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Itis poorly understood how different cells in a tissue organize themselves
to support tissue functions. We describe the CytoCommunity algorithm

for the identification of tissue cellular neighborhoods (TCNs) based on

cell phenotypes and their spatial distributions. CytoCommunity learns a
mapping directly from the cell phenotype space to the TCN space using
agraphneural network model without intermediate clustering of cell
embeddings. By leveraging graph pooling, CytoCommunity enables
denovoidentification of condition-specific and predictive TCNs under

the supervision of sample labels. Using several types of spatial omics

data, we demonstrate that CytoCommunity can identify TCNs of variable
sizes with substantial improvement over existing methods. By analyzing
risk-stratified colorectal and breast cancer data, CytoCommunity revealed
new granulocyte-enriched and cancer-associated fibroblast-enriched TCNs
specific to high-risk tumors and altered interactions between neoplastic and
immune or stromal cells within and between TCNs. CytoCommunity can
perform unsupervised and supervised analyses of spatial omics maps and
enable the discovery of condition-specific cell-cell communication patterns
across spatial scales.

Tounderstand the structure-function relationship of atissue, the con-
cept of tissue cellular neighborhoods (TCNs) or spatial domains has
been proposed as a recurrent functional unit in which different cell
types organize themselves to support tissue functions'. With the
development of spatial omics, thereisacritical need for computational
methods>*'° for identifying spatial domains in tissues. Several pioneer-
ingmethods have been developed, which can be roughly classified into
non-deep-learning-based and deep-learning-based approaches. As
representative of the first category, Giotto>* and BayesSpace’ identify
spatial domains with similar gene expression patterns based on proba-
bilistic graphical models and spatial transcriptomics data. Spatial-LDA’

uses the latent Dirichlet allocation topic model to identify spatially
coherent patterns based on cell-type counts and cell spatial coordi-
nates. UTAG'® uses message passing to combine cell molecular features
and spatial location information followed by clustering to identify
spatial domains. As a deep-learning-based method, stLearn® usesacon-
volutional neural network model to extract features from a histological
image and measures morphological similarity between neighboring
cellsorspotsinspatial transcriptomics datato smooth gene expression.
Clustering is then performed on the normalized expression data for
spatial domain identification. SpaGCN’, STAGATE® and SPACE-GM" first
use graph neural network (GNN) models to integrate gene expression
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or cell-typeinformation and spatial location data to generate embed-
ding representations of cells or spots and then perform clustering on
those embeddings to identify spatial domains.

Of the existing methods, several (BayesSpace, stLearn, SpaGCN
and STAGATE) were originally designed for spatial transcriptomics
data and thus use the expression of hundreds or thousands of genes
as features to infer TCNs. Such methods may not be applicable to
spatial proteomics data®” that only have a few tens of protein expres-
sion features available. Additionally, using gene expression data as
input cannot directly establish the relationship between cell types
and TCNs in a tissue, making the interpretation of TCNs challenging.
Given a cohort of tissue samples associated with different conditions
(for example, disease risk and patient prognosis), it is important to
identify condition-specific TCNs with more biological and clinical
relevance. A representative condition-specific TCN in cancer tissues
isthe tertiary lymphoid structure, whichis typically present in low-risk
butnotin high-risk patients with many cancer types®. Most of the exist-
ing methods are designed to detect TCNsinindividual tissue samples
using unsupervised learning and thus are not applicable for the de novo
identification of condition-specific TCNs. SPACE-GM can generate cell
embedding features using supervised learning. Subsequently, TCNs
are identified using unsupervised clustering on these embeddings.
To our knowledge, no method currently enables both unsupervised
TCNdetectioninindividual tissue maps and de novo identification of
condition-specific TCNs using supervised learning and tissue sample
labels explicitly.

Inthis study, we describe the CytoCommunity algorithm used to
identify TCNs that can be applied in either an unsupervised or super-
vised fashion. We formulate TCN identification asacommunity detec-
tion problem ongraphs and use a graph minimum cut (MinCut)-based
GNN model to identify TCNs. CytoCommunity directly uses cell phe-
notypes as features to learn TCN partitions and thus facilitates the
interpretation of TCN functions. CytoCommunity can also identify
condition-specific TCNs from a cohort of labeled tissue samples by
leveraging differentiable graph pooling and sample labels, which is
an effective strategy to address the difficulty of graph alignment. Our
GNN framework directly learns TCN partitions and is thus different
from SpaGCN’, STAGATE® and SPACE-GM", which use clustering of
cell embeddings after the GNN step to identify spatial domains. Con-
sequently, the resulting spatial domains identified by these methods
are dependent not only on the GNN models but also on secondary
clustering algorithms. Moreover, the intermediate clustering step
makes it difficult to adopt a supervised learning framework to find
condition-specific TCNs.

Using diverse types of single-cell and spot resolution spatial
omics datasets, we benchmarked the performance of unsupervised
CytoCommunity on the detection of TCNs of variable sizes in indi-
vidual tissue samples and supervised CytoCommunity on the identi-
fication of condition-specific TCNs in tumor tissue samples. We also
demonstrated the ability of supervised CytoCommunity to reveal
changes withinand between TCN communicationinthe tumor tissues
of patients with different risks and prognoses.

Results

Overview of CytoCommunity

CytoCommunity consists of two components: a GNN-based soft TCN
assignment module and a TCN ensemble module to determine arobust
set of TCNs (Fig. 1a). CytoCommunity can be used for either unsuper-
vised (Fig. 1band Methods) or supervised (Fig.1c and Methods) learning
tasks. For unsupervised learning, aMinCut-based loss function'*is used
alonetodetect TCNsinindividual single-cell spatial maps without any
samplelabels.Inasupervised learning task for de novo identification of
condition-specific TCNs, the overallloss functionis alinear combina-
tion of the MinCut-based loss function and a cross-entropy loss func-
tion that is used for sample classification. To alleviate the instability

of graph partitioning based on GNN, a majority-vote-based ensemble
procedure is performed on multiple optimal soft TCN assignment
matrices generated by the first GNN module to determine the final
robust set of TCNs.

We evaluated the robustness of CytoCommunity with regard to
three parameters (Methods): (1) the value of kin the k-nearest neighbor
(k-NN)-based cellular spatial graph (Extended DataFig.1); (2) the num-
ber of GNN models (runs) in the ensemble procedure (Extended Data
Fig.2); and (3) the granularity of cell-type annotation (Extended Data
Figs.3-5). We defined arobustness score as the average Jaccard index”
between TCN partitions generated using different parameter values.
All robustness assessments were conducted using a mouse hypotha-
lamic preopticregion dataset without sample labels for unsupervised
learning and a human triple-negative breast cancer dataset with two
classes of samples for supervised learning (Supplementary Table 1).

Performance evaluation using spatial proteomics data

To evaluate the performance of unsupervised CytoCommunity, we
applied it to a spatial proteomics dataset of mouse spleen generated
using the Co-Detection by Indexing (CODEX) technology'® (Supple-
mentary Table 1) and compared it with five state-of-the-art unsuper-
vised learning tools, including Spatial-LDA’ and UTAG', which were
originally designed for multiplexed imaging data,and STAGATE®, Bayes-
Space® and stLearn®, which were originally designed for spatial tran-
scriptomics data (Methods and Supplementary Table 2). The CODEX
dataset consists of three healthy mouse spleen samples stained with
30 protein markers (named as BALB/c-1, BALB/c-2 and BALB/c-3). On
average, eachimage contained 81,760 cells covering 27 cell types (Fig.
2a). The images were manually annotated by the authors'® into four
known tissue compartments of the spleen: red pulp; marginal zone; B
cell zone; and the periarteriolar lymphoid sheath (PALS) (Fig. 2b). We
regarded these tissue compartments as ground-truth (GT) TCNs. We
evaluated the agreement between predicted and GT TCNs using two
performance metrics: macro-F1score and adjusted mutual informa-
tion (AMI) (Methods). Overall, all six methods can identify the PALS
compartment accurately (Fig. 2c-e). However, only CytoCommunity
consistently identified the marginal zones (Fig. 2c). Spatial-LDA identi-
fied partial and discontinuous marginal zone-like TCNs around B cell
zones (Fig. 2d). UTAG identified high-quality red pulp regions but failed
to capture any marginal zones (Fig. 2d). The other three methods iden-
tified low-quality red pulp regions that intermixed with other types of
TCNs (Fig. 2e). Quantitatively, CytoCommunity also achieved the high-
estmacro-Flscoreand tied-top AMIscore (paired t-test, P < 0.05) across
the three samples (Fig. 2f). In conclusion, CytoCommunity had sig-
nificantly improved performance over representative state-of-the-art
methods when comparing identified TCNs with manually annotated
tissue compartments.

Performance evaluation using spatial transcriptomics data

The evaluation above focused on identifying large tissue compart-
ments. To further evaluate the performance of unsupervised Cyto-
Community on detecting smaller TCNs, we applied it to two spatial
transcriptomic datasets (Supplementary Table 1and Supplementary
Notes). The dataset with more complex tissue structures was gener-
ated from the healthy mouse hypothalamic preoptic region using the
multiplexed error-robust fluorescence in situ hybridization (MER-
FISH) technology" to measure the expression of 155 genes. This dataset
includes samples from five brain regions: Bregma-0.14; Bregma-0.04;
Bregma +0.06; Bregma +0.16; and Bregma +0.26. On average, each
image contained 5,352 cells that were assigned to nine cell types by the
authors” (Fig. 3a). These images cover 17 hypothalamic nuclei regions
manually outlined in the original study based on manual inspection
of extensively studied histology of the brain'"'*® (Fig. 3b, left column).
In neuroanatomy, a nucleus is a group of neurons having similar con-
nections and functions. Hence, we treated these manually outlined
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Fig.1|Schematic diagram of the CytoCommunity algorithm. Givensingle-
cell spatial maps with cell phenotype annotation and cell spatial coordinates,
TCNidentificationis formulated asa community detection problem on graphs.
a, Thealgorithm includes asoft TCN assignment module and a TCN ensemble
module. First, a k-NN-based cellular spatial graph is constructed using cell spatial
coordinates. Each node represents a cell and its m-dimensional attribute vector
(blue) encodes the cell phenotype. m, number of cell phenotypes; n, number of
cells. Abasic GNN is applied to this cellular spatial graph to obtain a d-dimensional
embedding vector (green) for each node. Embedding dimensions are specified
according to users. A fully connected neural network is used to transform
cellnode embeddings to soft TCN assignments (yellow vectors) of nodes,
representing the probabilities of cells belonging to ¢ TCNs. The number of TCNs
are specified according to users. The graph MinCut-based loss function (L yic..)
isused to learn the optimal soft TCN assignments of all nodes. This loss function
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task, differentiable graph pooling, graph convolution and two fully connected
layers with the cross-entropy loss function L (for sample classification, bordered
by adashed rectangular box) are added on top of the soft TCN assignment
module. The overall supervised loss function is a linear combination of L y;,c,.

and L. with aweight parameter 3. In the TCN ensemble module, the first module
can be run multiple times to generate multiple optimal soft TCN assignment
matrices. Hard assignment is conducted for each of them and an ensemble
procedure is performed on those hard TCN assignments using a majority vote
strategy to determine the final robust TCNs. b, For an unsupervised learning

task, CytoCommunity identified TCNs for each tissue sample individually. c,
Forasupervised learning task, using a dataset of tissue samples associated with
different conditions as the input, CytoCommunity enabled de novo identification
of condition-specific TCNs under the supervision of sample labels.
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Fig.2|Performance evaluation of the unsupervised CytoCommunity
algorithm using single-cell spatial proteomics data. a,b, Three single-cell
spatialimages, BALB/c-1, BALB/c-2 and BALB/c-3, generated from healthy
mouse spleen samples using the CODEX technology. Cells are colored based
on cell-type annotation (a) or manual tissue compartment annotation (b) from
the original study'®. c-e, TCNs identified by CytoCommunity (c), two methods
(Spatial-LDA and UTAG) originally designed for spatial proteomics data (d)
and three methods (STAGATE, BayesSpace and stLearn) originally designed for

spatial transcriptomics data (e). f, Macro-F1and AMI scores computed based on
manually annotated TCNs. Each data point represents the performance on one
image; the horizontal bars represent the mean across n = 3 images. Performances
(points) on the same image are connected by gray dashed lines. Pvalues were
computed using a one-sided paired ¢-test. Note that only UTAG identified seven
TCNs inthe BALB/c-3 image, while all other methods identified four TCNs in all
three images. mphs, macrophages; DNT, TCRa"CD4 CD8  double-negative T
[cell]; NS, not significant.

nuclei as gold standard TCNs in performance evaluation. For quan-
titative comparison, we generated the GT nuclei annotations for all
cells (Fig. 3b, right column) by manually overlaying the outlines of the
hypothalamicnuclei onto the single-cell spatial maps. As shownin Fig.
3b, a prominent tissue architectural feature of the preoptic region is
the symmetry of several types of nuclei. CytoCommunity identified
multiple symmetric and coherent TCNs that agreed with the manually
outlined nuclei (Fig. 3¢). For example, the symmetric bed nucleus of
the striaterminalis (BNST), medial preoptic area (MPA) and medial pre-
optic nucleus (MPN) regions were identified in all five tissue samples.
We also identified symmetric ventrolateral preoptic nucleus (VLPO)
regions in Bregma -0.04, Bregma +0.06 and Bregma +0.16, symmet-
ric septohypothalamic nucleus (SHy), anteroventral periventricular
nucleus (AVPe) and ventromedial preoptic nucleus (VMPO) regionsin
Bregma +0.06 and symmetric paraventricular hypothalamic nucleus
(PaAP) regions in Bregma +0.26. Besides these symmetric domains,
the central anterior commissure (ACA), periventricular hypothalamic
nucleus (Pe) and median preoptic nucleus (MnPO) domains were also
identified. In comparison, UTAG performed better than CytoCom-
munity on one sample (Bregma —0.14) with more accurate identifica-
tion of symmetric and coherent BNST, MPA and MPN (Fig. 3d, right
column). Although UTAG performed less well than CytoCommunity
on the rest of the samples, it still identified clearer symmetric TCNs
than Spatial-LDA (Fig. 3d, left column) and the other three methods

originally designed for spatial transcriptomics data (Fig. 3e). These
four methods can only identify central ACA and Pe in most samples,
but several other nuclei remain unidentified (unlabeled TCNs in the
figure legend) because many detected TCNs are intermixed without
clear boundary between them and lack clear symmetry (Fig. 3d,e).
Quantitatively, CytoCommunity had significantly higher macro-Fland
AMlscores thanthe other five methods (paired ¢-test P < 0.05; Fig. 3f).

Taken together, using the spatial maps generated with different
technologies, we demonstrated that CytoCommunity had a signifi-
cantly improved performance over state-of-the-art methods in iden-
tifying TCNs of variable sizes from different tissues.

Performance evaluation using stratified spatial omics data

To demonstrate the advantage of supervised CytoCommunity to
identify condition-specific TCNs, we applied it to a stratified spatial
proteomics dataset of 41 patients with triple-negative breast cancer
generated using the multiplexed ion beam imaging by time-of-flight
(MIBI-TOF) technology” (Supplementary Table 1). This dataset con-
sisted 0f 15,19 and 6 MIBI-TOF images from compartmentalized (char-
acterized by immune cells spatially segregated from neoplastic cells),
mixed (characterized by a high degree of intermixing of neoplastic
andimmune cells) and cold (characterized by alow degree ofimmune
cellinfiltration) tumors, respectively”. We asked whether supervised
CytoCommunity could identify spatially separated neoplastic and
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Fig.3 | Performance evaluation of the unsupervised CytoCommunity
algorithm using single-cell spatial transcriptomics data. a, Five single-cell
spatialimages—Bregma-0.14, Bregma -0.04, Bregma +0.06, Bregma +0.16

and Bregma +0.26—of mouse hypothalamic preoptic region generated using

the MERFISH technology. The Bregma distance is given for each imaged brain
section. Cells are colored based on the cell-type annotation from the original
study". b, Left, the 9,10, 12,12 and 11 hypothalamic nuclei or regions in the images
were manually outlined by the authors of the original study. Right, cells were
manually assigned TCN membership based on the nuclei outlined on the left.
c-e, TCNsidentified by CytoCommunity (c), Spatial-LDA and UTAG (d), and

STAGATE, BayesSpace and stLearn (e). TCNs are labeled and colored based on
the most similar manually annotated nuclei regions. TCNs without labels could
not be matched to the manual annotation. f, Macro-F1and AMlI scores were
computed using the manually annotated hypothalamic nucleiinb. Each point
represents the performance on a given single-cell spatial image; the horizontal
bars represent the mean across n = 5images. Performances (points) on the
same images are connected by gray dashed lines. P values were computed using
aone-sided paired t-test. 3V, third ventricle; BAC, bed nucleus of the anterior
commissure; Fx, fornix; LPO, lateral preoptic area; PS, parastrial nucleus; PVA,
paraventricular thalamic nucleus; StHy, striohypothalamic nucleus.

immune cell-dominated regions in the compartmentalized tumors.
To this end, we used MIBI-TOF images from compartmentalized and
mixed tumors as the input to supervised CytoCommunity and com-
pared its performance with SPACE-GM, unsupervised CytoCommunity,
Spatial-LDA and UTAG. We chose Spatial-LDA and UTAG because these
two methods worked well for single-cell spatial proteomics data. The
images from cold tumors were not used because of a small number
of immune cells in the tumors. We first evaluated the performance
of the two supervised methods to predict tumor phenotypes (that is,
compartmentalized versus mixed tumors). Using ten sets of tenfold
cross-validation (Methods), CytoCommunity showed improved predic-
tion performance, with an average area under the receiver operating
characteristic curve (AUCROC) 0f 0.891, compared to an average AUC
of 0.823 using SPACE-GM (Fig. 4a).

Next, we evaluated the TCN detection performance of all meth-
ods using the fraction of cells assigned to the correct compartments
as the performance metric (that is, the assignment of immune cells
to immune cell-dominated TCNs and vice versa). Unexpectedly,
SPACE-GM performed poorly with no coherent TCNs identified in the

compartmentalized tumors (Fig. 4b-d, third column and Extended
DataFig.4b), suggesting that TCNsidentified by SPACE-GM do not rep-
resent coherent tissue structures. Instead, they may represent ‘spatial
motifs’ of smaller sizes as defined in the original study". For the other
four methods, although all of them correctly identified neoplastic
cell-dominated or immune cell-dominated TCNs that are consist-
ent with compartmentalized architecture in a few patient samples
(for example, patient 4; Fig. 4b), for the majority of patient samples,
supervised CytoCommunity showed superior performance over the
three unsupervised methods (Fig. 4c,d and Extended Data Fig. 4b,c).
For example, for patient 6, supervised and unsupervised CytoCom-
munity and Spatial-LDA identified similar TCNs that are consistent
with the spatial distribution patterns of cell types. However, UTAG
mis-assigned many neoplastic cells to the immune cell-dominated
TCN (Fig. 4c, arrowheads, first row). For patient 9, supervised and
unsupervised CytoCommunity and UTAG identified clearly separated
immune cell-dominated and neoplastic cell-dominated TCNs, but
Spatial-LDA identified two intermixed TCNs without clear boundaries
(Fig.4c,arrowheads, second row). For patient 3and 40, supervised and
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unsupervised CytoCommunity identified the correct TCNs, but both
Spatial-LDA and UTAG mis-assigned many immune cells to neoplastic
cell-dominated TCNs (Fig. 4c, arrowheads, third and fourth rows).

All three unsupervised methods performed poorly on samples
having complex cell-type compositions at the neoplastic-immune
boundaries (Extended Data Fig.4c). For instance, they all mis-assigned
a small band and a relatively large immune cell-enriched regions,
respectively, located at the top left and bottom right of the image of
patient 35 (Fig. 4d, arrowheads, top row) to neoplastic cell-dominated
TCNs. Similarly, both unsupervised CytoCommunity and Spatial-LDA
assigned aregion at the bottom right of the tissue containing B cells,
CD3"Tcells,CD4" Tcells, CD8" T cells and neutrophils (Fig. 4d, arrow-
heads, middle row) to neoplastic cell-dominated TCNs in patient 28,
while UTAGidentified this regionasathird TCN.In contrast, supervised
CytoCommunity successfully distinguished neoplastic cell-dominated
and immune cell-dominated TCNs in these two patients. For patient 5,
there were fewer neoplastic cellsand aregionenriched for anunknown
subpopulation with clear boundariesinthe tissue (Fig. 4d, arrowhead,
bottom row). Given this more complicated tissue architecture, unsu-
pervised CytoCommunity assigned neoplastic cells at the top of the
tissue (Fig. 4d, top arrowhead, bottom row) and immune cells to one
TCNand the unknown subpopulationas another TCN, while UTAG iden-
tified four TCNs, separatingimmune cells into two TCNs. Spatial-LDA
predicted two intermixed TCNs that were inconsistent with manual
inspection. In contrast, only supervised CytoCommunity correctly
identified theimmune cell-dominated TCN with the fewest neoplastic
cellsincluded, althoughit assigned the unknown subpopulation to the
neoplastic cell-dominated TCN.

Regarding mixed tumors, supervised CytoCommunity and SPACE-
GM often identified two TCNs with very different sizes or just a single
TCN (Fig. 4e and Extended Data Fig. 5b), which is consistent with the
architecture of highly intermixed neoplastic and immune cells. In
comparison, unsupervised CytoCommunity and Spatial-LDA cannot
use sample labelinformation and were forced to identify two TCNsinall
mixed tumors, which are similar to TCNsidentified in compartmental-
ized tumors (Fig. 4e and Extended Data Fig. 5¢).

To quantify the performance, we computed the fraction of neo-
plastic and immune cells that were correctly assigned to neoplastic
cell-dominated and immune cell-dominated TCNs on compartmental-
ized tumor samples. Supervised CytoCommunity had a significantly
better performance than all compared supervised and unsupervised
methods (all paired ¢-test P < 0.005; Fig. 4f).

Risk-specificimmune-associated TCNsin colorectal cancer

To demonstrate the utility of supervised CytoCommunity for de novo
identification of condition-specific TCNs using supervised learning,
we applied it to a CODEX dataset generated using samples from 17
low-risk (Crohn’s-like lymphoid reaction (CLR)) and 18 high-risk (dif*-
fuse inflammatory infiltration (DII)) patients with colorectal cancer
(CRC)? (Supplementary Table 1). The CLR patient group had signifi-
cantly better overall survival (OS) than the DIl patient group (log-rank

test P=0.002)> The dataset consisted of 68 and 72 CODEX images
from the CLR and DIl patients, respectively. Using ten sets of tenfold
cross-validation, we found that CytoCommunity classified the images
into the two patient groups with an average AUC of 0.791, compared
to SPACE-GM, with an average AUC of 0.808 (Fig. 5a).

We next investigated the eight TCNs identified using supervised
CytoCommunity and found that the cell-type enrichment scores
(Methods) in those TCNs were significantly correlated (Spearman
rank p = 0.68; Fig. 5b,c) between the two patient groups. We also ana-
lyzed the cell-type enrichment of TCNs reported in the original study?.
The correlation (0.81) of enriched cell types between the two patient
groups was substantially higher than our TCNs (Extended Data Fig.
6),suggesting that the original study missed some condition-specific
TCNs. In comparison, we found several cell types that were enriched
in CLR-specific or Dll-specific TCNs identified by CytoCommunity. For
example, B cellsweresignificantly enriched in TCN-1in CLR patients but
notinany TCNin DIl patients (¢-test P=2.5 x 10~3; Fig. 5b and Extended
DataFig.7a,b), whichis consistent with the presence of B cell-enriched
tertiary lymphoid structures inthe CLR patient samples but notin the
DIl patient samples’. On the other hand, granulocytes were more sig-
nificantly enriched in TCN-2in DIl patients thanin CLR patients (t-test
P=4.5%1073Fig.5b and Extended Data Fig. 7c,d), which is consistent
with previous reports that neutrophils have atumor-promoting role**,
Interestingly, neoplastic cells were more significantly enriched in
TCNs in the DIl group than in the CLR group (t-test P=9.1x1073; Fig.
5b and Extended Data Fig. 7e,f), suggesting a more active role played
by neoplastic cells in shaping the tumor microenvironment (TME) in
high-risk patients with cancer. These condition-specific TCNs were not
reported in the original study (Extended Data Fig. 6a).

Besides enrichment of individual cell typesin TCNs, we also inves-
tigated the coordination of cell types within and between TCNs to
better understand cell-cell communicationinthe TME. Asanexample
of within-TCN cell-type communication shared by the two patient
groups (Supplementary Fig. 1), the enrichment of CD4* memory T
(T cells (red square) was significantly correlated with CD8" T cell
(black diamond) enrichment in TCN-6 in both CLR (p =0.60) and DII
(p=0.67) patients (Fig. 5d, left). Consistent with the cell-type and TCN
maps from patients with high enrichment scores, we observed that
the two cell types were intermixed with each other in TCN-6 (Fig. 5d,
middle and right). We also found CLR-specific (Supplementary Fig. 1a)
and DIlI-specific (Supplementary Fig. 1b) cell-type associations within
TCNs. For instance, the enrichment of CD68'CD163* macrophages
(blue plus sign) was significantly correlated with plasma cell (pink
octagon) enrichment in TCN-4 in CLR patients (p = 0.55) but not in
DIl patients (Fig. 5e), suggesting that double-positive macrophages
have an antitumor effect by promoting plasma cell enrichment to
improve the survival of CLR patients. Previous studies demonstrated
thathuman macrophages caninduce the differentiation of B cellsinto
plasma cells®, which may secrete antibodies that promote antitumor
immune responses®. As an opposite example, the enrichment of CD4*
Ty (red square) and regulatory T (T,.,) cells (cyan pentagon) in TCN-8

Fig. 4 | Performance evaluation of the supervised CytoCommunity algorithm
using stratified single-cell spatial proteomics data. a, ROC curves for the
image label (compartmentalized versus mixed tumors) prediction. The AUCs
for CytoCommunity and SPACE-GM represent the mean values of ten sets
oftenfold cross-validations. b-e, Representative single-cell images of the
compartmentalized (b-d) and mixed (e) tumors from patients with triple-
negative breast cancer. Cells are colored based on the cell-type annotation
from the original study” (first column) or TCNs identified using two supervised
methods, supervised CytoCommunity and SPACE-GM, and three unsupervised
methods, that is, unsupervised CytoCommunity, Spatial-LDA and UTAG. b,
Tissue image of patient no. 4 on which all methods showed good performance,
except for SPACE-GM. ¢, Tissue images on which supervised and unsupervised
CytoCommunity showed better performance than three other methods. d,

Tissue images on which supervised CytoCommunity showed better performance
than all other methods. Mis-assigned regions by the compared methods are
indicated by the arrowheads in the cell-type maps. e, Representative single-cell
images of the mixed tumors from patients with triple-negative breast cancer.f,
Fractions of neoplastic and immune cells correctly assigned to the neoplastic
cell-dominated and immune cell-dominated TCNs. Each point represents
performance on a given compartmentalized tumor image; the horizontal bars
represent the mean across n =15images. Performances (points) on the same
images are connected by gray dashed lines. Pvalues were computed using
aone-sided paired t-test. Note that the number of TCNs were set to two for
CytoCommunity, SPACE-GM and Spatial-LDA. Clustering resolution was set to
0.05 for UTAG, resulting in one or two identified TCNs in most images but three or
fouridentified TCNsin the rest of the images.
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had a significant correlation (p = 0.55) in DIl patients but not in CLR
patients (Fig. 5f). Thisis in line with previous reports that CD4" T cells
canbe transformed into T, cells™, resulting in animmunosuppressive
TME and poor patient survival.

To investigate the communication between different TCNs, we
conducted canonical correlation analysis of TCN pairs (Methods).
We found substantial differences in significant canonical correla-
tions of TCNs between CLR (Supplementary Fig. 2a) and DII patients
(Supplementary Fig. 2b). As an example of significant between-TCN
associations specific to CLR patients, the granulocytes and immune
and neoplastic cell mixed subpopulationin TCN-2, and CD68*CD163*
macrophages, CD4" T,;and CD8" T cellsin TCN-6 were the dominant cell
types (observed variables) in the first canonical variate pair (Fig. 5g, top
left). Without consideration of other cell types, granulocytes (purple
cross) and CD68"CD163" macrophages (blue plus sign) in the two TCNs
had asignificant correlation (p = 0.69; Fig. 5g, bottom left), suggesting
apotentialinteraction between these two cell types across TCNs. Con-
sistent with the corresponding cell-type and TCN maps, we observed
that granulocytes enriched in TCN-2 were close to double-positive
macrophages enriched in TCN-6 (Fig. 5g, right). Such between-TCN
communication in CLR patients is supported by previously observed
interactions between neutrophils and macrophages that could exert
anantitumor effect?.

Another interesting example of between-TCN communication
regarding the DIl group is the significant association between TCN-1
and TCN-7,inwhich smooth muscle cells, CD4" Ty, cellsand CD8" T cells
in TCN-1, and neoplastic, CD4" T\, cells and smooth muscle cells in
TCN-7 were the dominant cell types in the first canonical variate pair
(Fig. 5h, top left). By examining the pair-wise correlation of these cell
types, we found that smooth muscle cells (green hexagon) in TCN-1
were significantly correlated with malignant cells (orange triangle) in
TCN-7 (p=0.74; Fig. 5h, bottom left). As supporting evidence, previous
studies reported the critical role of smooth muscle cells in intestinal
architecture and vascular function®, tumor angiogenesis and metas-
tasis”, which is consistent with our observation that malignant cells
in TCN-7 are spatially close to smooth muscle cells in TCN-1 (dashed
ellipses and rectangles, Fig. 5h, right).

Risk-specific stromal-associated TCNs in breast cancer
To further evaluate the ability of supervised CytoCommunity to dis-
cover condition-specific TCNs using different data modalities, we
appliedit toanother spatial proteomics dataset of breast cancer gen-
erated using the imaging mass cytometry (IMC) technology™ (Sup-
plementary Table 1). Based on the median OS, we stratified 79 breast
cancer patients into low-risk and high-risk groups with significant
survival difference (log-rank test P < 0.0001; Fig. 6a and Methods).
Using these patient labels, we evaluated the performance of supervised
CytoCommunity and SPACE-GM to classify the images into two patient
prognosis groups. We found that CytoCommunity achieved improved
prediction performance with an average AUC of 0.621, compared to an
average AUC of 0.558 by SPACE-GM (Fig. 6b).

We further analyzed the seven TCNs in both the low-risk and
high-risk groups identified by CytoCommunity. By comparing the

cell-type enrichment scores (Fig. 6¢,d), we found that TCNs in both
groups have similar overall cell-type composition (p = 0.58; Fig. 6d).
We also analyzed cell-type enrichment of TCNs reported in the original
study and found asimilar moderate correlation of cell-type enrichment
scores between the low-risk and high-risk patient groups (p = 0.53;
Extended Data Fig. 8). The TCNs identified by CytoCommunity were
enriched for several types of fibroblasts (Fig. 6¢), suggesting acritical
role of fibroblasts in breast cancer prognosis. Specifically, we found
thatboth vimentin" cancer-associated fibroblasts (CAFs) and endothe-
lial cells were more enriched in TCN-4 of the high-risk group than those
of the low-risk group (both t-test P < 0.05; Extended Data Fig. 9c,d).
This condition-specific TCN was not identified by the original study
(Extended Data Fig. 8a). Besides stromal cell types, we also found
low-risk group-specific TCNs (TCN-2 and TCN-5) characterized by the
enrichment of CK'HR" neoplastic cells (t-test P= 4.8 x 107; Fig. 6¢cand
Extended Data Fig. 9a,b). This is consistent with the previous report
that this malignant cell phenotypeis associated with good prognosis'%;
suchacondition-specific TCN was also captured by the original study
(Extended Data Fig. 8a). We compared the prognosis power of TCNs
identified by CytoCommunity and the original study (Methods) and
found asmall subgroup of high-risk patients (subgroup 2) with poorer
outcome compared to most high-risk patients (subgroup 1; Extended
Data Fig. 10a). We further found significant differences between the
two subgroups with respect to small elongated fibroblast, CAF, T cell
and macrophage enrichment in TCN-4 (Extended Data Fig. 10c,d),
suggesting anon-negligibleimpact of normal fibroblasts and CAFs on
immune cells in patients with breast cancer, resulting in an unfavora-
ble prognosis. No significant survival difference among the high-risk
patients was captured by single-cell pathology-based subtyping"
(Extended Data Fig.10b).

Regarding cell-type association within TCNs (Supplementary Fig.
3), we found that two normal fibroblast types, small circular (green
hexagon) and elongated (black diamond) fibroblasts, were significantly
correlated in TCN-1in both low-risk (p = 0.76) and high-risk (p = 0.48)
patients (Fig. 6e, left). We observed that these two fibroblast types were
intermixed in TCN-1in patients with high enrichment scores (Fig. 6e,
middle andright). As examples of low-risk-specific (Supplementary Fig.
3a) and high-risk-specific (Supplementary Fig. 3b) within-TCN cell-cell
communication, we found that B cell (gray hexagon) enrichment was
significantly correlated with T cell (red square) enrichment in TCN-1
in low-risk patients (p = 0.56; Fig. 6f), but not in high-risk patients.
Previous studies revealed that B cells can induce T cell activation and
proliferation to exert antitumor effects®. In contrast, we found that
CAFs (purple cross) and endothelial cells (cyan pentagon) had astrong
correlationin TCN-4 in high-risk patients (p = 0.67; Fig. 6g), but not in
low-risk patients. This is in line with previous reports that CAFs can
regulate endothelial cell function and promote angiogenesis**° to
facilitate cancer metastasis, leading to unfavorable patient outcomes.

Next, weinvestigated between-TCN communication by canonical
correlation analysis. We found several significant TCN associations
involving neoplastic-stromal cell interactions in both low-risk and
high-risk patients (Supplementary Fig. 4). For example, we observed
thatendothelial cell (cyan pentagon) and T cell (red square)-dominated

Fig. 5| Coordinated neoplastic and immune cell-type distributions within or
between TCNsin CRC. a, ROC curves forimage label (CLR versus DII) prediction.
The AUCs for CytoCommunity and SPACE-GM represent the mean values of

ten sets of tenfold cross-validations. b, Heatmaps of the average enrichment
scores of each cell type in each identified TCN across allimages of the CLR

and DIl patient samples. Cell type enrichment score was defined as —log,,(P).
Pvalues were computed using hypergeometric tests and adjusted with the
Benjamini-Hochberg method*®. ¢, Correlation of average cell-type enrichment
scoresinallidentified TCNs between CLR and DIl patients. d-f, Correlation of the
enrichment scores of two indicated cell types in TCN-6 (d), TCN-4 (e) or TCN-8

(f) ineach patient group (left). Representative cell-type and TCN maps (middle
and right) are based on patient samples indicated by a dashed circlein the scatter

plots. g h, Significant canonical correlation (permutation test P < 0.1) between
two TCNsin the CLR (g) and DII (h) patient groups. Scatter plots of normalized
weights of dominant cell types (observed variable) in each TCNin the first two
canonical variate pairs (top left) are shown. Correlation of the enrichment
scores of dominant cell types in the first canonical variate pair (bottom left), and
representative cell-type and TCN maps (right), are also shown. The black dashed
ellipses and rectangles in the cell-type and TCN maps in h are used to highlight
the colocalization of smooth muscle cells in TCN-1and neoplastic cells in TCN-7.
For all scatter plots, regression lines, Spearman rank correlation coefficients (p)
and two-sided Spearman p test Pvalues are shown. For clarity, cells of the studied
types and TCNs have been magnified without transparency in all cell-type and
TCN maps.
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barrier to block T cellinfiltration into the tumor bed*’. Another inter-
esting example is the significant correlation between p53* epidermal
growth factor receptor (EGFR)* neoplastic cell (green upside-down
triangle)-dominated TCN-5and TCN-4, which mainly consists of small
circular (green hexagon) and elongated fibroblasts (black diamond), as
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Fig. 6 | Coordinated neoplastic and stromal cell-type distributions within or
between TCNsin breast cancer. a, Kaplan-Meier survival curves of 79 patients
with breast cancer who were classified into low-risk and high-risk groups based
on their median OS time. The Pvalue was computed using the log-rank test. b,
ROC curves for the image label (low-risk versus high-risk) prediction. The AUC
values for CytoCommunity and SPACE-GM represent the mean values of ten sets
of tenfold cross-validations. ¢, Heatmaps of the average enrichment scores of
eachcelltypeineachidentified TCN across all images of low-risk and high-risk
patient samples. Cell type enrichment score was defined as —log,,(P). Pvalues
were computed using hypergeometric tests and adjusted using the Benjamini—
Hochberg method®. d, Correlation of average cell-type enrichment scoresinall
identified TCNs between low-risk and high-risk patients. e-g, Correlation of the
enrichment scores of two indicated cell types in TCN-1 (e and f) or TCN-4 (g) in

each patient group (left). Representative cell-type and TCN maps (middle and
right) are based on patient samples indicated by adashed circle in the scatter
plots. h,i, Significant canonical correlation (permutation test P < 0.1) between
TCN-4 and TCN-2 (h) and between TCN-4 and TCN-5 (i) in the high-risk patient
group. The scatter plots of normalized weights of the dominant cell types
(observed variable) in each TCN in the first two canonical variate pairs (top left)
are shown. Correlation of the enrichment scores of the dominant cell typesin the
first canonical variate pair (bottom left), and representative cell-type and TCN
maps (right), are also shown. For all scatter plots, regression lines, Spearman rank
correlation coefficients (p) and two-sided Spearman p test Pvalues are shown.
For clarity, cells of the studied types and TCNs have been magnified without
transparency in all cell-type and TCN maps.

well as CAFs (purple cross) (Fig. 6i). pS3'EGFR*isacommon character-
istic of the malignant cells of triple-negative breast cancer', which has
ahighly aggressive and hypoxic phenotype compared to other breast
cancer subtypes®. Hypoxia enables the expansion of aggressive tumor
clones* (represented by the cohesive tumor mass in TCN-5), and can
also support the transformation of tissue-resident fibroblasts into
CAFs**in TCN-4, which could in turn promote angiogenesis, as shownin
Fig. 6g, or blockimmune cells from entering the tumor nests as shown
inExtended DataFig.10d, resultingin poor prognosis in breast cancer.

Discussion

CytoCommunity identified the TCN as acommunity detection prob-
lem on node-attributed cell-cell spatial proximity graphs. As most
traditional community detection algorithms focus only on graph
topology to find densely connected subgraphs and cannot explicitly
deal with node attributes®, CytoCommunity uses a MinCut-based
GNN model to learn optimal TCN assignment of cells from cell-type
information. Unlike previous methods**™, CytoCommunity is the
first TCN detection method that canbe applied in both unsupervised
and supervised modes. This unique feature of CytoCommunity can be
attributed to the use of differentiable graph pooling that preserves
TCN partition information in the embedding representation of the
whole spatial map and thus addresses TCN alignment across spatial
maps by training an end-to-end model to classify samples. In con-
trast, existing unsupervised methods use ad hoc strategies to identify
condition-specific tissue domains by aligning TCNs detected on each
map accordingto their spatial positions and then conducting a post
hoc comparisonacross them. Itis also worth noting that TCN identi-
fication under the supervision of sample labels is a weakly supervised
graph partitioning problem, representing an interesting research
topicin graph learning.

Webelieve that the success of CytoCommunity can be attributed
to three main features. First, it leverages a GNN model with a theoreti-
cally grounded MinCut-based loss function™ for soft TCN assignment
learning, generating more accurate and stable graph partitioning
results than other pooling-capable GNN models, such as DiffPool*,
which uses heuristic loss functions to learn the soft assignments. Sec-
ond, CytoCommunity uses a differentiable graph pooling layer to
exploit the soft TCN assignment matrix to coarsen theinput graph and
generate the embedding of the whole graph that is used for sample
or image classification. Such framework enables effective learning
of condition-specific TCN assignments using the sample labels in an
end-to-end fashion. Third, CytoCommunity uses cell types as the initial
cell features, probably leading to a better measurement of functional
similarity between cells than using noisy gene or protein expression
data directly. Cell-type identification is typically the first crucial task
in single-cell data analysis and often needs sophisticated tools**
as well as expert knowledge. Therefore, cell-type annotation should
be directly used in a specialized TCN detection method rather than
starting with expression data. CytoCommunity encodes cell types in
acategorical vector space and thus has scalability to incorporate more

heterogenous categorical data, such as cell states*’, into the initial cell
feature vectors toinfer TCNs.

Because of the use of cell-type information, the current version of
CytoCommunity is not directly applicable to spatial transcriptomics
datawithspotresolution**2, To address this issue, cell-type composi-
tion ateachspot can be first estimated using deconvolution****. Then,
aspot-spot proximity graph with inferred cell-type fractions as node
attributes canbe constructed astheinput to CytoCommunity for TCN
identification. However, because of the dependence of the CytoCom-
munity performance on cell-type deconvolution methods, users should
test different deconvolution methods to obtain optimal TCN partitions
(Supplementary Notes). Another limitation of CytoCommunity is the
moderate accuracy of sample class prediction by its supervised version.
This can be improved by integration with paired histological images
that complement cellular morphology features. Finally, detection of
TCN evolution should be considered in the future development of
CytoCommunity to capture the dynamics of tissue organization in dis-
ease development and progression using spatiotemporal omics data.

Insummary, with the rapid growth of single-cell spatial omics maps,
CytoCommunity represents a powerful and scalable method for de novo
identification of condition-specific TCNs. TCNs directly learned from
celltypes canfacilitate the interpretation of their function and the dis-
covery of cell-cell communication within the tissue microenvironment.
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Methods

Unsupervised model for the identification of TCNs

The CytoCommunity algorithm consists of two components: asoft TCN
assignment learning module and a TCN ensemble module to determine
thefinal robust TCNs (Fig. 1a). Inthe first component, given asingle-cell
spatial map with cell-type annotation and cell spatial coordinates,
an undirected k-NN graph (that is, cellular spatial graph) with node
attribute (cell type) is constructed. A cellis represented by anode and
its cell-type information is represented by a node attribute vector
using one-hot encoding (Fig. 1a, top). We first constructed a directed
k-NN graph by connecting each node to its k-NNs based on Euclidean
distance calculated using cell spatial coordinates. Then, the underlying
undirected graph without self-edges derived from the directed k&-NN
graphwas considered as the cellular spatial graph, which was the input
to the GNN model. Because each spatial omics dataset is measured
fromthe same tissue type with the same technology, we set the default
value of kinthe k-NN graphs as the square root of the average number
of cells (squareroot of mean (SRM)) across spatial mapsin the dataset
based on our extensive testing. We also evaluated the effect of differ-
entkvalues onthe robustness of the algorithm by varying the value of
k around the SRM (Extended Data Fig. 1) and demonstrated that TCN
partitions generated using different k values were robust.

As shown in Fig. 1a (top), given a cellular spatial graph with an
adjacency matrix 4 € {0,1}""and a node attribute matrix F € {0,1}""
astheinput, we used a basic graph convolution layer*® with the rectified
linear unit (ReLU) activation function to generate a cell node embed-
ding matrix X € R™¢, where n is the number of nodes in the cellular
spatial graph and mis the number of cell types. Each row of Xisalearned
d-dimensional representation vector of anode defined as below:

X, =ReLU(@,X; + 0, Y Xx;) 1)
JEN@)

where x;is an updated embedding vector of cellnode i, which s calcu-
lated based onthe previous representation of itself x;and its first-order
neighborhood N(i) derived from the matrix A. x; is initialized with the
node attribute vector (thatis, the i-th row of the matrix F). ©,and 0, are
trainable parameter matricesinthe graph convolution layer. The value
of d was empirically set to 128 for the unsupervised tasks and 512 for
the supervised tasks in this study.

Next, we use afully connected neural network withno hidden layer,
also known as a linear layer, and the softmax activation function to
transform the node embedding matrix X € R™“to the soft TCN assign-
ment matrix S € R"*¢, which can be formulated as below,

S = softmax (linear (X; 03)) @

where each element in S represents the probability of a cell (row)
belongingto one of the c TCNs (columns). cis a user-specified hyperpa-
rameter and represents the maximum number of TCNs to be detected.
0O, is atrainable parameter matrix in this linear layer. Note that the
optimal number of TCNs is automatically learned by this deep learn-
ing module and could be smaller than c. Next, we used the following
MinCut-based loss function' to optimize the matrix S in an unsuper-
vised way,

1 (S AS) STS c

Lytincut = — (3
Mine _ (5DS); ”IISTSHF yel

where D € R™"is a diagonal matrix in which each diagonal element is
the sum of the corresponding row in the adjacency matrix A. The loss
function Lyi,c, is the sum of two terms. The left termis used to address
the normalized MinCut problemin graph theory with the objective of
partitioning the graph into c disjoint connected components with

similar sizes by removing the minimum number of edges. The right
term encourages the soft TCN assignment matrix S to be orthogonal
to make the TCN membership of each node unambiguous. |||-denotes
the Frobenius norm. This loss function can be used alone for an unsu-
pervised learning task, thatis, Lyep = Lmincuc» t0 identify TCNs for
single-cell spatial omics maps individually (Fig. 1b).

The second component of CytoCommunity is used to obtain a
robust graph partitioning as the final TCNs by conducting ensemble
learning (Fig. 1a, bottom). Specifically, the soft TCN assignment mod-
ule in the first component is run multiple times to generate multiple
learned matrices S. For each of them, the hard assignment is performed
by assigning the cell (row) to the TCN (column) with the highest prob-
ability. Then, we used the majority vote strategy to conduct an ensem-
ble procedure on those hard TCN assignments to determine the final
set of TCNs. To demonstrate the utility of this ensemble approach,
we performed a robustness experiment on the challenging MERFISH
dataset with multiple small TCNs (Extended Data Fig. 2). We ran Cyto-
Community with a different number of models to be learned by the
first component. We then conducted comparisons of the TCN parti-
tions generated by replicate experiments and found that the ensemble
procedureimproved the robustness of the result when the number of
models increased. Our results showed that the ensemble procedure
based on 20 models s sufficient to obtain a stable TCN partition.

Supervised model for de novo identification of
condition-specific TCNs

Given a dataset of multiple spatial omics maps from different condi-
tions, TCNs can beidentified for each spatial map first and then aligned
across different maps to identify condition-specific TCNs. However,
TCNalignment is analogous to community alignmentin graphs, which
is NP-hard*’. To tackle this problem, we used differentiable graph pool-
ingtogenerate anembedding representation of the whole graph that
preserves the TCN partition information. By adapting the unsuper-
vised graph partitioning model described above to a graph pooling-
based graph classification framework, TCNs in different spatial maps
are automatically aligned during soft TCN assignment learning, facili-
tating de novo identification of condition-specific TCNs (Fig. 1a, top).
Specifically, after obtaining the soft TCN assignment matrix S € R™¢
using graph convolution and fully connected layers, we additionally
used a differentiable graph pooling layer** formulated as equations
(4)and (5) to generate acoarsened graph of the original cellular spatial
graph with the adjacency matrix APooled € rexc and a matrix of pooled
node embeddings xPooled ¢ pexd, Note that this coarsened graphis a
fully connected graph with each pooled node correspondingtoa TCN
that includes a group of nodes (cells) with similar soft TCN assign-
ments; the edge weights represent the connectivity strength between
TCNs. For example, the coarsened graph in Fig. 1a consists of four
pooled nodes, each of which has the same color with the TCN to be
detected in the original cellular spatial graph:

XPooled _ ¢Tx 4)

APooled _ ¢T4g 5)

Then, we used X*°°'*d and AP°°'d 35 inputs to another graph con-
volution layer similar to that described in equation (1) to integrate
the pooled node features and their local neighborhood information
inthe coarsened graph, generating an updated embedding vector for
each pooled node. The average of these new embedding vectors of the
pooled nodes is an embedding vector of the whole graph, which is in
turn used as the input to a graph classifier implemented by two fully
connected layers with the softmax activation function. The overall
supervised loss function is defined as:

LSup = AB X LManut + (1 - ﬁ) X LCE 6)
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where Bis aweight parameter to balance the Ly, loss used for graph
partitioning and the cross-entropy L loss used for graph classifica-
tion. Trained with the joint loss function, thismodel can directly learn
condition-specific TCNs under the supervision of sample labels (Fig. 1c).

For the triple-negative breast cancer MIBI-TOF, CRC CODEX and
breast cancer IMC datasets in this study, we performed ten sets of
tenfold cross-validation to evaluate the prediction performance of the
modeland used 100 optimal soft TCN assignment matrices generated
during the cross-validation to conduct the TCN ensemble procedure
for robust TCN identification. Note that the supervision signals are
disease-relevant labels (for example, low-risk or high-risk), which are
independent of patient-level information. For each of the three data-
sets, the training and test datasets were split based on the principle of
tenfold cross-validation; the training samples were input to the model
in arandomized fashion with no patient order or any other patient
information. Therefore, during the training process, the model does
not know which images come from the same patient. The model only
knows about the class label (for example, low-risk or high-risk) of each
image during training, which prevents dataleakage. We also empirically
set $t0 0.9 because of our emphasis on graph partitioning and set the
maximum number of TCNs to be identified to ten.

Unlike the unsupervised version, supervised CytoCommunity
requires users to tune two training hyperparameters, that is, the size
of amini-batchand thelearningrate. The mini-batch size iscommonly
set to the power of 2 because of efficiency. We used the mini-batch
sizes of 16, 64 and 32 for the triple-negative breast cancer MIBI-TOF,
CRC CODEX and breast cancer IMC datasets, respectively. These
numbers are closest to half the sizes of the training sets for the three
datasets, which can be considered as the suggested default value for
mini-batch size using supervised CytoCommunity. For the learning
rate, we adopted a commonly used strategy that the learning rate
should be increased as the mini-batch size increases. Thus, we set the
learning ratesto1.0 x107,1.0 x 10 and 1.0 x 10> for the three datasets,
respectively.

Running of published methods

We compared the performance of CytoCommunity with six other
spatial domain detection methods, including five unsupervised meth-
ods, Spatial-LDA’, UTAG', STAGATE®, BayesSpace® and stLearn®, and
one supervised method SPACE-GM" (Supplementary Tables 2 and 3).
As required by these methods, cell-type annotation and cell spatial
coordinates were used as inputs to Spatial-LDA and SPACE-GM, while
proteinor mRNA expressiondata and cell spatial coordinates were used
asinputs to the other four methods. For benchmarking purposes, the
number of TCNs to be detected were adjusted to be consistent with the
manual annotation from the original studies'*”*>° as much as possible
by tuning the hyperparameters of the compared methods.

The Python package spatial-lda (v.0.1.3) was applied to four data-
sets (Supplementary Table1). By considering all cells asindex cells, we
firstused the featurize_samples and make_merged_difference_matrices
functions for image featurization. Then, TCNs were detected using
the spatial_lda.model.train function. For the mouse spleen CODEX
dataset, the parameters were set to be max_dirichlet_iter =30 and
max_dirichlet_|s_iter = 30. Parameters were set as default for the other
datasets. Note that the number of TCNs identified by this method may
be fewer than the prespecified number.

The Python package STAGATE-pyG (v.1.0.0) was applied to five
datasets (Supplementary Table 1). For each spatial omics map, a cell
spatial neighbor network was constructed using the Cal_Spatial_Net
and Stats_Spatial_Net functions. The train_STAGATE function was then
used to learn low-dimensional latent representations of cells, which
were considered as inputs to the Louvain clustering algorithm for TCN
detection. The scanpy.pp.neighbors and scanpy.tl.louvain functions
were used with resolution = 0.25 for all three images in the mouse
spleen CODEX dataset. For the mouse hypothalamic preoptic region

MERFISH dataset, the parameter resolution was set to 0.5, 0.45, 0.6,
0.62 and 0.76 for image Bregma —0.14, Bregma -0.04, Bregma +0.06,
Bregma+0.16 and Bregma +0.26, respectively. For the other datasets,
the parameters were set based on the official tutorial at https://stagate.
readthedocs.io/en/latest/index.html.

The R package BayesSpace (v.1.5.1) was applied to five datasets
(Supplementary Table1). For the mouse spleen CODEX dataset, the top
15 principal components were considered and all 30 protein markers
were used as highly variable genes (n.HVGs) in the preprocessing func-
tion spatialPreprocess. TCNs were identified using the spatialCluster
function withnrep = 5,000 and burn.in =100. For the mouse hypotha-
lamic preoptic region MERFISH and visual cortex STARmap datasets,
the parameter n.HVGs was set to 155 and 1,020, respectively. For the
other datasets, default parameters were used.

The Python package stlearn (v.0.4.0) was applied to five data-
sets (Supplementary Table 1). TCNs were identified using the stlearn.
tl.clustering.louvainfunction with resolution = 0.25for all three images
inthemouse spleen CODEX dataset. For the MERFISH dataset, the param-
eter resolution was set to 0.35, 0.5, 0.8, 0.9 and 1.3 for image Bregma
-0.14, Bregma -0.04, Bregma +0.06, Bregma +0.16 and Bregma +0.26,
respectively. For the STARmap dataset, the parameter resolution was set
to 1.5. For the other datasets, parameters were set based on the official
tutorial at https://stlearn.readthedocs.io/en/latest/tutorials.html.

The Python package UTAG (v.0.1.1) was applied to six datasets
(Supplementary Table 1). For the mouse spleen CODEX dataset, the
parameter max_dist was set to 100 for all three images and the param-
eterresolution was set to 0.05,0.06 and 0.03 for the BALB/c-1, BALB/c-2
and BALB/c-3images, respectively. For the mouse hypothalamic preop-
tic region MERFISH dataset, the parameter max_dist was set to 50 for
all five images and the parameter resolution was set to 0.2, 0.2, 0.29,
0.4 and 0.5 for image Bregma —0.14, Bregma -0.04, Bregma +0.06,
Bregma +0.16 and Bregma +0.26, respectively. For the mouse visual
cortex STARmap dataset, the parameter max_dist was set to 10 and
the parameter resolution was set to 0.4. For the triple-negative breast
cancer MIBI-TOF dataset, the parameter max_dist was set to 60 and the
parameter resolution was set to 0.05 for all images in the dataset. For
the pancreatic ductal adenocarcinoma (PDAC) spatial transcriptome
(ST) dataset, the parameter max_dist was set to 20 and the param-
eter resolution was set to 0.07. For the dorsolateral prefrontal cortex
(DLPFC) Visium dataset, the parameter max_dist was set to 20 and the
parameter resolution was set to 0.1.

The Python code of SPACE-GM (v.0.1.2) was downloaded from
https://gitlab.com/enable-medicine-public/space-gm. This code was
applied to three datasets with sample labels (Supplementary Table 1)
based on the official tutorial. We observed normally decreasing training
losses for all three datasets. To evaluate prediction performance, we
conducted tensets of tenfold cross-validation using all three datasets
asforthesupervised CytoCommunity. To evaluate TCN identification
performance, we only applied SPACE-GM to the triple-negative breast
cancer MIBI-TOF dataset because of the feasibility of quantitative
evaluation of TCNs in this dataset. We first split the dataset into train-
ing and testing datasets using atenfold cross-validation. We then used
the get_random_sampled_subgraphs function to randomly sample
100,000 subgraphs from the training dataset as the reference dataset
based onthe recommendation in the original study". Next, we used the
get_embedding function to generate embeddings of those reference
subgraphs, which were used for fitting a dimension reduction model
and a k-means clustering model. Finally, these fitted models were
applied tothe testing dataset to generate TCN partitions of each image.

Quantitative performance evaluation using the CODEX,
MERFISH, STARmap, ST and Visium datasets

We used two metrics, the macro-F1 and AMI scores to quantitatively
evaluate the performance of six compared methods. For the mouse
spleen CODEX data, the GT assignment of cells to four known splenic

Nature Methods


http://www.nature.com/naturemethods
https://stagate.readthedocs.io/en/latest/index.html
https://stagate.readthedocs.io/en/latest/index.html
https://stlearn.readthedocs.io/en/latest/tutorials.html
https://gitlab.com/enable-medicine-public/space-gm

Article

https://doi.org/10.1038/s41592-023-02124-2

compartments, thatis, red pulp, marginal zone, B cell zone and PALS,
were obtained from the authors of the original study’®. For the mouse
hypothalamus MERFISH data, the GT outlines of the nuclei regions
were obtained from the original study”. The nucleus membership of
cellswas manually assigned by overlaying the outlines of nucleiand the
MERFISH images. For the mouse visual cortex STARmap data, cortical
layer annotations were obtained from the original study*®. For the ST
and Visium data, spatial domain annotations were obtained from the
original studies***°. For each sample, the macro-F1 and AMI scores
are defined as follows and as computed using the Python package
scikit-learn (v.1.2.2):

2 x (precision x recall)

Flscore = —
precision + recall

%

P

Precision = TPLFP

(8)

TP

Recall = —1 "
el = TP 1PN

©

wherethe F1scoreis computed based onthe true positives (TPs), false
positives (FPs) and false negatives (FNs) of the TCN predictions com-
paredto the GT assignment of cells. The macro-F1score was defined as
theaverage F1scoreacrossall GT TCN typesin adataset. AMImeasures
the agreement between predicted and GT TCNs using the Shannon
information theory*":

1(GT:TCN) — E{/ (GT;TCN)}

AMI =
2 [H(GT) + H(TCN)] - E{/ (GT;TCN)}

(10)

where E{/(GT; TCN)} represents the expected mutual information
between the GT and predicted TCN labels of cells. H(GT) and H(TCN)
aretheentropy ofthe GT and predicted TCN labels, respectively. Both
macro-Fland AMItake into account unbalanced classes in the data (for
example, TCNs with different numbers of cells).

Cell-type enrichment score in TCNs

To quantitatively measure the composition of cell types in the identi-
fied TCNs, we defined an enrichment score of each cell type in each
TCN as —-log,(P). The P value was computed using a hypergeometric
test based on the following four numbers: (1) the number of cells of a
given type in the TCN; (2) the total number of cells in the TCN; (3) the
number of cells of the given type in the single-cell spatial map; and (4)
the total number of cells in the spatial map. Pvalues were adjusted for
multiple testing using the Benjamini-Hochberg method®.

Analysis of the cell-cell communication pattern

Considering the skewed distribution of the cell-type enrichment scores
(Supplementary Fig. 5a,e), we chose to compute the Spearman rank
correlation coefficient becauseit is more robust than the Pearson cor-
relation coefficient*® inidentifying cell-type communication patterns
using cell-type enrichment scores. By comparison (Supplementary
Fig.5b-d,f-h), we found that a CLR-specific cell-cell communication
pattern (CD68°CD163" macrophages and plasma cells) in CRC cannot
berevealedifthe Pearson correlation coefficientis used (Supplemen-
tary Fig.5c).

Toidentify the associations among cell types located in different
TCNs, we conducted canonical correlation analysis (CCA) of each TCN
pair using the cell-type enrichment scores. For each TCN, we selected
the five most enriched cell types based on the average enrichment
scores across patient samples as the observed variables of the TCN.
Then, the canonical correlation model between each TCN pair was
constructed using the cc function of the R package CCA (v.1.2.1). We
computed the Pvalues of the canonical correlation coefficients using

the permutation test-based p.perm function from the R package CCP
(v.1.2). Tofacilitateinterpretation of the CCAresults, we further inves-
tigated the correlations between the dominant cell types identified
based ontheir normalized weightsin the first canonical variate pair to
describe the cell-cell communication patterns between TCNs.

Survival analysis

Forthebreast cancer IMC dataset'?, we stratified patients into low-risk
and high-risk groups based on the median OS using only 79 deceased
patients. We did not consider censored patients because their OS time
is unknown.

To further evaluate the prognosis ability of the TCNs identified in
high-risk patients with breast cancer, we used the TCN-based cell-type
enrichment scores as patient features to perform k-means clustering
andidentified three patient subgroups, which we named TCN-induced
subgroups 1, 2 and 3 (Extended Data Fig. 10). Subgroup 3 contained
fewer than three patients and was thus removed from the survival
analysis because of their effect on statistical power and to be consistent
with the criteria proposed by original study. For comparison, we also
downloaded the single-cell pathology (SCP) subtyping annotation from
the original study and identified 17 SCP subgroups among high-risk
patients with cancer. Two SCP subgroups with more than three patients
were used for the survival analysis. All Kaplan-Meier survival curves
and corresponding log-rank test P values were computed using the R
package survival (v.3.2-13).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

This study used eight publicly available datasets (Supplementary
Table1), including a mouse spleen CODEX dataset (https://data.men-
deley.com/datasets/zjnpwh8m5b/1), a mouse hypothalamic preop-
tic region MERFISH dataset (https://datadryad.org/stash/dataset/
doi:10.5061/dryad.8t8s248), a mouse visual cortex STARmap data-
set (http://clarityresourcecenter.org/), a human triple-negative
breast cancer MIBI-TOF dataset (https:/mibi-share.ionpath.com), a
human CRC CODEX dataset (https://data.mendeley.com/datasets/
mpjzbtfgfr/1), a human breast cancer IMC dataset (https://zenodo.
org/record/3518284#.Y2UQ0-xBybg), a human PDAC ST dataset
(GSE111672) and ahuman DLPFC Visium dataset (http://research.libd.
org/spatialLIBD/).

Code availability

The software package implementing the CytoCommunity algorithm
has been deposited at GitHub (https://github.com/tanlabcode/Cyto-
Community) and Zenodo (https://www.zenodo.org/record/8335454)%,
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Extended Data Fig. 1| Robustness assessment of CytoCommunity
performance using different values of K in K-nearest-neighbor graphs.

(a) Assessment using the mouse hypothalamic preoptic region MERFISH dataset.

(b) Assessment using the human triple-negative breast cancer (TNBC) MIBI-
TOF dataset. Robustness score is defined as the average Jaccard index between
original TCN partitions and new TCN partitions generated using different
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K values. SRM, square root of the average number of cells (SRM) across images
inthe dataset. K values were varied around the SRM values. Each black point
represents the robustness performance on a given single-cell spatial image
(n=5for the MERFISH dataset and n = 34 for the MIBI-TOF dataset). Blue
horizontal bars represent the means of each group.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| Effect of number of models of the ensemble procedure
on the performance of CytoCommunity. (a-c) Unsupervised CytoCommunity
was applied to the mouse hypothalamic preoptic region MERFISH dataset

using different number of models learned from the soft TCN assignment
module. The effect of number of models on the robustness (a) and accuracy
including Macro-F1score (b) and adjusted mutual information (AMI) score (c)
was assessed. Macro-F1score and AMIscore were computed by comparing TCN
partitions generated using different number of models with manually annotated
hypothalamic nuclei (Fig. 3b). Robustness score was computed as the average
Jaccard index between those TCN partitions and new TCN partitions generated
by additional three replicated experiments. Each black point represents the

robustness or the accuracy performance ona given MERFISH image (n =5). (d, e)
Supervised CytoCommunity was applied to the human TNBC MIBI-TOF dataset
using different number of models trained based on a10-fold cross-validation. The
effect of number of models on the robustness (d) and accuracy (e) was assessed.
Robustness score was computed the same as before and each black point
represents the robustness performance on a given compartmentalized or mixed
tumor image (n = 34). Accuracy performance was evaluated using the fractions of
neoplastic and immune cells correctly assigned to the neoplastic- and immune-
dominated TCNs. Each black point represents the accuracy performance ona
given compartmentalized tumor image (n = 15). For all panels, blue horizontal
barsrepresent the means of each group with grey dashed lines connecting them.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Robustness assessment of CytoCommunity fine-grained cell type annotations as the input. Both sets of cell type annotations
performance using different granularity of annotated cell types. Mouse were downloaded from the original study”. (c) Robustness score is defined as the
hypothalamic preoptic region MERFISH dataset was used due to the complex average Jaccard index between the two sets of TCNs generated using the two sets
celltypesin this tissue. (a) Cell types and TCNs identified using 9 coarse-grained of cell type annotations.

celltype annotations as the input. (b) Cell types and TCNs identified using 15
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Extended Data Fig. 4 | Performance evaluation using MIBI-TOF data of
compartmentalized tumors from triple-negative breast cancer patients. 15
single-cell-resolution images of compartmentalized tumors generated using
the MIBI-TOF technology. (a) Cells are colored based on 17 cell types annotated
by the original study”. (b-c) TCNs identified by supervised (b) and unsupervised
methods (c). (d) Left, cells are colored based on 11 cell types by combining
similar cell types annotated by the original study into a single major cell type.

Specifically, two neoplastic cell types are combined into one neoplastic cell type.
Four T cell subtypes are combined into asingle T cell cluster. Two mixed cell

type clusters and macrophages are combined into a single monocyte cluster.
Right, TCNsidentified by CytoCommunity. () Robustness score is defined as the
average Jaccard index between the two sets of TCNs generated using the two sets
of cell type annotations.
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Extended DataFig. 5| Performance evaluation using MIBI-TOF data of mixed
tumors from triple-negative breast cancer patients. 19 single-cell-resolution
images of mixed tumors generated using the MIBI-TOF technology. (a) Cells

are colored based on 17 cell types annotated by the original study”. (b-c) TCNs

identified by supervised (b) and unsupervised methods (c). (d) Left, cells are
colored based on 11 cell types. Right, TCNs identified by CytoCommunity. (e)
Robustness score is defined as the average Jaccard index between the two sets of
TCNs generated using the two sets of cell type annotations.
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