, j)

F(i, j) = DCT(I )2

N2

Where N represents the size of the patch and DCT is the discrete cosine 
transform of the image patch I.

Throughout the text, the information content gain of an image 1 
relative to an image 2, is defined as the ratio between the image infor-
mation content values of the two images.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
A sample of the data is available on the Zenodo repository (https://doi.
org/10.5281/zenodo.7075414). Full datasets are available upon request.

Code availability
The code used to train all models and predict new images, as well as 
the scripts used for image analysis, are deposited on GitHub (github.
com/grinic/2023_InfraRed_Image_Restoration.git). A sample dataset 
is available on Zenodo (https://doi.org/10.5281/zenodo.7075414).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection

Data analysis

For data acquisition, the microscope was controlled in a LabVIEW environment (NI LabVIEW 2017) using custom software, NI multi-function DAQ hardware (NI DAQmx) and various 
hardware SDKs. Images acquired with Luxendo/Bruker MuVi SPIM microscope were pre-processed with Luxendo software v3.0.

The Python code used isavailable at https://github.com/grinic/2023_InfraRed_Image_Restoration.git. A sample dataset is available on the Zenodo repository (doi 10.5281/
zenodo.7075414). For training and prediction of deep learning networks, we used the CARE Python3 package with Tensorflow v.2.5.0. Image pro

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

A sample of the dataset used is available on Zenodo (doi 10.5281/zenodo.7075414). Due to the large size of the full dataset (in the order of several TB) and the 50GB limit of Zenodo, we will make the full dataset 
available upon request.
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Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender No human participants were involved in the study

Population characteristics No human participants were involved in the study

Recruitment No human participants were involved in the study

Ethics oversight No human participants were involved in the study

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

For each of the model system used, we analyzed 3-5 fixed/stained samples. We did not use a statistical test to calculate sample size,, instead the sample size was empirically 
determined based on the replicates needed for the deep learning approach. Typically, one sample was used for network training and the other samples for testing and prediction. For 
the time-lapse microscopy dataset, we used 1 sample per model system as a proof-of-principle.

Replication
Samples were randomly chosen from a pool of samples laid on the day of the experiments. Data were acquired on multiple days and for 
different sample batches over the course of several months. All attempts of replication were successful.

Randomization From the pool of zebrafish and drosophila samples, individuals for imaging were chosen randomly. Samples were allocated into experimental 
group according to their developmental stage. The first acquired sample in each category was generally used to train the deep learning 
network, and the others were used for testing and prediction.

Blinding Blinding was not relevant to this study due to the randomization used and no categorization of the data.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Primary: anti-GFP (ThermoFisher, A-11122), nano-GFP (Chromotek, GT-250) 

Secondary: AF800 (ThermoFisher, A-32808), CF800 (Biotium, #92128), AF700 (TermoFisher, A-21038) 
Conjugated: nano-GFP+AF647 (Chromotek, GB2AF647)

Validation Each antibody was validated by the commercial company providing the product.  

No data were excluded.
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The primary anti-GFP has been used extensively for immunohistochemistry in various model systems such as drosophila, zebrafish 
and mouse. Relevant literature can be found at:  
https://www.thermofisher.com/antibody/product/GFP-Antibody-Polyclonal/A-11122.  

For the nano-GFP (GT-250), relevant literature can be found at:  
https://www.ptglab.com/products/GFP-VHH-recombinant-binding-protein-gt.htm#publications,  
and Chromotek provides the following statements: 
Alpaca anti-GFP VHH, purified recombinant binding protein for extraordinary stable & reliable binding 
• GFP-VHH:GFP complex is stable up to 80 °C, 1 mM DTT, 3 M Guanidinium•HCl, 8 M Urea, 2 M NaCl, 2 % Nonidet P40 Substitute, 1 
% SDS, 1 % Triton X-100, 3 % Deoxycholate 
• Fulfills highest requirements for antibody validation 
• Structure and function are characterized 

For the conjugated nanobody (GB2AF647), relevant literature can be found at: 
https://www.ptglab.com/products/GFP-Booster-Alexa-Fluor-647-gb2AF647.htm 
 Chromotek provides the following description: 
The GFP-Booster stabilizes, enhances, and reactivates the signal of GFP-fusion proteins. Due to its small size, the GFP-Booster enables 
higher image quality in epifluorescence, confocal, and super-resolution microscopy: 
• Considerably higher tissue penetration rates 
• Superior accessibility and labelling of epitopes in crowded cellular/organelle environments 
• Less than 2 nm epitope-label displacement minimizes linkage error 
• Monovalent VHHs do not cluster their epitopes 
• Validation: structure and function characterized 
• Consistent and reliable performance due to recombinant production

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals Zebrafish: transgenic lines Tg(kdrl:GFP) and Tg(h2b:GFP) at larval stages between 24 and 144 hours post fertilization. 
Drosophila: Tg(his2av:GFP) at embryo stages between 4 and 24 hours post fertilization.

Wild animals The study did not invlove wild animals.

Reporting on sex The study does not apply to one sex only.

Field-collected samples The study did not include samples collected from the field.

Ethics oversight Zebrafish (Danio rerio) were handled according to established protocols approved by the 380 University of Wisconsin-Madison 
Animal Care and Use Committee. 
Fly stocks were maintained by the lab of Jill Wildonger at the University of Wisconsin-Madison 420 according to established protocols 
approved by the University of Wisconsin- Madison Animal 421 Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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