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Unsupervised and supervised discovery  
of tissue cellular neighborhoods from  
cell phenotypes

Yuxuan Hu    1 , Jiazhen Rong    2, Yafei Xu1, Runzhi Xie1, Jacqueline Peng2, 
Lin Gao1 & Kai Tan    3,4 

It is poorly understood how different cells in a tissue organize themselves 
to support tissue functions. We describe the CytoCommunity algorithm 
for the identification of tissue cellular neighborhoods (TCNs) based on 
cell phenotypes and their spatial distributions. CytoCommunity learns a 
mapping directly from the cell phenotype space to the TCN space using 
a graph neural network model without intermediate clustering of cell 
embeddings. By leveraging graph pooling, CytoCommunity enables 
de novo identification of condition-specific and predictive TCNs under 
the supervision of sample labels. Using several types of spatial omics 
data, we demonstrate that CytoCommunity can identify TCNs of variable 
sizes with substantial improvement over existing methods. By analyzing 
risk-stratified colorectal and breast cancer data, CytoCommunity revealed 
new granulocyte-enriched and cancer-associated fibroblast-enriched TCNs 
specific to high-risk tumors and altered interactions between neoplastic and 
immune or stromal cells within and between TCNs. CytoCommunity can 
perform unsupervised and supervised analyses of spatial omics maps and 
enable the discovery of condition-specific cell–cell communication patterns 
across spatial scales.

To understand the structure-function relationship of a tissue, the con-
cept of tissue cellular neighborhoods (TCNs) or spatial domains has 
been proposed as a recurrent functional unit in which different cell 
types organize themselves to support tissue functions1–3. With the 
development of spatial omics, there is a critical need for computational 
methods2,4–10 for identifying spatial domains in tissues. Several pioneer-
ing methods have been developed, which can be roughly classified into 
non-deep-learning-based and deep-learning-based approaches. As 
representative of the first category, Giotto2,4 and BayesSpace5 identify 
spatial domains with similar gene expression patterns based on proba-
bilistic graphical models and spatial transcriptomics data. Spatial-LDA9 

uses the latent Dirichlet allocation topic model to identify spatially 
coherent patterns based on cell-type counts and cell spatial coordi-
nates. UTAG10 uses message passing to combine cell molecular features 
and spatial location information followed by clustering to identify 
spatial domains. As a deep-learning-based method, stLearn6 uses a con-
volutional neural network model to extract features from a histological 
image and measures morphological similarity between neighboring 
cells or spots in spatial transcriptomics data to smooth gene expression. 
Clustering is then performed on the normalized expression data for 
spatial domain identification. SpaGCN7, STAGATE8 and SPACE-GM11 first 
use graph neural network (GNN) models to integrate gene expression 
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of graph partitioning based on GNN, a majority-vote-based ensemble 
procedure is performed on multiple optimal soft TCN assignment 
matrices generated by the first GNN module to determine the final 
robust set of TCNs.

We evaluated the robustness of CytoCommunity with regard to 
three parameters (Methods): (1) the value of k in the k-nearest neighbor 
(k-NN)-based cellular spatial graph (Extended Data Fig. 1); (2) the num-
ber of GNN models (runs) in the ensemble procedure (Extended Data 
Fig. 2); and (3) the granularity of cell-type annotation (Extended Data 
Figs. 3–5). We defined a robustness score as the average Jaccard index15 
between TCN partitions generated using different parameter values. 
All robustness assessments were conducted using a mouse hypotha-
lamic preoptic region dataset without sample labels for unsupervised 
learning and a human triple-negative breast cancer dataset with two 
classes of samples for supervised learning (Supplementary Table 1).

Performance evaluation using spatial proteomics data
To evaluate the performance of unsupervised CytoCommunity, we 
applied it to a spatial proteomics dataset of mouse spleen generated 
using the Co-Detection by Indexing (CODEX) technology16 (Supple-
mentary Table 1) and compared it with five state-of-the-art unsuper-
vised learning tools, including Spatial-LDA9 and UTAG10, which were 
originally designed for multiplexed imaging data, and STAGATE8, Bayes-
Space5 and stLearn6, which were originally designed for spatial tran-
scriptomics data (Methods and Supplementary Table 2). The CODEX 
dataset consists of three healthy mouse spleen samples stained with 
30 protein markers (named as BALB/c-1, BALB/c-2 and BALB/c-3). On 
average, each image contained 81,760 cells covering 27 cell types (Fig. 
2a). The images were manually annotated by the authors16 into four 
known tissue compartments of the spleen: red pulp; marginal zone; B 
cell zone; and the periarteriolar lymphoid sheath (PALS) (Fig. 2b). We 
regarded these tissue compartments as ground-truth (GT) TCNs. We 
evaluated the agreement between predicted and GT TCNs using two 
performance metrics: macro-F1 score and adjusted mutual informa-
tion (AMI) (Methods). Overall, all six methods can identify the PALS 
compartment accurately (Fig. 2c–e). However, only CytoCommunity 
consistently identified the marginal zones (Fig. 2c). Spatial-LDA identi-
fied partial and discontinuous marginal zone-like TCNs around B cell 
zones (Fig. 2d). UTAG identified high-quality red pulp regions but failed 
to capture any marginal zones (Fig. 2d). The other three methods iden-
tified low-quality red pulp regions that intermixed with other types of 
TCNs (Fig. 2e). Quantitatively, CytoCommunity also achieved the high-
est macro-F1 score and tied-top AMI score (paired t-test, P < 0.05) across 
the three samples (Fig. 2f). In conclusion, CytoCommunity had sig-
nificantly improved performance over representative state-of-the-art 
methods when comparing identified TCNs with manually annotated 
tissue compartments.

Performance evaluation using spatial transcriptomics data
The evaluation above focused on identifying large tissue compart-
ments. To further evaluate the performance of unsupervised Cyto-
Community on detecting smaller TCNs, we applied it to two spatial 
transcriptomic datasets (Supplementary Table 1 and Supplementary 
Notes). The dataset with more complex tissue structures was gener-
ated from the healthy mouse hypothalamic preoptic region using the 
multiplexed error-robust fluorescence in situ hybridization (MER-
FISH) technology17 to measure the expression of 155 genes. This dataset 
includes samples from five brain regions: Bregma −0.14; Bregma −0.04; 
Bregma +0.06; Bregma +0.16; and Bregma +0.26. On average, each 
image contained 5,352 cells that were assigned to nine cell types by the 
authors17 (Fig. 3a). These images cover 17 hypothalamic nuclei regions 
manually outlined in the original study based on manual inspection 
of extensively studied histology of the brain17,18 (Fig. 3b, left column). 
In neuroanatomy, a nucleus is a group of neurons having similar con-
nections and functions. Hence, we treated these manually outlined 

or cell-type information and spatial location data to generate embed-
ding representations of cells or spots and then perform clustering on 
those embeddings to identify spatial domains.

Of the existing methods, several (BayesSpace, stLearn, SpaGCN 
and STAGATE) were originally designed for spatial transcriptomics 
data and thus use the expression of hundreds or thousands of genes 
as features to infer TCNs. Such methods may not be applicable to 
spatial proteomics data3,12 that only have a few tens of protein expres-
sion features available. Additionally, using gene expression data as 
input cannot directly establish the relationship between cell types 
and TCNs in a tissue, making the interpretation of TCNs challenging. 
Given a cohort of tissue samples associated with different conditions 
(for example, disease risk and patient prognosis), it is important to 
identify condition-specific TCNs with more biological and clinical 
relevance. A representative condition-specific TCN in cancer tissues 
is the tertiary lymphoid structure, which is typically present in low-risk 
but not in high-risk patients with many cancer types13. Most of the exist-
ing methods are designed to detect TCNs in individual tissue samples 
using unsupervised learning and thus are not applicable for the de novo 
identification of condition-specific TCNs. SPACE-GM can generate cell 
embedding features using supervised learning. Subsequently, TCNs 
are identified using unsupervised clustering on these embeddings. 
To our knowledge, no method currently enables both unsupervised 
TCN detection in individual tissue maps and de novo identification of 
condition-specific TCNs using supervised learning and tissue sample 
labels explicitly.

In this study, we describe the CytoCommunity algorithm used to 
identify TCNs that can be applied in either an unsupervised or super-
vised fashion. We formulate TCN identification as a community detec-
tion problem on graphs and use a graph minimum cut (MinCut)-based 
GNN model to identify TCNs. CytoCommunity directly uses cell phe-
notypes as features to learn TCN partitions and thus facilitates the 
interpretation of TCN functions. CytoCommunity can also identify 
condition-specific TCNs from a cohort of labeled tissue samples by 
leveraging differentiable graph pooling and sample labels, which is 
an effective strategy to address the difficulty of graph alignment. Our 
GNN framework directly learns TCN partitions and is thus different 
from SpaGCN7, STAGATE8 and SPACE-GM11, which use clustering of 
cell embeddings after the GNN step to identify spatial domains. Con-
sequently, the resulting spatial domains identified by these methods 
are dependent not only on the GNN models but also on secondary 
clustering algorithms. Moreover, the intermediate clustering step 
makes it difficult to adopt a supervised learning framework to find 
condition-specific TCNs.

Using diverse types of single-cell and spot resolution spatial 
omics datasets, we benchmarked the performance of unsupervised 
CytoCommunity on the detection of TCNs of variable sizes in indi-
vidual tissue samples and supervised CytoCommunity on the identi-
fication of condition-specific TCNs in tumor tissue samples. We also 
demonstrated the ability of supervised CytoCommunity to reveal 
changes within and between TCN communication in the tumor tissues 
of patients with different risks and prognoses.

Results
Overview of CytoCommunity
CytoCommunity consists of two components: a GNN-based soft TCN 
assignment module and a TCN ensemble module to determine a robust 
set of TCNs (Fig. 1a). CytoCommunity can be used for either unsuper-
vised (Fig. 1b and Methods) or supervised (Fig. 1c and Methods) learning 
tasks. For unsupervised learning, a MinCut-based loss function14 is used 
alone to detect TCNs in individual single-cell spatial maps without any 
sample labels. In a supervised learning task for de novo identification of 
condition-specific TCNs, the overall loss function is a linear combina-
tion of the MinCut-based loss function and a cross-entropy loss func-
tion that is used for sample classification. To alleviate the instability 
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Fig. 1 | Schematic diagram of the CytoCommunity algorithm. Given single-
cell spatial maps with cell phenotype annotation and cell spatial coordinates, 
TCN identification is formulated as a community detection problem on graphs. 
a, The algorithm includes a soft TCN assignment module and a TCN ensemble 
module. First, a k-NN-based cellular spatial graph is constructed using cell spatial 
coordinates. Each node represents a cell and its m-dimensional attribute vector 
(blue) encodes the cell phenotype. m, number of cell phenotypes; n, number of 
cells. A basic GNN is applied to this cellular spatial graph to obtain a d-dimensional 
embedding vector (green) for each node. Embedding dimensions are specified 
according to users. A fully connected neural network is used to transform 
cell node embeddings to soft TCN assignments (yellow vectors) of nodes, 
representing the probabilities of cells belonging to c TCNs. The number of TCNs 
are specified according to users. The graph MinCut-based loss function (LMinCut) 
is used to learn the optimal soft TCN assignments of all nodes. This loss function 

can be used alone for an unsupervised learning task. In a supervised learning 
task, differentiable graph pooling, graph convolution and two fully connected 
layers with the cross-entropy loss function LCE (for sample classification, bordered 
by a dashed rectangular box) are added on top of the soft TCN assignment 
module. The overall supervised loss function is a linear combination of LMinCut 
and LCE with a weight parameter β. In the TCN ensemble module, the first module 
can be run multiple times to generate multiple optimal soft TCN assignment 
matrices. Hard assignment is conducted for each of them and an ensemble 
procedure is performed on those hard TCN assignments using a majority vote 
strategy to determine the final robust TCNs. b, For an unsupervised learning 
task, CytoCommunity identified TCNs for each tissue sample individually. c, 
For a supervised learning task, using a dataset of tissue samples associated with 
different conditions as the input, CytoCommunity enabled de novo identification 
of condition-specific TCNs under the supervision of sample labels.
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nuclei as gold standard TCNs in performance evaluation. For quan-
titative comparison, we generated the GT nuclei annotations for all 
cells (Fig. 3b, right column) by manually overlaying the outlines of the 
hypothalamic nuclei onto the single-cell spatial maps. As shown in Fig. 
3b, a prominent tissue architectural feature of the preoptic region is 
the symmetry of several types of nuclei. CytoCommunity identified 
multiple symmetric and coherent TCNs that agreed with the manually 
outlined nuclei (Fig. 3c). For example, the symmetric bed nucleus of 
the stria terminalis (BNST), medial preoptic area (MPA) and medial pre-
optic nucleus (MPN) regions were identified in all five tissue samples. 
We also identified symmetric ventrolateral preoptic nucleus (VLPO) 
regions in Bregma −0.04, Bregma +0.06 and Bregma +0.16, symmet-
ric septohypothalamic nucleus (SHy), anteroventral periventricular 
nucleus (AVPe) and ventromedial preoptic nucleus (VMPO) regions in 
Bregma +0.06 and symmetric paraventricular hypothalamic nucleus 
(PaAP) regions in Bregma +0.26. Besides these symmetric domains, 
the central anterior commissure (ACA), periventricular hypothalamic 
nucleus (Pe) and median preoptic nucleus (MnPO) domains were also 
identified. In comparison, UTAG performed better than CytoCom-
munity on one sample (Bregma −0.14) with more accurate identifica-
tion of symmetric and coherent BNST, MPA and MPN (Fig. 3d, right 
column). Although UTAG performed less well than CytoCommunity 
on the rest of the samples, it still identified clearer symmetric TCNs 
than Spatial-LDA (Fig. 3d, left column) and the other three methods 

originally designed for spatial transcriptomics data (Fig. 3e). These 
four methods can only identify central ACA and Pe in most samples, 
but several other nuclei remain unidentified (unlabeled TCNs in the 
figure legend) because many detected TCNs are intermixed without 
clear boundary between them and lack clear symmetry (Fig. 3d,e). 
Quantitatively, CytoCommunity had significantly higher macro-F1 and 
AMI scores than the other five methods (paired t-test P ≤ 0.05; Fig. 3f).

Taken together, using the spatial maps generated with different 
technologies, we demonstrated that CytoCommunity had a signifi-
cantly improved performance over state-of-the-art methods in iden-
tifying TCNs of variable sizes from different tissues.

Performance evaluation using stratified spatial omics data
To demonstrate the advantage of supervised CytoCommunity to 
identify condition-specific TCNs, we applied it to a stratified spatial 
proteomics dataset of 41 patients with triple-negative breast cancer 
generated using the multiplexed ion beam imaging by time-of-flight 
(MIBI-TOF) technology19 (Supplementary Table 1). This dataset con-
sisted of 15, 19 and 6 MIBI-TOF images from compartmentalized (char-
acterized by immune cells spatially segregated from neoplastic cells), 
mixed (characterized by a high degree of intermixing of neoplastic 
and immune cells) and cold (characterized by a low degree of immune 
cell infiltration) tumors, respectively19. We asked whether supervised 
CytoCommunity could identify spatially separated neoplastic and 
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Fig. 2 | Performance evaluation of the unsupervised CytoCommunity 
algorithm using single-cell spatial proteomics data. a,b, Three single-cell 
spatial images, BALB/c-1, BALB/c-2 and BALB/c-3, generated from healthy 
mouse spleen samples using the CODEX technology. Cells are colored based 
on cell-type annotation (a) or manual tissue compartment annotation (b) from 
the original study16. c–e, TCNs identified by CytoCommunity (c), two methods 
(Spatial-LDA and UTAG) originally designed for spatial proteomics data (d) 
and three methods (STAGATE, BayesSpace and stLearn) originally designed for 

spatial transcriptomics data (e). f, Macro-F1 and AMI scores computed based on 
manually annotated TCNs. Each data point represents the performance on one 
image; the horizontal bars represent the mean across n = 3 images. Performances 
(points) on the same image are connected by gray dashed lines. P values were 
computed using a one-sided paired t-test. Note that only UTAG identified seven 
TCNs in the BALB/c-3 image, while all other methods identified four TCNs in all 
three images. mphs, macrophages; DNT, TCRα+CD4−CD8− double-negative T 
[cell]; NS, not significant.
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immune cell-dominated regions in the compartmentalized tumors. 
To this end, we used MIBI-TOF images from compartmentalized and 
mixed tumors as the input to supervised CytoCommunity and com-
pared its performance with SPACE-GM, unsupervised CytoCommunity, 
Spatial-LDA and UTAG. We chose Spatial-LDA and UTAG because these 
two methods worked well for single-cell spatial proteomics data. The 
images from cold tumors were not used because of a small number 
of immune cells in the tumors. We first evaluated the performance 
of the two supervised methods to predict tumor phenotypes (that is, 
compartmentalized versus mixed tumors). Using ten sets of tenfold 
cross-validation (Methods), CytoCommunity showed improved predic-
tion performance, with an average area under the receiver operating 
characteristic curve (AUCROC) of 0.891, compared to an average AUC 
of 0.823 using SPACE-GM (Fig. 4a).

Next, we evaluated the TCN detection performance of all meth-
ods using the fraction of cells assigned to the correct compartments 
as the performance metric (that is, the assignment of immune cells 
to immune cell-dominated TCNs and vice versa). Unexpectedly, 
SPACE-GM performed poorly with no coherent TCNs identified in the 

compartmentalized tumors (Fig. 4b–d, third column and Extended 
Data Fig. 4b), suggesting that TCNs identified by SPACE-GM do not rep-
resent coherent tissue structures. Instead, they may represent ‘spatial 
motifs’ of smaller sizes as defined in the original study11. For the other 
four methods, although all of them correctly identified neoplastic 
cell-dominated or immune cell-dominated TCNs that are consist-
ent with compartmentalized architecture in a few patient samples 
(for example, patient 4; Fig. 4b), for the majority of patient samples, 
supervised CytoCommunity showed superior performance over the 
three unsupervised methods (Fig. 4c,d and Extended Data Fig. 4b,c). 
For example, for patient 6, supervised and unsupervised CytoCom-
munity and Spatial-LDA identified similar TCNs that are consistent 
with the spatial distribution patterns of cell types. However, UTAG 
mis-assigned many neoplastic cells to the immune cell-dominated 
TCN (Fig. 4c, arrowheads, first row). For patient 9, supervised and 
unsupervised CytoCommunity and UTAG identified clearly separated 
immune cell-dominated and neoplastic cell-dominated TCNs, but 
Spatial-LDA identified two intermixed TCNs without clear boundaries 
(Fig. 4c, arrowheads, second row). For patient 3 and 40, supervised and 
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Fig. 3 | Performance evaluation of the unsupervised CytoCommunity 
algorithm using single-cell spatial transcriptomics data. a, Five single-cell 
spatial images—Bregma −0.14, Bregma −0.04, Bregma +0.06, Bregma +0.16 
and Bregma +0.26—of mouse hypothalamic preoptic region generated using 
the MERFISH technology. The Bregma distance is given for each imaged brain 
section. Cells are colored based on the cell-type annotation from the original 
study17. b, Left, the 9, 10, 12, 12 and 11 hypothalamic nuclei or regions in the images 
were manually outlined by the authors of the original study. Right, cells were 
manually assigned TCN membership based on the nuclei outlined on the left. 
c–e, TCNs identified by CytoCommunity (c), Spatial-LDA and UTAG (d), and 

STAGATE, BayesSpace and stLearn (e). TCNs are labeled and colored based on 
the most similar manually annotated nuclei regions. TCNs without labels could 
not be matched to the manual annotation. f, Macro-F1 and AMI scores were 
computed using the manually annotated hypothalamic nuclei in b. Each point 
represents the performance on a given single-cell spatial image; the horizontal 
bars represent the mean across n = 5 images. Performances (points) on the 
same images are connected by gray dashed lines. P values were computed using 
a one-sided paired t-test. 3V, third ventricle; BAC, bed nucleus of the anterior 
commissure; Fx, fornix; LPO, lateral preoptic area; PS, parastrial nucleus; PVA, 
paraventricular thalamic nucleus; StHy, striohypothalamic nucleus.
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unsupervised CytoCommunity identified the correct TCNs, but both 
Spatial-LDA and UTAG mis-assigned many immune cells to neoplastic 
cell-dominated TCNs (Fig. 4c, arrowheads, third and fourth rows).

All three unsupervised methods performed poorly on samples 
having complex cell-type compositions at the neoplastic–immune 
boundaries (Extended Data Fig. 4c). For instance, they all mis-assigned 
a small band and a relatively large immune cell-enriched regions, 
respectively, located at the top left and bottom right of the image of 
patient 35 (Fig. 4d, arrowheads, top row) to neoplastic cell-dominated 
TCNs. Similarly, both unsupervised CytoCommunity and Spatial-LDA 
assigned a region at the bottom right of the tissue containing B cells, 
CD3+ T cells, CD4+ T cells, CD8+ T cells and neutrophils (Fig. 4d, arrow-
heads, middle row) to neoplastic cell-dominated TCNs in patient 28, 
while UTAG identified this region as a third TCN. In contrast, supervised 
CytoCommunity successfully distinguished neoplastic cell-dominated 
and immune cell-dominated TCNs in these two patients. For patient 5, 
there were fewer neoplastic cells and a region enriched for an unknown 
subpopulation with clear boundaries in the tissue (Fig. 4d, arrowhead, 
bottom row). Given this more complicated tissue architecture, unsu-
pervised CytoCommunity assigned neoplastic cells at the top of the 
tissue (Fig. 4d, top arrowhead, bottom row) and immune cells to one 
TCN and the unknown subpopulation as another TCN, while UTAG iden-
tified four TCNs, separating immune cells into two TCNs. Spatial-LDA 
predicted two intermixed TCNs that were inconsistent with manual 
inspection. In contrast, only supervised CytoCommunity correctly 
identified the immune cell-dominated TCN with the fewest neoplastic 
cells included, although it assigned the unknown subpopulation to the 
neoplastic cell-dominated TCN.

Regarding mixed tumors, supervised CytoCommunity and SPACE- 
GM often identified two TCNs with very different sizes or just a single 
TCN (Fig. 4e and Extended Data Fig. 5b), which is consistent with the 
architecture of highly intermixed neoplastic and immune cells. In 
comparison, unsupervised CytoCommunity and Spatial-LDA cannot 
use sample label information and were forced to identify two TCNs in all 
mixed tumors, which are similar to TCNs identified in compartmental-
ized tumors (Fig. 4e and Extended Data Fig. 5c).

To quantify the performance, we computed the fraction of neo-
plastic and immune cells that were correctly assigned to neoplastic 
cell-dominated and immune cell-dominated TCNs on compartmental-
ized tumor samples. Supervised CytoCommunity had a significantly 
better performance than all compared supervised and unsupervised 
methods (all paired t-test P < 0.005; Fig. 4f).

Risk-specific immune-associated TCNs in colorectal cancer
To demonstrate the utility of supervised CytoCommunity for de novo 
identification of condition-specific TCNs using supervised learning, 
we applied it to a CODEX dataset generated using samples from 17 
low-risk (Crohn’s-like lymphoid reaction (CLR)) and 18 high-risk (dif-
fuse inflammatory infiltration (DII)) patients with colorectal cancer 
(CRC)3 (Supplementary Table 1). The CLR patient group had signifi-
cantly better overall survival (OS) than the DII patient group (log-rank 

test P = 0.002)3. The dataset consisted of 68 and 72 CODEX images 
from the CLR and DII patients, respectively. Using ten sets of tenfold 
cross-validation, we found that CytoCommunity classified the images 
into the two patient groups with an average AUC of 0.791, compared 
to SPACE-GM, with an average AUC of 0.808 (Fig. 5a).

We next investigated the eight TCNs identified using supervised 
CytoCommunity and found that the cell-type enrichment scores 
(Methods) in those TCNs were significantly correlated (Spearman 
rank ρ = 0.68; Fig. 5b,c) between the two patient groups. We also ana-
lyzed the cell-type enrichment of TCNs reported in the original study3. 
The correlation (0.81) of enriched cell types between the two patient 
groups was substantially higher than our TCNs (Extended Data Fig. 
6), suggesting that the original study missed some condition-specific 
TCNs. In comparison, we found several cell types that were enriched 
in CLR-specific or DII-specific TCNs identified by CytoCommunity. For 
example, B cells were significantly enriched in TCN-1 in CLR patients but 
not in any TCN in DII patients (t-test P = 2.5 × 10−3; Fig. 5b and Extended 
Data Fig. 7a,b), which is consistent with the presence of B cell-enriched 
tertiary lymphoid structures in the CLR patient samples but not in the 
DII patient samples3. On the other hand, granulocytes were more sig-
nificantly enriched in TCN-2 in DII patients than in CLR patients (t-test 
P = 4.5 × 10−3; Fig. 5b and Extended Data Fig. 7c,d), which is consistent 
with previous reports that neutrophils have a tumor-promoting role20,21. 
Interestingly, neoplastic cells were more significantly enriched in 
TCNs in the DII group than in the CLR group (t-test P = 9.1 × 10−3; Fig. 
5b and Extended Data Fig. 7e,f), suggesting a more active role played 
by neoplastic cells in shaping the tumor microenvironment (TME) in 
high-risk patients with cancer. These condition-specific TCNs were not 
reported in the original study (Extended Data Fig. 6a).

Besides enrichment of individual cell types in TCNs, we also inves-
tigated the coordination of cell types within and between TCNs to 
better understand cell–cell communication in the TME. As an example 
of within-TCN cell-type communication shared by the two patient 
groups (Supplementary Fig. 1), the enrichment of CD4+ memory T 
(TM) cells (red square) was significantly correlated with CD8+ T cell 
(black diamond) enrichment in TCN-6 in both CLR (ρ = 0.60) and DII 
(ρ = 0.67) patients (Fig. 5d, left). Consistent with the cell-type and TCN 
maps from patients with high enrichment scores, we observed that 
the two cell types were intermixed with each other in TCN-6 (Fig. 5d, 
middle and right). We also found CLR-specific (Supplementary Fig. 1a) 
and DII-specific (Supplementary Fig. 1b) cell-type associations within 
TCNs. For instance, the enrichment of CD68+CD163+ macrophages 
(blue plus sign) was significantly correlated with plasma cell (pink 
octagon) enrichment in TCN-4 in CLR patients (ρ = 0.55) but not in 
DII patients (Fig. 5e), suggesting that double-positive macrophages 
have an antitumor effect by promoting plasma cell enrichment to 
improve the survival of CLR patients. Previous studies demonstrated 
that human macrophages can induce the differentiation of B cells into 
plasma cells22, which may secrete antibodies that promote antitumor 
immune responses23. As an opposite example, the enrichment of CD4+ 
TM (red square) and regulatory T (Treg) cells (cyan pentagon) in TCN-8 

Fig. 4 | Performance evaluation of the supervised CytoCommunity algorithm 
using stratified single-cell spatial proteomics data. a, ROC curves for the 
image label (compartmentalized versus mixed tumors) prediction. The AUCs 
for CytoCommunity and SPACE-GM represent the mean values of ten sets 
of tenfold cross-validations. b–e, Representative single-cell images of the 
compartmentalized (b–d) and mixed (e) tumors from patients with triple-
negative breast cancer. Cells are colored based on the cell-type annotation 
from the original study19 (first column) or TCNs identified using two supervised 
methods, supervised CytoCommunity and SPACE-GM, and three unsupervised 
methods, that is, unsupervised CytoCommunity, Spatial-LDA and UTAG. b, 
Tissue image of patient no. 4 on which all methods showed good performance, 
except for SPACE-GM. c, Tissue images on which supervised and unsupervised 
CytoCommunity showed better performance than three other methods. d, 

Tissue images on which supervised CytoCommunity showed better performance 
than all other methods. Mis-assigned regions by the compared methods are 
indicated by the arrowheads in the cell-type maps. e, Representative single-cell 
images of the mixed tumors from patients with triple-negative breast cancer. f, 
Fractions of neoplastic and immune cells correctly assigned to the neoplastic 
cell-dominated and immune cell-dominated TCNs. Each point represents 
performance on a given compartmentalized tumor image; the horizontal bars 
represent the mean across n = 15 images. Performances (points) on the same 
images are connected by gray dashed lines. P values were computed using 
a one-sided paired t-test. Note that the number of TCNs were set to two for 
CytoCommunity, SPACE-GM and Spatial-LDA. Clustering resolution was set to 
0.05 for UTAG, resulting in one or two identified TCNs in most images but three or 
four identified TCNs in the rest of the images.
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had a significant correlation (ρ = 0.55) in DII patients but not in CLR 
patients (Fig. 5f). This is in line with previous reports that CD4+ T cells 
can be transformed into Treg cells24, resulting in an immunosuppressive 
TME and poor patient survival.

To investigate the communication between different TCNs, we 
conducted canonical correlation analysis of TCN pairs (Methods). 
We found substantial differences in significant canonical correla-
tions of TCNs between CLR (Supplementary Fig. 2a) and DII patients 
(Supplementary Fig. 2b). As an example of significant between-TCN 
associations specific to CLR patients, the granulocytes and immune 
and neoplastic cell mixed subpopulation in TCN-2, and CD68+CD163+ 
macrophages, CD4+ TM and CD8+ T cells in TCN-6 were the dominant cell 
types (observed variables) in the first canonical variate pair (Fig. 5g, top 
left). Without consideration of other cell types, granulocytes (purple 
cross) and CD68+CD163+ macrophages (blue plus sign) in the two TCNs 
had a significant correlation (ρ = 0.69; Fig. 5g, bottom left), suggesting 
a potential interaction between these two cell types across TCNs. Con-
sistent with the corresponding cell-type and TCN maps, we observed 
that granulocytes enriched in TCN-2 were close to double-positive 
macrophages enriched in TCN-6 (Fig. 5g, right). Such between-TCN 
communication in CLR patients is supported by previously observed 
interactions between neutrophils and macrophages that could exert 
an antitumor effect25.

Another interesting example of between-TCN communication 
regarding the DII group is the significant association between TCN-1 
and TCN-7, in which smooth muscle cells, CD4+ TM cells and CD8+ T cells 
in TCN-1, and neoplastic, CD4+ TM cells and smooth muscle cells in 
TCN-7 were the dominant cell types in the first canonical variate pair 
(Fig. 5h, top left). By examining the pair-wise correlation of these cell 
types, we found that smooth muscle cells (green hexagon) in TCN-1 
were significantly correlated with malignant cells (orange triangle) in 
TCN-7 (ρ = 0.74; Fig. 5h, bottom left). As supporting evidence, previous 
studies reported the critical role of smooth muscle cells in intestinal 
architecture and vascular function26, tumor angiogenesis and metas-
tasis27, which is consistent with our observation that malignant cells 
in TCN-7 are spatially close to smooth muscle cells in TCN-1 (dashed 
ellipses and rectangles, Fig. 5h, right).

Risk-specific stromal-associated TCNs in breast cancer
To further evaluate the ability of supervised CytoCommunity to dis-
cover condition-specific TCNs using different data modalities, we 
applied it to another spatial proteomics dataset of breast cancer gen-
erated using the imaging mass cytometry (IMC) technology12 (Sup-
plementary Table 1). Based on the median OS, we stratified 79 breast 
cancer patients into low-risk and high-risk groups with significant 
survival difference (log-rank test P < 0.0001; Fig. 6a and Methods). 
Using these patient labels, we evaluated the performance of supervised 
CytoCommunity and SPACE-GM to classify the images into two patient 
prognosis groups. We found that CytoCommunity achieved improved 
prediction performance with an average AUC of 0.621, compared to an 
average AUC of 0.558 by SPACE-GM (Fig. 6b).

We further analyzed the seven TCNs in both the low-risk and 
high-risk groups identified by CytoCommunity. By comparing the 

cell-type enrichment scores (Fig. 6c,d), we found that TCNs in both 
groups have similar overall cell-type composition (ρ = 0.58; Fig. 6d). 
We also analyzed cell-type enrichment of TCNs reported in the original 
study and found a similar moderate correlation of cell-type enrichment 
scores between the low-risk and high-risk patient groups (ρ = 0.53; 
Extended Data Fig. 8). The TCNs identified by CytoCommunity were 
enriched for several types of fibroblasts (Fig. 6c), suggesting a critical 
role of fibroblasts in breast cancer prognosis. Specifically, we found 
that both vimentinhi cancer-associated fibroblasts (CAFs) and endothe-
lial cells were more enriched in TCN-4 of the high-risk group than those 
of the low-risk group (both t-test P < 0.05; Extended Data Fig. 9c,d). 
This condition-specific TCN was not identified by the original study 
(Extended Data Fig. 8a). Besides stromal cell types, we also found 
low-risk group-specific TCNs (TCN-2 and TCN-5) characterized by the 
enrichment of CK+HRhi neoplastic cells (t-test P = 4.8 × 10−3; Fig. 6c and 
Extended Data Fig. 9a,b). This is consistent with the previous report 
that this malignant cell phenotype is associated with good prognosis12; 
such a condition-specific TCN was also captured by the original study 
(Extended Data Fig. 8a). We compared the prognosis power of TCNs 
identified by CytoCommunity and the original study (Methods) and 
found a small subgroup of high-risk patients (subgroup 2) with poorer 
outcome compared to most high-risk patients (subgroup 1; Extended 
Data Fig. 10a). We further found significant differences between the 
two subgroups with respect to small elongated fibroblast, CAF, T cell 
and macrophage enrichment in TCN-4 (Extended Data Fig. 10c,d), 
suggesting a non-negligible impact of normal fibroblasts and CAFs on 
immune cells in patients with breast cancer, resulting in an unfavora-
ble prognosis. No significant survival difference among the high-risk 
patients was captured by single-cell pathology-based subtyping12 
(Extended Data Fig. 10b).

Regarding cell-type association within TCNs (Supplementary Fig. 
3), we found that two normal fibroblast types, small circular (green 
hexagon) and elongated (black diamond) fibroblasts, were significantly 
correlated in TCN-1 in both low-risk (ρ = 0.76) and high-risk (ρ = 0.48) 
patients (Fig. 6e, left). We observed that these two fibroblast types were 
intermixed in TCN-1 in patients with high enrichment scores (Fig. 6e, 
middle and right). As examples of low-risk-specific (Supplementary Fig. 
3a) and high-risk-specific (Supplementary Fig. 3b) within-TCN cell–cell 
communication, we found that B cell (gray hexagon) enrichment was 
significantly correlated with T cell (red square) enrichment in TCN-1 
in low-risk patients (ρ = 0.56; Fig. 6f), but not in high-risk patients. 
Previous studies revealed that B cells can induce T cell activation and 
proliferation to exert antitumor effects28. In contrast, we found that 
CAFs (purple cross) and endothelial cells (cyan pentagon) had a strong 
correlation in TCN-4 in high-risk patients (ρ = 0.67; Fig. 6g), but not in 
low-risk patients. This is in line with previous reports that CAFs can 
regulate endothelial cell function and promote angiogenesis29,30 to 
facilitate cancer metastasis, leading to unfavorable patient outcomes.

Next, we investigated between-TCN communication by canonical 
correlation analysis. We found several significant TCN associations 
involving neoplastic-stromal cell interactions in both low-risk and 
high-risk patients (Supplementary Fig. 4). For example, we observed 
that endothelial cell (cyan pentagon) and T cell (red square)-dominated 

Fig. 5 | Coordinated neoplastic and immune cell-type distributions within or 
between TCNs in CRC. a, ROC curves for image label (CLR versus DII) prediction. 
The AUCs for CytoCommunity and SPACE-GM represent the mean values of 
ten sets of tenfold cross-validations. b, Heatmaps of the average enrichment 
scores of each cell type in each identified TCN across all images of the CLR 
and DII patient samples. Cell type enrichment score was defined as −log10(P). 
P values were computed using hypergeometric tests and adjusted with the 
Benjamini–Hochberg method45. c, Correlation of average cell-type enrichment 
scores in all identified TCNs between CLR and DII patients. d–f, Correlation of the 
enrichment scores of two indicated cell types in TCN-6 (d), TCN-4 (e) or TCN-8 
(f) in each patient group (left). Representative cell-type and TCN maps (middle 
and right) are based on patient samples indicated by a dashed circle in the scatter 

plots. g,h, Significant canonical correlation (permutation test P < 0.1) between 
two TCNs in the CLR (g) and DII (h) patient groups. Scatter plots of normalized 
weights of dominant cell types (observed variable) in each TCN in the first two 
canonical variate pairs (top left) are shown. Correlation of the enrichment 
scores of dominant cell types in the first canonical variate pair (bottom left), and 
representative cell-type and TCN maps (right), are also shown. The black dashed 
ellipses and rectangles in the cell-type and TCN maps in h are used to highlight 
the colocalization of smooth muscle cells in TCN-1 and neoplastic cells in TCN-7. 
For all scatter plots, regression lines, Spearman rank correlation coefficients (ρ) 
and two-sided Spearman ρ test P values are shown. For clarity, cells of the studied 
types and TCNs have been magnified without transparency in all cell-type and 
TCN maps.
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TCN-4 was associated with TCN-2, which was dominated by proliferative 
neoplastic cells (brown right-pointing triangle) (Fig. 6h). As support-
ing evidence, previous studies showed that endothelial cell-mediated 
neovascularization can not only transport oxygen and nutrients to 
support rapid proliferation of neoplastic cells31, but also serve as a 

barrier to block T cell infiltration into the tumor bed32. Another inter-
esting example is the significant correlation between p53+ epidermal 
growth factor receptor (EGFR)+ neoplastic cell (green upside-down 
triangle)-dominated TCN-5 and TCN-4, which mainly consists of small 
circular (green hexagon) and elongated fibroblasts (black diamond), as 
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well as CAFs (purple cross) (Fig. 6i). p53+EGFR+ is a common character-
istic of the malignant cells of triple-negative breast cancer12, which has 
a highly aggressive and hypoxic phenotype compared to other breast 
cancer subtypes33. Hypoxia enables the expansion of aggressive tumor 
clones34 (represented by the cohesive tumor mass in TCN-5), and can 
also support the transformation of tissue-resident fibroblasts into 
CAFs34 in TCN-4, which could in turn promote angiogenesis, as shown in 
Fig. 6g, or block immune cells from entering the tumor nests as shown 
in Extended Data Fig. 10d, resulting in poor prognosis in breast cancer.

Discussion
CytoCommunity identified the TCN as a community detection prob-
lem on node-attributed cell–cell spatial proximity graphs. As most 
traditional community detection algorithms focus only on graph 
topology to find densely connected subgraphs and cannot explicitly 
deal with node attributes35, CytoCommunity uses a MinCut-based 
GNN model to learn optimal TCN assignment of cells from cell-type 
information. Unlike previous methods2,4–11, CytoCommunity is the 
first TCN detection method that can be applied in both unsupervised 
and supervised modes. This unique feature of CytoCommunity can be 
attributed to the use of differentiable graph pooling that preserves 
TCN partition information in the embedding representation of the 
whole spatial map and thus addresses TCN alignment across spatial 
maps by training an end-to-end model to classify samples. In con-
trast, existing unsupervised methods use ad hoc strategies to identify 
condition-specific tissue domains by aligning TCNs detected on each 
map according to their spatial positions and then conducting a post 
hoc comparison across them. It is also worth noting that TCN identi-
fication under the supervision of sample labels is a weakly supervised 
graph partitioning problem, representing an interesting research 
topic in graph learning.

We believe that the success of CytoCommunity can be attributed 
to three main features. First, it leverages a GNN model with a theoreti-
cally grounded MinCut-based loss function14 for soft TCN assignment 
learning, generating more accurate and stable graph partitioning 
results than other pooling-capable GNN models, such as DiffPool36, 
which uses heuristic loss functions to learn the soft assignments. Sec-
ond, CytoCommunity uses a differentiable graph pooling layer to 
exploit the soft TCN assignment matrix to coarsen the input graph and 
generate the embedding of the whole graph that is used for sample 
or image classification. Such framework enables effective learning 
of condition-specific TCN assignments using the sample labels in an 
end-to-end fashion. Third, CytoCommunity uses cell types as the initial 
cell features, probably leading to a better measurement of functional 
similarity between cells than using noisy gene or protein expression 
data directly. Cell-type identification is typically the first crucial task 
in single-cell data analysis and often needs sophisticated tools37–39 
as well as expert knowledge. Therefore, cell-type annotation should 
be directly used in a specialized TCN detection method rather than 
starting with expression data. CytoCommunity encodes cell types in 
a categorical vector space and thus has scalability to incorporate more 

heterogenous categorical data, such as cell states40, into the initial cell 
feature vectors to infer TCNs.

Because of the use of cell-type information, the current version of 
CytoCommunity is not directly applicable to spatial transcriptomics 
data with spot resolution41,42. To address this issue, cell-type composi-
tion at each spot can be first estimated using deconvolution43,44. Then, 
a spot–spot proximity graph with inferred cell-type fractions as node 
attributes can be constructed as the input to CytoCommunity for TCN 
identification. However, because of the dependence of the CytoCom-
munity performance on cell-type deconvolution methods, users should 
test different deconvolution methods to obtain optimal TCN partitions 
(Supplementary Notes). Another limitation of CytoCommunity is the 
moderate accuracy of sample class prediction by its supervised version. 
This can be improved by integration with paired histological images 
that complement cellular morphology features. Finally, detection of 
TCN evolution should be considered in the future development of 
CytoCommunity to capture the dynamics of tissue organization in dis-
ease development and progression using spatiotemporal omics data.

In summary, with the rapid growth of single-cell spatial omics maps, 
CytoCommunity represents a powerful and scalable method for de novo 
identification of condition-specific TCNs. TCNs directly learned from 
cell types can facilitate the interpretation of their function and the dis-
covery of cell–cell communication within the tissue microenvironment.
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Methods
Unsupervised model for the identification of TCNs
The CytoCommunity algorithm consists of two components: a soft TCN 
assignment learning module and a TCN ensemble module to determine 
the final robust TCNs (Fig. 1a). In the first component, given a single-cell 
spatial map with cell-type annotation and cell spatial coordinates, 
an undirected k-NN graph (that is, cellular spatial graph) with node 
attribute (cell type) is constructed. A cell is represented by a node and 
its cell-type information is represented by a node attribute vector 
using one-hot encoding (Fig. 1a, top). We first constructed a directed 
k-NN graph by connecting each node to its k-NNs based on Euclidean 
distance calculated using cell spatial coordinates. Then, the underlying 
undirected graph without self-edges derived from the directed k-NN 
graph was considered as the cellular spatial graph, which was the input 
to the GNN model. Because each spatial omics dataset is measured 
from the same tissue type with the same technology, we set the default 
value of k in the k-NN graphs as the square root of the average number 
of cells (square root of mean (SRM)) across spatial maps in the dataset 
based on our extensive testing. We also evaluated the effect of differ-
ent k values on the robustness of the algorithm by varying the value of 
k around the SRM (Extended Data Fig. 1) and demonstrated that TCN 
partitions generated using different k values were robust.

As shown in Fig. 1a (top), given a cellular spatial graph with an 
adjacency matrix A ∈ {0, 1}n×n and a node attribute matrix F ∈ {0, 1}n×m 
as the input, we used a basic graph convolution layer46 with the rectified 
linear unit (ReLU) activation function to generate a cell node embed-
ding matrix X ∈ ℝn×d , where n is the number of nodes in the cellular 
spatial graph and m is the number of cell types. Each row of X is a learned 
d-dimensional representation vector of a node defined as below:

x′i = ReLU(Θ1xi +Θ2 ∑
j∈N(i)

xj) (1)

where x′i is an updated embedding vector of cell node i, which is calcu-
lated based on the previous representation of itself xi and its first-order 
neighborhood N(i) derived from the matrix A. xi is initialized with the 
node attribute vector (that is, the i-th row of the matrix F). Θ1 and Θ2 are 
trainable parameter matrices in the graph convolution layer. The value 
of d was empirically set to 128 for the unsupervised tasks and 512 for 
the supervised tasks in this study.

Next, we use a fully connected neural network with no hidden layer, 
also known as a linear layer, and the softmax activation function to 
transform the node embedding matrix X ∈ ℝn×d to the soft TCN assign-
ment matrix S ∈ ℝn×c, which can be formulated as below,

S = softmax (linear (X;Θ3)) (2)

where each element in S represents the probability of a cell (row) 
belonging to one of the c TCNs (columns). c is a user-specified hyperpa-
rameter and represents the maximum number of TCNs to be detected. 
Θ3 is a trainable parameter matrix in this linear layer. Note that the 
optimal number of TCNs is automatically learned by this deep learn-
ing module and could be smaller than c. Next, we used the following 
MinCut-based loss function14 to optimize the matrix S in an unsuper-
vised way,

LMinCut = −
∑c
j=1 (STAS)jj

∑c
j=1 (STDS)jj

+ ‖
‖
STS

||STS||F
− Ic
√c

‖
‖
F

(3)

where D ∈ ℝn×n is a diagonal matrix in which each diagonal element is 
the sum of the corresponding row in the adjacency matrix A. The loss 
function LMinCut is the sum of two terms. The left term is used to address 
the normalized MinCut problem in graph theory with the objective of 
partitioning the graph into c disjoint connected components with 

similar sizes by removing the minimum number of edges. The right 
term encourages the soft TCN assignment matrix S to be orthogonal 
to make the TCN membership of each node unambiguous. ‖∙‖F denotes 
the Frobenius norm. This loss function can be used alone for an unsu-
pervised learning task, that is, LUnsup = LMinCut , to identify TCNs for 
single-cell spatial omics maps individually (Fig. 1b).

The second component of CytoCommunity is used to obtain a 
robust graph partitioning as the final TCNs by conducting ensemble 
learning (Fig. 1a, bottom). Specifically, the soft TCN assignment mod-
ule in the first component is run multiple times to generate multiple 
learned matrices S. For each of them, the hard assignment is performed 
by assigning the cell (row) to the TCN (column) with the highest prob-
ability. Then, we used the majority vote strategy to conduct an ensem-
ble procedure on those hard TCN assignments to determine the final 
set of TCNs. To demonstrate the utility of this ensemble approach, 
we performed a robustness experiment on the challenging MERFISH 
dataset with multiple small TCNs (Extended Data Fig. 2). We ran Cyto-
Community with a different number of models to be learned by the 
first component. We then conducted comparisons of the TCN parti-
tions generated by replicate experiments and found that the ensemble 
procedure improved the robustness of the result when the number of 
models increased. Our results showed that the ensemble procedure 
based on 20 models is sufficient to obtain a stable TCN partition.

Supervised model for de novo identification of 
condition-specific TCNs
Given a dataset of multiple spatial omics maps from different condi-
tions, TCNs can be identified for each spatial map first and then aligned 
across different maps to identify condition-specific TCNs. However, 
TCN alignment is analogous to community alignment in graphs, which 
is NP-hard47. To tackle this problem, we used differentiable graph pool-
ing to generate an embedding representation of the whole graph that 
preserves the TCN partition information. By adapting the unsuper-
vised graph partitioning model described above to a graph pooling- 
based graph classification framework, TCNs in different spatial maps 
are automatically aligned during soft TCN assignment learning, facili-
tating de novo identification of condition-specific TCNs (Fig. 1a, top). 
Specifically, after obtaining the soft TCN assignment matrix S ∈ ℝn×c 
using graph convolution and fully connected layers, we additionally 
used a differentiable graph pooling layer14,36 formulated as equations 
(4) and (5) to generate a coarsened graph of the original cellular spatial 
graph with the adjacency matrix APooled ∈ ℝc×c and a matrix of pooled 
node embeddings XPooled ∈ ℝc×d . Note that this coarsened graph is a 
fully connected graph with each pooled node corresponding to a TCN 
that includes a group of nodes (cells) with similar soft TCN assign-
ments; the edge weights represent the connectivity strength between 
TCNs. For example, the coarsened graph in Fig. 1a consists of four 
pooled nodes, each of which has the same color with the TCN to be 
detected in the original cellular spatial graph:

XPooled = STX (4)

APooled = STAS (5)

Then, we used XPooled and APooled as inputs to another graph con-
volution layer similar to that described in equation (1) to integrate 
the pooled node features and their local neighborhood information 
in the coarsened graph, generating an updated embedding vector for 
each pooled node. The average of these new embedding vectors of the 
pooled nodes is an embedding vector of the whole graph, which is in 
turn used as the input to a graph classifier implemented by two fully 
connected layers with the softmax activation function. The overall 
supervised loss function is defined as:

LSup = β × LMinCut + (1 − β) × LCE (6)
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where β is a weight parameter to balance the LMinCut loss used for graph 
partitioning and the cross-entropy LCE loss used for graph classifica-
tion. Trained with the joint loss function, this model can directly learn 
condition-specific TCNs under the supervision of sample labels (Fig. 1c).

For the triple-negative breast cancer MIBI-TOF, CRC CODEX and 
breast cancer IMC datasets in this study, we performed ten sets of 
tenfold cross-validation to evaluate the prediction performance of the 
model and used 100 optimal soft TCN assignment matrices generated 
during the cross-validation to conduct the TCN ensemble procedure 
for robust TCN identification. Note that the supervision signals are 
disease-relevant labels (for example, low-risk or high-risk), which are 
independent of patient-level information. For each of the three data-
sets, the training and test datasets were split based on the principle of 
tenfold cross-validation; the training samples were input to the model 
in a randomized fashion with no patient order or any other patient 
information. Therefore, during the training process, the model does 
not know which images come from the same patient. The model only 
knows about the class label (for example, low-risk or high-risk) of each 
image during training, which prevents data leakage. We also empirically 
set β to 0.9 because of our emphasis on graph partitioning and set the 
maximum number of TCNs to be identified to ten.

Unlike the unsupervised version, supervised CytoCommunity 
requires users to tune two training hyperparameters, that is, the size 
of a mini-batch and the learning rate. The mini-batch size is commonly 
set to the power of 2 because of efficiency. We used the mini-batch 
sizes of 16, 64 and 32 for the triple-negative breast cancer MIBI-TOF, 
CRC CODEX and breast cancer IMC datasets, respectively. These 
numbers are closest to half the sizes of the training sets for the three 
datasets, which can be considered as the suggested default value for 
mini-batch size using supervised CytoCommunity. For the learning 
rate, we adopted a commonly used strategy that the learning rate 
should be increased as the mini-batch size increases. Thus, we set the 
learning rates to 1.0 × 10−4, 1.0 × 10−3 and 1.0 × 10−3 for the three datasets, 
respectively.

Running of published methods
We compared the performance of CytoCommunity with six other 
spatial domain detection methods, including five unsupervised meth-
ods, Spatial-LDA9, UTAG10, STAGATE8, BayesSpace5 and stLearn6, and 
one supervised method SPACE-GM11 (Supplementary Tables 2 and 3). 
As required by these methods, cell-type annotation and cell spatial 
coordinates were used as inputs to Spatial-LDA and SPACE-GM, while 
protein or mRNA expression data and cell spatial coordinates were used 
as inputs to the other four methods. For benchmarking purposes, the 
number of TCNs to be detected were adjusted to be consistent with the 
manual annotation from the original studies16,17,48–50 as much as possible 
by tuning the hyperparameters of the compared methods.

The Python package spatial-lda (v.0.1.3) was applied to four data-
sets (Supplementary Table 1). By considering all cells as index cells, we 
first used the featurize_samples and make_merged_difference_matrices 
functions for image featurization. Then, TCNs were detected using 
the spatial_lda.model.train function. For the mouse spleen CODEX 
dataset, the parameters were set to be max_dirichlet_iter = 30 and 
max_dirichlet_ls_iter = 30. Parameters were set as default for the other 
datasets. Note that the number of TCNs identified by this method may 
be fewer than the prespecified number.

The Python package STAGATE-pyG (v.1.0.0) was applied to five 
datasets (Supplementary Table 1). For each spatial omics map, a cell 
spatial neighbor network was constructed using the Cal_Spatial_Net 
and Stats_Spatial_Net functions. The train_STAGATE function was then 
used to learn low-dimensional latent representations of cells, which 
were considered as inputs to the Louvain clustering algorithm for TCN 
detection. The scanpy.pp.neighbors and scanpy.tl.louvain functions 
were used with resolution = 0.25 for all three images in the mouse 
spleen CODEX dataset. For the mouse hypothalamic preoptic region 

MERFISH dataset, the parameter resolution was set to 0.5, 0.45, 0.6, 
0.62 and 0.76 for image Bregma −0.14, Bregma −0.04, Bregma +0.06, 
Bregma +0.16 and Bregma +0.26, respectively. For the other datasets, 
the parameters were set based on the official tutorial at https://stagate.
readthedocs.io/en/latest/index.html.

The R package BayesSpace (v.1.5.1) was applied to five datasets 
(Supplementary Table 1). For the mouse spleen CODEX dataset, the top 
15 principal components were considered and all 30 protein markers 
were used as highly variable genes (n.HVGs) in the preprocessing func-
tion spatialPreprocess. TCNs were identified using the spatialCluster 
function with nrep = 5,000 and burn.in = 100. For the mouse hypotha-
lamic preoptic region MERFISH and visual cortex STARmap datasets, 
the parameter n.HVGs was set to 155 and 1,020, respectively. For the 
other datasets, default parameters were used.

The Python package stlearn (v.0.4.0) was applied to five data-
sets (Supplementary Table 1). TCNs were identified using the stlearn.
tl.clustering.louvain function with resolution = 0.25 for all three images 
in the mouse spleen CODEX dataset. For the MERFISH dataset, the param-
eter resolution was set to 0.35, 0.5, 0.8, 0.9 and 1.3 for image Bregma 
−0.14, Bregma −0.04, Bregma +0.06, Bregma +0.16 and Bregma +0.26, 
respectively. For the STARmap dataset, the parameter resolution was set 
to 1.5. For the other datasets, parameters were set based on the official 
tutorial at https://stlearn.readthedocs.io/en/latest/tutorials.html.

The Python package UTAG (v.0.1.1) was applied to six datasets 
(Supplementary Table 1). For the mouse spleen CODEX dataset, the 
parameter max_dist was set to 100 for all three images and the param-
eter resolution was set to 0.05, 0.06 and 0.03 for the BALB/c-1, BALB/c-2 
and BALB/c-3 images, respectively. For the mouse hypothalamic preop-
tic region MERFISH dataset, the parameter max_dist was set to 50 for 
all five images and the parameter resolution was set to 0.2, 0.2, 0.29, 
0.4 and 0.5 for image Bregma −0.14, Bregma −0.04, Bregma +0.06, 
Bregma +0.16 and Bregma +0.26, respectively. For the mouse visual 
cortex STARmap dataset, the parameter max_dist was set to 10 and 
the parameter resolution was set to 0.4. For the triple-negative breast 
cancer MIBI-TOF dataset, the parameter max_dist was set to 60 and the 
parameter resolution was set to 0.05 for all images in the dataset. For 
the pancreatic ductal adenocarcinoma (PDAC) spatial transcriptome 
(ST) dataset, the parameter max_dist was set to 20 and the param-
eter resolution was set to 0.07. For the dorsolateral prefrontal cortex 
(DLPFC) Visium dataset, the parameter max_dist was set to 20 and the 
parameter resolution was set to 0.1.

The Python code of SPACE-GM (v.0.1.2) was downloaded from 
https://gitlab.com/enable-medicine-public/space-gm. This code was 
applied to three datasets with sample labels (Supplementary Table 1) 
based on the official tutorial. We observed normally decreasing training 
losses for all three datasets. To evaluate prediction performance, we 
conducted ten sets of tenfold cross-validation using all three datasets 
as for the supervised CytoCommunity. To evaluate TCN identification 
performance, we only applied SPACE-GM to the triple-negative breast 
cancer MIBI-TOF dataset because of the feasibility of quantitative 
evaluation of TCNs in this dataset. We first split the dataset into train-
ing and testing datasets using a tenfold cross-validation. We then used 
the get_random_sampled_subgraphs function to randomly sample 
100,000 subgraphs from the training dataset as the reference dataset 
based on the recommendation in the original study11. Next, we used the 
get_embedding function to generate embeddings of those reference 
subgraphs, which were used for fitting a dimension reduction model 
and a k-means clustering model. Finally, these fitted models were 
applied to the testing dataset to generate TCN partitions of each image.

Quantitative performance evaluation using the CODEX, 
MERFISH, STARmap, ST and Visium datasets
We used two metrics, the macro-F1 and AMI scores to quantitatively 
evaluate the performance of six compared methods. For the mouse 
spleen CODEX data, the GT assignment of cells to four known splenic 
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compartments, that is, red pulp, marginal zone, B cell zone and PALS, 
were obtained from the authors of the original study16. For the mouse 
hypothalamus MERFISH data, the GT outlines of the nuclei regions 
were obtained from the original study17. The nucleus membership of 
cells was manually assigned by overlaying the outlines of nuclei and the 
MERFISH images. For the mouse visual cortex STARmap data, cortical 
layer annotations were obtained from the original study48. For the ST 
and Visium data, spatial domain annotations were obtained from the 
original studies49,50. For each sample, the macro-F1 and AMI scores 
are defined as follows and as computed using the Python package 
scikit-learn (v.1.2.2):

F1score = 2 × (precision × recall)
precision + recall

(7)

Precision = TP
TP + FP (8)

Recall = TP
TP + FN (9)

where the F1 score is computed based on the true positives (TPs), false 
positives (FPs) and false negatives (FNs) of the TCN predictions com-
pared to the GT assignment of cells. The macro-F1 score was defined as 
the average F1 score across all GT TCN types in a dataset. AMI measures 
the agreement between predicted and GT TCNs using the Shannon 
information theory51:

AMI = I (GT;TCN) − E{I (GT;TCN)}
1
2
[H (GT) + H (TCN)] − E{I (GT;TCN)}

(10)

where E{I (GT;TCN)}  represents the expected mutual information 
between the GT and predicted TCN labels of cells. H(GT) and H(TCN) 
are the entropy of the GT and predicted TCN labels, respectively. Both 
macro-F1 and AMI take into account unbalanced classes in the data (for 
example, TCNs with different numbers of cells).

Cell-type enrichment score in TCNs
To quantitatively measure the composition of cell types in the identi-
fied TCNs, we defined an enrichment score of each cell type in each 
TCN as −log10(P). The P value was computed using a hypergeometric 
test based on the following four numbers: (1) the number of cells of a 
given type in the TCN; (2) the total number of cells in the TCN; (3) the 
number of cells of the given type in the single-cell spatial map; and (4) 
the total number of cells in the spatial map. P values were adjusted for 
multiple testing using the Benjamini–Hochberg method45.

Analysis of the cell–cell communication pattern
Considering the skewed distribution of the cell-type enrichment scores 
(Supplementary Fig. 5a,e), we chose to compute the Spearman rank 
correlation coefficient because it is more robust than the Pearson cor-
relation coefficient52 in identifying cell-type communication patterns 
using cell-type enrichment scores. By comparison (Supplementary 
Fig. 5b–d,f–h), we found that a CLR-specific cell–cell communication 
pattern (CD68+CD163+ macrophages and plasma cells) in CRC cannot 
be revealed if the Pearson correlation coefficient is used (Supplemen-
tary Fig. 5c).

To identify the associations among cell types located in different 
TCNs, we conducted canonical correlation analysis (CCA) of each TCN 
pair using the cell-type enrichment scores. For each TCN, we selected 
the five most enriched cell types based on the average enrichment 
scores across patient samples as the observed variables of the TCN. 
Then, the canonical correlation model between each TCN pair was 
constructed using the cc function of the R package CCA (v.1.2.1). We 
computed the P values of the canonical correlation coefficients using 

the permutation test-based p.perm function from the R package CCP 
(v.1.2). To facilitate interpretation of the CCA results, we further inves-
tigated the correlations between the dominant cell types identified 
based on their normalized weights in the first canonical variate pair to 
describe the cell–cell communication patterns between TCNs.

Survival analysis
For the breast cancer IMC dataset12, we stratified patients into low-risk 
and high-risk groups based on the median OS using only 79 deceased 
patients. We did not consider censored patients because their OS time 
is unknown.

To further evaluate the prognosis ability of the TCNs identified in 
high-risk patients with breast cancer, we used the TCN-based cell-type 
enrichment scores as patient features to perform k-means clustering 
and identified three patient subgroups, which we named TCN-induced 
subgroups 1, 2 and 3 (Extended Data Fig. 10). Subgroup 3 contained 
fewer than three patients and was thus removed from the survival 
analysis because of their effect on statistical power and to be consistent 
with the criteria proposed by original study. For comparison, we also 
downloaded the single-cell pathology (SCP) subtyping annotation from 
the original study and identified 17 SCP subgroups among high-risk 
patients with cancer. Two SCP subgroups with more than three patients 
were used for the survival analysis. All Kaplan–Meier survival curves 
and corresponding log-rank test P values were computed using the R 
package survival (v.3.2-13).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
This study used eight publicly available datasets (Supplementary 
Table 1), including a mouse spleen CODEX dataset (https://data.men-
deley.com/datasets/zjnpwh8m5b/1), a mouse hypothalamic preop-
tic region MERFISH dataset (https://datadryad.org/stash/dataset/
doi:10.5061/dryad.8t8s248), a mouse visual cortex STARmap data-
set (http://clarityresourcecenter.org/), a human triple-negative 
breast cancer MIBI-TOF dataset (https://mibi-share.ionpath.com), a 
human CRC CODEX dataset (https://data.mendeley.com/datasets/
mpjzbtfgfr/1), a human breast cancer IMC dataset (https://zenodo.
org/record/3518284#.Y2UQ0-xBybg), a human PDAC ST dataset 
(GSE111672) and a human DLPFC Visium dataset (http://research.libd.
org/spatialLIBD/).

Code availability
The software package implementing the CytoCommunity algorithm 
has been deposited at GitHub (https://github.com/tanlabcode/Cyto-
Community) and Zenodo (https://www.zenodo.org/record/8335454)53.
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Extended Data Fig. 1 | Robustness assessment of CytoCommunity 
performance using different values of K in K-nearest-neighbor graphs.  
(a) Assessment using the mouse hypothalamic preoptic region MERFISH dataset. 
(b) Assessment using the human triple-negative breast cancer (TNBC) MIBI-
TOF dataset. Robustness score is defined as the average Jaccard index between 
original TCN partitions and new TCN partitions generated using different  

K values. SRM, square root of the average number of cells (SRM) across images 
in the dataset. K values were varied around the SRM values. Each black point 
represents the robustness performance on a given single-cell spatial image  
(n = 5 for the MERFISH dataset and n = 34 for the MIBI-TOF dataset). Blue 
horizontal bars represent the means of each group.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Effect of number of models of the ensemble procedure 
on the performance of CytoCommunity. (a-c) Unsupervised CytoCommunity 
was applied to the mouse hypothalamic preoptic region MERFISH dataset 
using different number of models learned from the soft TCN assignment 
module. The effect of number of models on the robustness (a) and accuracy 
including Macro-F1 score (b) and adjusted mutual information (AMI) score (c) 
was assessed. Macro-F1 score and AMI score were computed by comparing TCN 
partitions generated using different number of models with manually annotated 
hypothalamic nuclei (Fig. 3b). Robustness score was computed as the average 
Jaccard index between those TCN partitions and new TCN partitions generated 
by additional three replicated experiments. Each black point represents the 

robustness or the accuracy performance on a given MERFISH image (n = 5). (d, e) 
Supervised CytoCommunity was applied to the human TNBC MIBI-TOF dataset 
using different number of models trained based on a 10-fold cross-validation. The 
effect of number of models on the robustness (d) and accuracy (e) was assessed. 
Robustness score was computed the same as before and each black point 
represents the robustness performance on a given compartmentalized or mixed 
tumor image (n = 34). Accuracy performance was evaluated using the fractions of 
neoplastic and immune cells correctly assigned to the neoplastic- and immune-
dominated TCNs. Each black point represents the accuracy performance on a 
given compartmentalized tumor image (n = 15). For all panels, blue horizontal 
bars represent the means of each group with grey dashed lines connecting them.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Robustness assessment of CytoCommunity 
performance using different granularity of annotated cell types. Mouse 
hypothalamic preoptic region MERFISH dataset was used due to the complex 
cell types in this tissue. (a) Cell types and TCNs identified using 9 coarse-grained 
cell type annotations as the input. (b) Cell types and TCNs identified using 15 

fine-grained cell type annotations as the input. Both sets of cell type annotations 
were downloaded from the original study17. (c) Robustness score is defined as the 
average Jaccard index between the two sets of TCNs generated using the two sets 
of cell type annotations.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Performance evaluation using MIBI-TOF data of 
compartmentalized tumors from triple-negative breast cancer patients. 15 
single-cell-resolution images of compartmentalized tumors generated using 
the MIBI-TOF technology. (a) Cells are colored based on 17 cell types annotated 
by the original study19. (b-c) TCNs identified by supervised (b) and unsupervised 
methods (c). (d) Left, cells are colored based on 11 cell types by combining 
similar cell types annotated by the original study into a single major cell type. 

Specifically, two neoplastic cell types are combined into one neoplastic cell type. 
Four T cell subtypes are combined into a single T cell cluster. Two mixed cell 
type clusters and macrophages are combined into a single monocyte cluster. 
Right, TCNs identified by CytoCommunity. (e) Robustness score is defined as the 
average Jaccard index between the two sets of TCNs generated using the two sets 
of cell type annotations.
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Extended Data Fig. 5 | Performance evaluation using MIBI-TOF data of mixed 
tumors from triple-negative breast cancer patients. 19 single-cell-resolution 
images of mixed tumors generated using the MIBI-TOF technology. (a) Cells 
are colored based on 17 cell types annotated by the original study19. (b-c) TCNs 

identified by supervised (b) and unsupervised methods (c). (d) Left, cells are 
colored based on 11 cell types. Right, TCNs identified by CytoCommunity. (e) 
Robustness score is defined as the average Jaccard index between the two sets of 
TCNs generated using the two sets of cell type annotations.
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Extended Data Fig. 6 | Analysis of TCNs in colorectal cancer identified by the 
original study3. (a) Heatmaps of average enrichment scores of each cell type 
in each identified TCN across all tissue sections of CLR and DII patient samples. 
Cell type enrichment score is defined as -log10(P-value). P-values were computed 

using hypergeometric tests and adjusted using Benjamini-Hochberg method. (b) 
Spearman’s rank correlation coefficient (Corr) of average cell type enrichment 
scores in all identified TCNs between CLR and DII patients and the two-sided 
Spearman’s rho test p-value are shown.
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Extended Data Fig. 7 | Representative TCNs specific to low- and high-risk 
colorectal cancer patients. (a) Comparison of B cell enrichment scores in TCN-1 
between CLR patients and DII patients (n = 17 and 18 for the CLR and DII groups, 
respectively). (b) Cell type and TCN maps of a representative CLR patient image 
with B cells enriched in TCN-1. (c) Comparison of granulocyte enrichment scores 
in TCN-2 between CLR patients and DII patients (n = 17 and 18 for the CLR and DII 
groups, respectively). (d) Cell type and TCN maps of a representative DII patient 

image with granulocytes enriched in TCN-2. (e) Comparison of neoplastic cell 
enrichment scores in all TCNs between CLR patients and DII patients (n = 136 
and 144 for the CLR and DII groups, respectively). (f ) Cell type and TCN maps of 
a representative DII patient image with neoplastic cells enriched in TCN-6. In all 
jitter plots, horizontal bars represent the means across data points. P-values were 
computed using one-sided t-tests. For clarity, cells of studied types and TCNs are 
shown in larger size without transparency in all cell type and TCN maps.
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Extended Data Fig. 8 | Analysis of TCNs in breast cancer identified by the 
original study12. (a) Heatmaps of average enrichment scores of each cell type 
in each identified TCN across all tissue sections of low-risk and high-risk patient 
samples. Cell type enrichment score is defined as -log10(P-value). P-values were 

computed using hypergeometric tests and adjusted using Benjamini-Hochberg 
method. (b) Spearman’s rank correlation coefficient (Corr) of average cell type 
enrichment scores in all identified TCNs between low-risk and high-risk patients 
and the two-sided Spearman’s rho test p-value are shown.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-02124-2

Extended Data Fig. 9 | Representative TCNs specific to low- and high-risk 
breast cancer patients. (a) Comparison of CK+ HRhi neoplastic cell enrichment 
scores in TCN-2 or TCN-5 between low-risk and high-risk patients (n = 68 and 90 
for the low- and high-risk groups, respectively). (b) Cell type and TCN maps of a 
representative low-risk patient with CK+ HRhi neoplastic cells enriched in TCN-5. 
(c) Comparison of endothelial cell and Vimentinhi fibroblast enrichment scores 
in TCN-4 between low-risk and high-risk patients (n = 34 and 45 for the low- and 

high-risk groups, respectively). (d) Cell type and TCN maps of a representative 
high-risk patient with both endothelial cell and Vimentinhi fibroblast enriched in 
TCN-4. In all jitter plots, horizontal bars represent the means across data points. 
P-values were computed using one-sided t-tests. For clarity, discussed cell types 
and TCNs are shown in larger size without transparency in all cell type and TCN 
maps.
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Extended Data Fig. 10 | Prognosis ability of TCNs identified in breast cancer. 
(a) Kaplan-Meier survival curves of high-risk breast cancer patients who were 
clustered into three subgroups based on cell type enrichment scores of TCNs. 
Subgroup 3 was removed from the survival analysis since it does not contain 
more than three patients. (b) Kaplan-Meier survival curves of high-risk breast 
cancer patients who were assigned into 18 single-cell pathology (SCP) subgroups 
by the original study12. Two SCP subgroups with more than three patients were 
used for survival analysis. P-values between survival curves were computed using 
the log-rank test. (c) Comparison of four cell type (including small elongated 

fibroblasts, Vimentinhi fibroblasts, T cells and macrophages) enrichment scores 
in TCN-4 between high-risk patients (points) in the TCN-induced subgroup 1 
and subgroup 2 (shown in panel a). Horizontal bars represent the means across 
patients. P-value was computed using one-sided t-test (n = 40 and 3 for the TCN-
induced subgroup 1 and subgroup 2, respectively). (d) Cell type and TCN maps of 
three patients in TCN-induced subgroup 2 with the four cell types (shown in panel 
c) significantly enriched in TCN-4. For clarity, cells of studied types and TCNs are 
shown in larger size without transparency in all cell type and TCN maps.
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