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Uniform quantification of single-nucleus 
ATAC-seq data with Paired-Insertion 
Counting (PIC) and a model-based insertion 
rate estimator

Zhen Miao    1,2 & Junhyong Kim    1,2 

Existing approaches to scoring single-nucleus assay for 
transposase-accessible chromatin with sequencing (snATAC-seq) feature 
matrices from sequencing reads are inconsistent, affecting downstream 
analyses and displaying artifacts. We show that, even with sparse single-cell 
data, quantitative counts are informative for estimating the regulatory state 
of a cell, which calls for a consistent treatment. We propose Paired-Insertion 
Counting as a uniform method for snATAC-seq feature characterization and 
provide a probability model for inferring latent insertion dynamics from 
snATAC-seq count matrices.

snATAC-seq assays open chromatin profiles of individual cells by 
amplifying genomic fragments between pairs of transposon inserts. 
The first step of ATAC-seq analysis, after choosing bins or peaks as 
region of interest (ROI), is to assign the feature counts based on either 
the number of fragments that overlap with an ROI (fragment-based 
counting; for example, Signac1 and snapATAC2) or the number of 
insertions (insertion-based counting; for example, 10× Cell Ranger 
ATAC3 and ArchR4). After feature counting, most methods convert the 
counts into a binary state of ‘open’ or ‘closed’2,5–8, while others retain 
quantitative count information, implying that single-nucleus assays 
might contain quantitative information on nucleosome density4,9,10. 
Unfortunately, as shown below, these different approaches to count-
ing snATAC-seq peaks/bins lead to inconsistent quantification and 
downstream results (Fig. 1a,b), which is evident from the histograms 
of counts for fragment-based or insertion-based counting applied to 
the same dataset11 (Fig. 1c–f and Supplementary Table 1).

In a standard ATAC-seq experiment, two Tn5 insertions with an 
appropriate adapter configuration are required to form one ampli-
con fragment; thus the unit of observation is pairs of insertions. With 
insertion-based counting, there is an artifact of depleted odd num-
bers (Fig. 1c–f). Odd number of insertions arise only when fragments 
span across peak boundaries, artificially breaking up paired inser-
tions of a fragment. Another issue of insertion-based counting occurs 

when two adjacent fragments share an insertion end. In the current 
insertion-based counting workflow, each read is processed indepen-
dently, and the information of shared insertion is ignored and counted 
twice (Supplementary Note 1). Fragment-based counting also has prob-
lems of false positives when long fragments arise from two insertions 
that are spaced widely apart (for example, cell 1 in Fig. 1a). Such long 
fragments may indicate accessibility of two independent regulatory 
regions (on both ends), but it is unclear whether the region in between 
these loci is also accessible. This issue is particularly acute for special-
ized technologies like single-cell transposome hypersensitive sites 
sequencing (scTHS-seq)12,13 and scNanoATAC-seq14. Consequently, 
current fragment-based counting methods may lead to false positives 
counts when insertions are distantly outside the peak/bin15,16. The 
discrepancy is more pronounced when features are set to fixed-size 
bins, as the region boundaries are arbitrary.

The different counting strategies can result in discrepancies in 
downstream analysis. As an example, we analyzed a P0 mouse kid-
ney snATAC-seq dataset17 for differentially accessible region (DAR) 
identification with ArchR4 and Signac1 (Methods). Using fragment- or 
insertion-based counting or binary input, we found that, for the same 
input data, up to 4.7% of the peaks in the DAR set are inconsistent (Sup-
plementary Fig. 1a,b). Example peaks with inconsistent DAR results are 
shown where long-spanning fragments result in counts of zero with 
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as one (pair); if only one insertion is within the interval and the other 
is outside the interval, also count one (pair).

PIC is consistent with the fact that all fragments have two inser-
tions. It prevents counting a fragment when its ends are both outside 
the peak/bin interval. PIC is also valid for other single-cell open chro-
matin assays, including sci-ATAC-seq19, dscATAC-seq20, scTHS-seq13 
and scNanoATAC-seq14.

To make optimal use of the quantitative information in snATAC-seq 
data, we propose a probability model that we call ‘PIC model’ to incor-
porate the molecular process of snATAC-seq fragment generation. We 
assume that a genomic interval has uniform per base pair insertion 
probability, resulting in Poisson counting events. But, given a Poisson 
distribution of insertions, the sequenced fragments are a subset of 
the insertions because: (1) inserted transposons must match in primer 
configurations21 and (2) there is a size selection on the fragments due 
to constraints in amplification, library construction and alignment. 
These two factors contribute to the higher sparsity of snATAC-seq data 
than those expected from the Poisson model.

Let X  be a random variable representing the number of insertions 
in a given peak and W  be a random variable representing PCR- 
amplifiable fragment. From the assumption of Poisson insertions,  
we have
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where λ is the rate parameter in the Poisson distribution representing 
the average rate of insertions within a peak region. Adding the con-
straint of experimental size selection, the probability of observing  
k fragments is:
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where WS is the random variable for size-selected fragments, s1 is the 
minimum size of fragment, s2 is the maximum size of fragment and Lp 
is the length of the peak. The hyperparameters s1 and s2 are estimated 
empirically from data as described in Methods. We call the distribu-
tion specified by equation (2) ‘size-filtered signed Poisson (ssPoisson)’ 
distribution. Our theoretical ssPoisson distribution well approximates 
distributions of simulated ATAC-seq experiments (Supplementary 
Table 3). Using simulated data, we found that our model provides a 
better estimate the true insertion rates than the Poisson model (Fig. 2e).

With estimated parameters, we developed a generalized likelihood 
ratio test based on PIC model for detecting DARs between different 
groups of cells (Methods). To evaluate the performance of this method, 
we conducted data simulation to test the type I error and power across 
a wide range of true insertion rates and capturing rates. Here three 

insertion counting versus one with fragment counting (Fig. 1h and 
Supplementary Fig. 1c,d).

Due to these discrepancies, data matrices processed with differ-
ent quantification approaches cannot be combined directly, thereby 
impeding data integration. We compiled 129 recently published data-
sets and found that all three types—fragment count, insertion count 
and binary count (reduction to 0/1)—have been employed frequently 
for data processing, with certain studies employing more than one 
type (Fig. 1g and Supplementary Table 2). With increasing need for data 
integration and reproducibility in scientific investigations, establishing 
a uniform counting method is a critical need.

If the counts are binarized, the insertion and fragment counting 
are mostly consistent with each other. So, we aimed to determine 
whether snATAC-seq data support quantitative information that would 
be lost with binary counts. We first asked whether more fragments in 
a peak for a single cell indicates higher probability that a randomly 
selected cell of the same type would be in the open state. We first ana-
lyzed a human cell line snATAC-seq dataset4 with insertion-based count-
ing. For each peak, we calculated the relative proportion of cells with 
high-density peaks (no less than two fragments, that is, at least three 
insertions) for each of the ten cell types, and then compared their rank 
order with the rank order of the proportion of cells with accessible 
peaks (for each cell type) by Spearman rank correlation. For human 
cell line data, more than 94.6% peaks showed positive correlation and 
9.4% showed significant correlation after false discovery rate (FDR) 
P value correction (34.5% without FDR correction; Fig. 2a; example 
peaks Fig. 2b and Supplementary Fig. 2a). Consistent results were 
found for other datasets (Supplementary Fig. 2b–d), including the 
sparser sci-ATAC-seq data.

Using multiome data18, we also examined the relationship between 
quantitative snATAC-seq count in promoter regions and the expres-
sion of corresponding genes in the same cell. We compared the gene 
expression levels of genes with a proximal transcript start site (TSS) 
peak insertion count = 1 or 2 (single fragment) against those with a 
count ≥ 3 (more than one fragment) using the Wilcoxon rank sum test. 
We found 199 significant peak–gene pairs after FDR correction, 189 
of which have positive log fold change (Fig. 2c); 67.2% of peak–gene 
pairs showed higher nonzero expression proportion in the group 
with count ≥ 3. Figure 2d and Supplementary Fig. 2e show examples 
of peak–gene pairs where the distribution of RNA expression changes 
monotonically as a function of ATAC counts. Consistent results were 
found for other datasets (Supplementary Fig. 2f–h). In sum, we see 
quantitative information in the sparse snATAC-seq data. Such quanti-
tative information in snATAC-seq data may arise from different level 
of accessibility of one regulatory element, or several subpeaks with 
near-binary accessibility, and our analyses suggest the former to be 
more common (Supplementary Note 2).

Since the direct evidence of open chromatin is at the insertion 
site, snATAC-seq quantification should be based on the insertion site 
but taking into account the problems noted above. Here, we propose 
a simple uniform counting strategy, Paired-Insertion Counting (PIC), 
that corrects for the peak boundary problem (Methods) along with a 
probability model that accounts for shared insertion points.

In PIC, for a given chromosome interval, if the pair of insertions of 
an ATAC-seq fragment are both within the interval, they are counted 

Fig. 1 | Existing counting strategies for snATAC-seq data processing are 
inconsistent. a, Schematic example of relationships between Tn5 insertion 
configuration and sequencing reads vis-à-vis peak location. b, Readout of 
insertion-based or fragment-based counting strategies for the example in a. 
c–f, Histograms of count frequencies with two counting strategies (fragment-
based (c,e) and insertion-based (d,f)) and with peaks (c,d) or 500-bp bins (e,f) as 
features (PBMC-5k data11). The values indicated above the bars represent count 
frequencies (in 107 units) in the data matrix. g, Number of datasets analyzed with 
binary, fragment or insertion matrices among 129 publications from 2020 to 

June 2023. The input matrix is curated from the methods section of the literature 
(Supplementary Table 2). h, Example peak with inconsistent DAR results between 
two counting strategies, from the P0 mouse kidney snATAC-seq dataset17. The 
target peak and an adjacent peak are shown. Fragments were classified into 
on-target fragments, where both counting strategies output nonzero count, and 
long-spanning fragments, where insertion-based counting outputs zero count 
but fragment-based counting outputs nonzero counts. Additional examples are 
shown in Supplementary Fig. 1c,d.
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settings were evaluated: (1) two groups with equal number of cells 
and equal number of up- or downregulated peaks, (2) two groups with 
unequal number of cells and (3) two groups with equal number of cells 
but more upregulated peaks than downregulated peaks (Fig. 2f). Our 
method shows consistently high power while the type I error rates are 
under control; however, Seurat method has strong type I error inflation 
in setting (3) and ArchR has overall lower power. We next conducted 
comparison using the empirical peripheral blood mononuclear cells 
(PBMC) dataset18. We assessed type I error by label randomization and 
power by setting the consensus of all three methods as the (pseudo) 
true differential peak (Methods). The PIC model-based test showed an 
increase of 4.5% and 13.1% in the identification of DARs compared with 
Seurat and ArchR, respectively. In the setting of unbalanced subsam-
ples, the distinction is more pronounced, with our test detecting 77.8% 
and 178.0% more DARs than Seurat and ArchR, respectively (Fig. 2g). PIC 
model is especially more powerful for peaks with overall low insertion 
rates, as expected from the theoretical distribution (Fig. 2h). Additional 
analysis of kidney P0 datasets17 and human brain data with SNARE-seq2 
protocol22 obtained similar results (Supplementary Figs. 3–5).  
Assessment of binding motifs found within DAR peaks resulted in 
discovery of regulatory dynamics consistent with multiomics gene 
expression and the literature (Supplementary Note 3).

In addition to DAR, we explored the effect of quantification 
approaches on other downstream inferences (Supplementary Note 4)  
and found PIC framework improves inferences for ROI where the reads 
are quantitative.

Beyond our model, chromatin state and Tn5 insertion probability 
is likely to be governed by more complex molecular factors as shown in 
bulk ATAC-seq studies15 and aggregates of single cells23. Ideal inference 
of underlying chromatin accessibility states might benefit from a more 
comprehensive treatment of the biochemical factors and resulting 
transposon insertion patterns23–25. Nevertheless, there is a compelling 
need to summarize ATAC-seq data with a consistent procedure that 
allows broad downstream analyses. Addressing this, PIC provides a 
consistent approach, enabling consistent quantitative treatment of 
snATAC-seq data with a high-powered model-based DAR test.

We have made PIC modules publicly available (https://github. 
com/Zhen-Miao/PICsnATAC) and they can be incorporated easily into  
standard pipelines1,4.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
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Fig. 2 | snATAC-seq data contain quantitative information of cellular states. 
a, Histogram of Spearman correlation coefficients between the probability 
of accessible peak in each group and the relative frequency of high-density 
insertion counts in human cell line data. b, Example peak with correlated open 
probabilities and relative frequency of peaks with high-density insertion across 
cell types in the human cell line data. c, Volcano plot showing the normalized 
gene expression levels between cells with TSS peak insertion counts equal to 1 or 
2 and cells with high-density TSS peak insertion counts in PBMC data. Two-sided 
Wilcoxon rank sum test was used for the comparison and FDR correction was 
used to adjust for multiple comparisons. logFC, log fold change. The horizontal 
dashed line represents the (FDR corrected) P value of 0.05. d, An example of 
peak–gene pair where normalized gene expression levels are related to the TSS 
peak insertion counts in PBMC data; n = 10,538 cells were examined over one 
independent experiment. Center line in box plot represents median and the 
lower and upper hinges correspond to the first and third quartiles. The upper 
or lower whisker corresponds to 1.5 times the interquartile range or the largest/

smallest values. e, Relationship between estimated insertion rate with simulation 
data and the true insertion rate, under size-filtered signed Poisson (ssPoisson) or 
standard Poisson distribution. Paired-Insertion counts from n = 500 cells were 
simulated; error bars represent the s.d. of the parameter estimation across five 
rounds of simulation. f, Power and type I error of PIC model, Seurat and ArchR 
DAR tests under three different simulation settings (see main text). Paired-
Insertion counts from n = 500 cells in each group were simulated; error bars 
represent the s.d. of the parameter estimation across five rounds of simulation. 
The horizontal dashed line represents the nominal set significance value of 0.05. 
Methods that effectively control type 1 error should be above the line. g, Power 
of PIC model, Seurat and ArchR DAR tests under different settings with PBMC 
multiome data. 500_unbal represents the condition when 500 cells in each group 
are sampled, but with different mean capturing rate; error bars represent the 
s.d. of the parameter estimation across five rounds of simulation. h, Power of 
PIC model, Seurat and ArchR DAR tests for different rank percentiles of insertion 
rates for the full PBMC dataset.
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Methods
Data quality control and preprocessing
For all datasets, we removed peaks with extensive instances of very high 
counts (≥7 with fragment-based counting or ≥14 with insertion-based 
counting) across the entire dataset, as these peaks could be associated 
with repetitive or potentially uncharacterized blacklist regions2. We 
removed potential doublet cells based on the number of regions with 
per base coverage greater than three26. We also removed fragments with 
interval length smaller than ten that are likely to be misalignment. The 
data sparsity, median sequencing depth and other metrics are reported 
in Supplementary Table 4.

Processing 10x Genomics PBMC snATAC-seq data (5k)
The 10x Genomics PBMC snATAC-seq data (ID: atac_pbmc_5k_nextgem) 
were used to compare the count distribution obtained from different 
counting methods. The peak ranges and insertion-based peak-by-cell 
count matrices were obtained using the Cell Ranger ATAC pipeline 
(v.2.0.0) from 10x Genomics. Bins that are accessible in fewer than 
ten cells were filtered. The insertion-based bin-by-cell matrix was 
constructed by ArchR4 and the fragment-based matrix was constructed 
using Signac1.

DAR detection with Seurat or ArchR
We used the P0 mouse kidney data to study the effects of different input 
on DAR analysis. The peak information as well as cell type annotations 
were obtained from the original publication17. The peak-by-cell matrix 
was then constructed with both insertion-based and fragment-based 
approaches. The count correspondence is summarized in Supplemen-
tary Table 5. We then focused on the two most abundant cell types—
nephron progenitor cells and stroma cells—for the DAR analysis. Two 
approaches, Signac1 and ArchR4, were used to identify DARs. Specifically, 
Signac used logistic regression with a likelihood ratio test to identify 
DARs, a framework proposed by Ntranos et al.27. By using the group label 
as dependent variable, read count as independent variable and sequenc-
ing depth as a covariate, Signac identified peaks significantly predictive 
(different) of the two groups while adjusting for individual sequencing 
depth disparity. ArchR identified a subset of cells within each group so 
that the numbers of fragments in the two subsets were comparable, and 
then the Wilcoxon rank sum test was conducted on these subsets to com-
pute DARs. By default, ArchR selects, at most, 500 cells from each group 
(‘maxCells = 500’), but here we set the value to 5,000 so all matched cells 
were selected (for fair comparison of power). For both methods, peaks 
with FDR-adjusted P value ≤0.05 were regarded as DARs.

Zero-adjusted open probability estimation
We define ‘open probability’ as the probability that a given genomic 
region is accessible for a randomly sampled cell of a given cell type. 
Note that this open probability does not measure the degree of open-
ness, but rather the probability of capturing a cell in an open state 
accessible to the ATAC-seq assay. This probability will be governed 
by the temporal dynamics of nucleosome-dependent accessibility of 
that region for that cell type. Typical snATAC-seq data have missing 
data issues and are very sparse. To unbiasedly estimate the chromatin 
open probability in each cell type, we considered two sources of zeros 
in the snATAC-seq data: biological inaccessibility and technical failure 
to capture open state in sequencing data. We developed the following 
model to estimate the true open proportion.

Let Zc
g = (Zc

g, 1,… ,Zc
g, J)

T  be a J × 1 binary vector representing the 
open chromatin status of cell c  that depends on the group label g   
(for example, cell type label). Each element in the vector Zc

g,j ∈ {1,0} 
represents the accessibility of the jth genomic region (for example, 
bin or peak), where the value 1 indicates open and 0 indicates closed. 
We consider Zc

g,j  to be sampled from a Bernoulli distribution para
meterized by pg, j, the probability that a random cell of g type will be 
open for the jth region:

Zc
g, j ∼ Bernoulli (pg, j)

In practice, the true open chromatin status Z of cell c is unob-
served, since, due to disparity of enzyme activity and sequencing depth 
across cells, an open state may be masked due to missing data. We 
introduce Tc

d  as a J × 1 binary vector representing the capture state of 
different genomic regions in cell c. This status depends on the sequenc-
ing depth d for cell c. Additional experimental factors and the particular 
chromosomal region may also affect the status, which we ignore here. 
We also drop index d since it is cell specific. We assume:

Tc ∼ Bernoulli(qc)

for some parameter vector qc that is a function of the cell.
Let Y c

g  be a random vector representing the observed chromatin 
status of cell c. Ycg,j ∈ {0, 1}, where 1 indicates open and 0 indicates closed. 
Then Yc

g = Zc
g ⊗ Tc

d  where ⊗ denotes the element-wise direct product 
(Hadamard product).

For a given dataset y, we set the loss function log L(p,q|y) as

log L(p,q|y) =
J
∑
j=1

C
∑
c=1
[ yjc log(pjqc) + (1 − yjc) log(1 − pjqc)]

where the group label g is omitted. To compute both estimators for p 
and q, we implemented a coordinate descent algorithm. This iteration 
continues until convergence:

	(1)	 Start with an initial estimate of p(0)

	(2)	 For t = 1, 2,…

	(a)	Compute q(t)c  by:

q(t)c =
∑J

j=1yjc

∑J
j=1p

(t−1)
j

	(b)	Update p(t)j  by moment estimator:

p(t)c =
∑C

c=1yjc
∑C

c=1q
(t)
c

Count frequency and open probability in human cell line data
The human cell line data matrix was constructed by the insertion- 
based counting method, and the maximum count was capped at 4 by 
the ArchR pipeline. We note that such a ceiling step does not affect 
our analysis. The open probability for each cell type, pg, was estimated 
with the method described above. Since the counts 2 and 1 represent 
mainly the boundary phasing issue, we estimated the probability 
of observing a count ≥3, given the observation of a nonzero count, 
Pg[y ≥ 3│y > 0]

Pg [ y ≥ 3 | y > 0] = f3 + f4
f1 + f2 + f3 + f4

where fn represents the frequency of count n.
Since some peaks do not have counts that are >3, we only retained 

peaks with ≥5 counts >3, and 46,499 peaks were left. The Spearman cor-
relation was computed between the open probability and frequency of 
counts >3. In addition, we also computed the probability of observing 
a count = 2 given the count being 1 or 2, Pg [y = 2│y > 0]

Pg [y = 2 | y = 1 or 2] = f2
f1 + f2

and its correlation with open probability.
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Count frequency and open probability in P0 mouse kidney data
We retained cell types with more than 600 cells to get accurate estima-
tions of the parameters, which resulted in 9,286 cells across seven cell 
types. After quality control, we retained 256,574 peaks for the analysis. 
The count is not capped for this dataset. Within a cell type, the prob-
ability of observing counts ≥3, given the observation of a nonzero 
count, is estimated by

Pg [ y ≥ 3 | y > 0] = f3 +⋯+ fn
f1 + f2 + f3 +⋯+ fn

Count frequency and open probability in human uterus 
sci-ATAC-seq data
Since the sci-ATAC-seq dataset is much smaller and sparser, we used a 
more lenient criteria when conducting filtering. We retained cell types 
with more than 50 cells, which resulted in eight cell types. We retained 
peaks with at least five counts >3, and 11,367 peaks were left. Analysis 
results for this dataset are shown in Supplementary Fig. 2c. We also 
tested a range of different filtering criteria, and consistent outcomes 
were observed.

Count frequency and open probability in dscATAC-seq data
For the mouse brain dscATAC-seq data, two batches were included in 
the study (batch 1 and batch 2). In total, we obtained a data matrix of 
454,047 peaks across 7,109 cells. We retained cell types with more than 
200 cells, resulted in ten cell types. We retained peaks with at least ten 
counts >3, and 311,543 peaks were left. Analysis results for this dataset 
are shown in Supplementary Fig. 2d. We also tested a range of different 
filtering criteria, and consistent outcomes were observed.

Gene expression and TSS insertion counts in PBMC  
multiome data
We first retained peaks that overlap with ±100 bp region around the 
TSS and with at least five instances of counts ≥2. Then, we linked 
these peaks with their associated genes to form peak–gene pairs. 
The peak–gene pairs were then filtered by requiring the nonzero 
expression proportion with chromatin insertion counts >0 to be 
at least 10%. A total of 3,387 such peak–gene pairs were kept for the 
downstream analysis.

For each peak–gene pair, we grouped the normalized gene expres-
sion levels by the insertion count in the TSS peak. Mean expression level 
and nonzero expression proportion were calculated for each group. 
Two-sided Wilcoxon rank sum test was then conducted between the 
two groups and log fold change was computed by comparing the mean 
expression differences.

Gene expression and TSS insertion counts in BMMC data
The bone marrow mononuclear cells (BMMC) dataset28 was collected 
across several institutes and several donors with batch effect. To pre-
vent batch effect, we focused on one donor sample that was collected at 
one institute (donor no. 2 collected from institute no. 1). There are 6,740 
cells across several cell types. With the same filtration criteria as above, 
we retained 2,488 peak–gene pairs for our analysis. The same analyses 
as above were conducted and are shown in Supplementary Fig. 2f–h.

PIC counting approach
To construct a cell-by-peak count matrix while preventing the issues 
with fragment-based or insertion-based counting, a PIC counting 
approach is proposed. PIC takes input from the fragment file (of which 
the first four columns should be chromosome, start, end and cell bar-
code), the filtered cell barcodes and a list of ROIs (that is, bins or peaks). 
Briefly, the two insertion loci for every fragment are obtained from the 
fragment file (‘start’ and ‘end’). Then, each insertion locus is mapped 
to the peak region. Such mapping can either assume that only the 

exact insertion location is accessible, the same as in insertion-based 
counting, or assume that a flanking window around insertion location 
is also accessible, as implied in MACS2-based peaks (usually specified 
as 37 bp or 75 bp). We recommend using the same flanking window 
size so that the quantification step is consistent with the peak calling 
step. If both insertion loci are mapped to the same ROI, we mask one 
of them and count only once.

With the 10x Genomics snATAC-seq assays, there are typically more 
than 20% reads (of PIC) that are greater than or equal to two, suggest-
ing a substantial information loss with binarization. This proportion 
varies in different instruments/sequencing depths and is summarized 
in Supplementary Table 3. Within each single cell, the proportion of 
high-density peaks is a function of the in-peak fragment counts (Sup-
plementary Fig. 6a–d).

For standard snATAC-seq data, PIC may have the drawback that, 
when one insertion is in the peak/bin and the other insertion is far away 
from the first insertion, the evidence is weak that both insertions pro-
vide information on the current peak/bin. However, in most datasets, 
long fragments with one insertion in the peak are rare and unlikely to 
greatly distort the data (Supplementary Fig. 7a–c). In general, when 
the peak intervals are large, all three methods will have nearly identi-
cal counts (after a twofold correction factor). However, when the peak 
intervals are small, say within the common range of fragment or bin 
lengths, or within the size range of estimated cis-regulatory elements, 
the three methods will diverge, and we propose that PIC will be most 
logically consistent and provide better quantitative information for 
downstream analyses.

For large datasets, PIC can also load the fragment files dynamically, 
enabled by Rsamtools29. Deduplication option is also provided, and is 
especially useful for dscATAC-seq data3.

PIC model—size selection
In the ssPoisson model, the hyperparameters s1 and s2 can be esti-
mated using data obtained from either the mapped reads themselves 
or Bioanalyzer traces. For example, in Supplementary Fig. 7, we pre-
sented the fragment length distribution for several datasets analyzed 
in the study. A key observation is the scarcity of fragments longer 
than 600 bp. Because ATAC fragments can encompass one or more 
nucleosomes, their length distribution is expected to exhibit local 
spikes at multiples of 200 bp (which is evident in the bulk assays). 
Therefore, the lack of a local spike in the read distribution around 
600 bp suggests size selection, most likely attributed to the library 
preparation process. Thus, the default s2 value is set to 600 bp in our 
program. The hyperparameter s1, which stands for the lower limit of 
fragment length, is to ensure that the fragment should be amplifiable 
and mappable to the genome. The Cell Ranger ATAC report summary 
considers fragments longer than 25 bp (after the 9 bp correction of 
insertion overhang), and we set this as the default s1 value in the PIC 
framework. For specialized assays such as the scNanoATAC assay, long 
ATAC fragments are enriched for nanopore long-read sequencing; 
therefore s2 values should be adjusted. Overall, the distribution is more 
impacted by the s1 parameter than the s2 parameter (see the form of 
equation (2) in main text). For example, if s1 is set high, the distribu-
tion will diverge for larger expected number of insertions (because it 
will prevent close insertions). However, s1 should be set by the library 
protocol and alignments with the default value of 25 being a reasonable 
estimate. The effect of s1 and s2 on the expected read counts is shown 
in Supplementary Fig. 4d–e.

PIC model—mean-variance relationship under condition 1
From the equation (1) (signed Poisson distribution), we can obtain the 
analytical expression for mean and variance

E [W] = λ − 1 + e−λ
2 (3)
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Var (W) = 2λ + 2e−λ − 2λe−λ − e−2λ − 1
4 (4)

where the random variable W counts pairs of insertions. Equations (3) 
and (4) shows that the requirement for correct pair of primers results 
in a process with lower mean than the Poisson process, and the variance 
is larger than the mean (Supplementary Fig. 8a). We note that the vari-
ance can be larger or smaller than the mean in ssPoisson distribution 
(see Supplementary Table 3 for the simulation).

PIC model—diploid cells
For diploid cells, we use Ws1 and Ws2 to denote the observed PIC count 
in two alleles, with insertion rates X1 and X2, respectively, and 
W′

s = Ws1 +Ws2 to denote the total observed PIC count in a cell. The Tn5 
insertion events at either allele can be viewed as independent to one 
another, so we have:

P (W′
s = r) = ∑

r

k=0 [P (Ws1 = k) + P (Ws2 = r − k)] (5)

Usually, we do not have the allele-specific fragment information 
but, under assumption of the same insertion rate for the two alleles, 
we can still estimate the rate parameter with moment estimator or 
maximum likelihood estimator, limiting equation (2) to finite terms.

PIC model—insertion rate estimation
Assume we have a group of cells within one cell type (that is, they share 
the same underlying insertion rate for each peak), we can estimate 
the insertion rate with moment estimator or maximum likelihood 
estimator. Denote the observed PIC count after data missing as Wo, 
we have:

P (Wo = t) =
∞
∑
k=t

[(
k

t
) (qi)

t(1 − qi)
k−tP (W′

s = k)] (6)

E [Wo] =
∞
∑
t=1

tP (Wo = t) = qi

∞
∑
k=1

(kP (Ws = k)) = qiE[Ws] (7)

where W′
s is the (theoretical) PIC count under condition 1 and 2, speci-

fied in equation (5), and qi is the capturing rate of cell  estimated using 
our estimation approach. Each term of the summation in equation (2) 
is a power law decreasing quantity; therefore, we approximate the 
expectation over a finite number of terms. Assume the total number 
of cells is c, their observed fragment counts are {w1,w2,… ,wc}, and the 
cell-specific capturing rates are {q1,q2,… ,qc}, missing-corrected mean 
PIC count is then ̄w̄ = (∑c

i=1wi/qi)/c . By taking the inverse of equation 
(7), we obtain the moment estimator of insertion rate, λ̂. To obtain the 
maximum likelihood estimator (MLE), λMLE, we can use numerical 
optimization to obtain the maxima of the log likelihood function, 
LL(λ|wi,qi):

LL(λ|wi,qi) =
c
∑
i=1

log (Pλ (Wo = wi)) (8)

PIC model—statistical test for DARs
Assume we have two cell types indexed by {1,2,…,c1} and {c1 + 1, c1 + 2,…, 
c1 + c2}, here we propose a generalized likelihood ratio test for detecting 
peaks with different underlying insertion rate.

H0: the insertion rates for the two groups are identical.
H1: the insertion rates for the two groups are different.
We use M0: λ̂c1 = λ̂c2 = λ̂ to denote model under H0, and M1: λ̂c1 ≠ λ̂c2 

to denote model under H1.
Log likelihoods:

LLM0 =
c1+c2
∑
i=1

log (Pλ̂ (Wo = wi)) (9)

LLM1 =
c1
∑
i=1

log (Pλ̂c1
(Wo = wi)) +

c1+c2
∑

i=c1+1
log (Pλ̂c2

(Wo = wi)) (10)

where λ̂ is the estimated latent insertion rate of the two groups of cells 
combined, and λ̂1 and λ̂2 are the estimated latent insertion rate for each 
group.

The likelihood ratio test statistic is defined by

χ2 = −2 (LLM0 − LLM1 ) (11)

with 1 d.f. We note that calculating the MLE for ssPoisson can be com-
puter intensive and time consuming, given the distribution’s depend-
ency on cell-specific capturing rate and peak width.

Comparing insertion rate estimators through simulation
We used a Bernoulli model to simulate insertion locations with prob-
ability of insertion being λ/Lp, where λ is a given insertion rate and Lp 
is the length of peak, specified as 500 bp in our simulation. For each 
insertion, we then simulated the primer configuration of the Tn5 dimer. 
Fragments with the viable primer configuration on both ends and with 
the amplifiable/mappable length were our final simulated PIC counts. 
With the counts, we used ssPoisson and Poisson distribution (after a 
twofold correction) to estimate the insertion rates across 500 cells. 
Examples of probability mass functions for Poisson and ssPoisson 
distributions are shown in Supplementary Fig. 8b.

Type I error and power of different methods through 
simulation
We simulated a wide range of insertion rates, from 0.05 to 2.5 (per peak) 
for the evaluation. We simulated different level of log fold changes 
to be ±0.1, 0.15, 0.2 and 0.25 for the two groups. A total of 6,000 DAR 
peaks were generated with of combinations insertion rates and log fold 
change. The data were simulated under three settings:

	(1)	 500 cells in each group, 5,000 non-DAR peaks and 6,000 DAR 
peaks with equal number of positive and negative log fold 
changes

	(2)	 500 cells in one group and 200 cells in another group, 5,000 
non-DAR peaks and 6,000 DAR peaks with equal number of 
positive and negative log fold changes

	(3)	 500 cells in each group, 5,000 non-DAR peaks, 2,000 DAR 
peaks with positive log fold change and 4,000 DAR peaks with 
negative log fold changes

Power comparison in real data
We used label permutation to establish a new null critical value for each 
method. Specifically, each cell received a random cell type label and 
DAR is conducted between the two groups using the new label. P values 
from the permutations were obtained and the fifth rank percentile was 
used as the correct critical value for each method. Since we do not know 
the true DAR set, we defined the pseudotrue DAR peaks as the union 
DAR set of the three methods, using their corresponding new critical 
values. Power for each method is then calculated by the number of DARs 
detected divided by the number of pseudotrue DARs.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All snATAC-seq datasets used in this study were obtained from public 
repositories with the following accession numbers: mouse kidney 
data17 (GEO accession number GSE157079), human cell line data4 (GEO 
accession number GSE162690), human BMMC data28 (GEO accession 
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number GSE194122), mouse brain dscATAC-seq data20 (GEO accession 
number GSE123581), human brain scTHS-seq data13 (GEO accession 
number GSE97942), human adult sci-ATAC-seq data30 (GEO accession 
number GSE184462), human brain SNARE-seq2 data22 (Neuroscience 
Multi-omics Archive, RRID SCR_016152). We downloaded the 10x Genom-
ics human PBMC data (including an snATAC-seq and an sn-multiome 
dataset18) from the 10x Genomics website (https://www.10xgenomics. 
com/resources/datasets). The list of enhancers in the blood sample 
was obtained from TRIPOD study31 (PMID 36055233), which include 
three queried databases: EnhancerAtlas v.2.0 (ref. 32, http://www. 
enhanceratlas.org), FANTOM5 (ref. 33, https://fantom.gsc.riken.jp/5/)  
and 4DGenome (ref. 34, https://bioinfo.vanderbilt.edu/AE/HACER/).  
We downloaded the GTEx whole blood eQTL summary statistics (v.8) 
from the GTEx Portal35 (dbGaP Accession phs000424.v8.p2).

Code availability
All codes used in this project including the PIC algorithm are in the 
GitHub repository https://github.com/Zhen-Miao/PICsnATAC and 
Zenodo36.
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