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System-wide analysis of RNA and protein 
subcellular localization dynamics

Eneko Villanueva    1,5, Tom Smith    1,2,5, Mariavittoria Pizzinga    2,3,5, 
Mohamed Elzek2, Rayner M. L. Queiroz1, Robert F. Harvey    2, 
Lisa M. Breckels    1, Oliver M. Crook    4, Mie Monti2, Veronica Dezi2, 
Anne E. Willis    2   & Kathryn S. Lilley    1 

Although the subcellular dynamics of RNA and proteins are key 
determinants of cell homeostasis, their characterization is still challenging. 
Here we present an integrative framework to simultaneously interrogate 
the dynamics of the transcriptome and proteome at subcellular resolution 
by combining two methods: localization of RNA (LoRNA) and a streamlined 
density-based localization of proteins by isotope tagging (dLOPIT) to 
map RNA and protein to organelles (nucleus, endoplasmic reticulum and 
mitochondria) and membraneless compartments (cytosol, nucleolus and 
cytosolic granules). Interrogating all RNA subcellular locations at once 
enables system-wide quantification of the proportional distribution of 
RNA. We obtain a cell-wide overview of localization dynamics for 31,839 
transcripts and 5,314 proteins during the unfolded protein response, 
revealing that endoplasmic reticulum-localized transcripts are more 
efficiently recruited to cytosolic granules than cytosolic RNAs, and that the 
translation initiation factor eIF3d is key to sustaining cytoskeletal function. 
Overall, we provide the most comprehensive overview so far of RNA and 
protein subcellular localization dynamics.

Compartmentalization of eukaryotic cells and the dynamic distribution 
of macromolecules such as RNA and proteins across these compart-
ments are vital for cell function. The regulation of protein produc-
tion involves spatially restricted RNA–protein interactions to regulate 
post-transcriptional processes1, including the creation of translation 
‘hotspots’ so that newly synthesized proteins can act at precise loca-
tions without disturbing cellular protein homeostasis2. The ability to 
determine RNA and proteins subcellular localization, and how they 
relocalize upon perturbation, is thus key to understanding cellular 
homeostasis3,4. While cell-wide methods to study protein localization 
are well established5–7, equivalent methods to study RNA subcellular 
localization are limited.

The localization of a single RNA transcript can be determined 
using single molecule fluorescence in situ hybridization (smFISH)8. 

Alternatively, the RNA content of specific niches can be explored using 
proximity-dependent biotinylation techniques, such as APEX-RIP9 
and APEX-seq10,11, or by multiplexing smFISH in combination with 
immunofluorescence (IF) for a localization marker12. However, all these 
approaches are restricted to the interrogation of a single subcellular 
compartment per experiment and thus cannot provide a cell-wide view 
of RNA localization. Combining multiple APEX experiments to generate 
a more complete understanding of RNA localization is time-consuming 
and does not quantify the proportion of RNAs at each localization. 
Previous attempts to determine the complete localization of RNA in a 
cell-wide manner have been restricted by technical limitations, includ-
ing localization-independent RNA clustering and length-dependent 
RNA localization biases13–15. Therefore, there is a need to develop 
robust methods to obtain comprehensive RNA subcellular localization 
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upwards in the density gradient, while cytosolic RNA–protein com-
plexes migrated downwards, allowing free RNA and organelles to reach 
equilibrium faster and avoiding cross-contamination between cellular 
compartments (Supplementary Fig. 1a). After 16 h of centrifugation at 
100,000g, three distinct bands were observed in the gradient, which 
were enriched in (1) ER and mitochondria, (2) nucleus and (3) cytosolic 
proteins, respectively (Supplementary Fig. 1b,c).

To determine whether this subcellular fractionation approach 
allowed analysis of the subcellular localization of RNA, we performed 
RNA sequencing (RNA-seq) along the gradient and evaluated the sedi-
mentation profile of gene products known to localize to specific sub-
cellular compartments based on previous targeted RNA localization 
experiments11,29,30 and known nuclear and cytoplasmic long noncod-
ing RNAs (lncRNAs) (see experimental details). Importantly, when 
analyzing correlation profiles, the fractions obtained are not purified 
organelle/compartments; distinct sedimentation profiles for each 
subcellular niche are required to determine localization. We observed 
distinct profiles resulting in separate clustering within the data for 
RNAs known to localize to the mitochondria, ER, nucleolus, nucleus 
and cytosol (Fig. 1b–d Supplementary Fig. 1d and Supplementary 
Tables 1 and 2). Further to these expected profiles, a novel subcyto-
solic RNA sedimentation profile was discovered by semi-supervised 
clustering. The RNAs of this profile are enriched at a density higher 
than the organelles, but lower than the cytosolic ribosomes (Fig. 1b 
and Supplementary Fig. 1d–f). Thus, we refer to this profile as ‘cytosol 
light’. To our knowledge, this is the first time the complete subcellular 
localization of RNA has been successfully resolved at a cell-wide level. 
We refer to this method to interrogate the localization of RNA as LoRNA.

Next, we evaluated if this fractionation approach was compat-
ible with the simultaneous analysis of the proteome localization, 
using LOPIT analysis methods31. We extracted protein from the same 
fractions used for LoRNA, and quantified the protein abundance 
by mass spectrometry (MS) (Fig. 1e). To assess the accuracy of our 
protein localization, we used a support vector machine to classify 
marker proteins for all major compartments on the basis of their 
abundance profiles. F1 scores (the harmonic mean of precision and 
recall) of 0.71–1 were observed, demonstrating high resolution of 
protein subcellular localizations, based purely on the density of 
the different compartments (dLOPIT; Fig. 1f,g and Supplementary 
Fig. 1g). Remarkably, dLOPIT performs comparably to our previous 
high-resolution LOPITs5,6 that were engineered to exclusively inter-
rogate the protein subcellular localization (Supplementary Fig. 1h). 
These results demonstrate that this integrative framework allows, for 
the first time, the simultaneous analysis of the subcellular localization 
of the transcriptome and proteome.

Proportional quantification of RNA localization. Relative RNA abun-
dances were adjusted with respect to spike-in RNAs to account for the 
total RNA content per fraction and obtain profiles of absolute RNA 
abundance. This allowed the deconvolution of the RNA profiles into 
the constituent contributions from each localization, as determined 
from the profiles of RNAs with known localizations (Fig. 2a). In this 
way, we estimated the proportional localization of 31,839 transcript 
isoforms (13,142 genes) in every localization simultaneously. Addi-
tionally, transcript-level RNA localization analysis retains specific 
information on the differential localization of splicing variants (Sup-
plementary Fig. 2a). To account for splice isoform localization vari-
ability, we use transcript-level proportions, unless specified otherwise. 
Importantly, we took advantage of the extreme localization of the 13 
mitochondrially encoded mRNAs to accurately quantify transcript 
membrane association, using these RNAs as a reference for 100% mem-
brane localization. As anticipated, RNA is distributed along two major 
axes: nucleus:cytosol and cytosol:membrane, with expected propor-
tions obtained for RNAs known to be extremely enriched in specific 
locations (Fig. 2b).

information, ideally in a framework that also enables determination of 
protein subcellular localization, so that the two biomolecules can be 
studied simultaneously.

In this Article, we develop such a framework that returns simulta-
neous cell wide spatial overviews of the transcriptome and proteome. 
To enable the creation of this framework, we have firstly developed a 
transformative method to study cell-wide subcellular localization of 
RNA (termed LoRNA). LoRNA builds on the principle of reduction and 
reconstruction of the cellular content16 to study RNA localization. 
It involves reordering the subcellular constituents by their density, 
quantification of RNA abundance profiles across the density fractions, 
and using localization-specific RNA correlation profiles to determine 
the subcellular localization of the complete transcriptome. Impor-
tantly, unlike previous methods that estimate localization-specific 
enrichments, LoRNA allows the estimation of RNA proportions in 
each localization, providing more biologically meaningful informa-
tion. Secondly, we have engineered LoRNA to allow the simultaneous 
interrogation of the subcellular proteome, using a novel streamlined 
localization of proteins by isotope tagging (LOPIT5,6) approach, which 
we refer to as density-based LOPIT (dLOPIT).

This integrative approach for the cell-wide quantification of RNA 
and protein distribution is especially valuable to study molecular 
relocalization processes. Therefore, we chose to examine the redis-
tribution of RNA and protein during the activation of the unfolded 
protein response (UPR). The UPR is triggered by the accumulation 
of unfolded proteins in the endoplasmic reticulum (ER) lumen17. Its 
activation reduces global protein synthesis rates, resulting in the loss 
of RNA targeting to the ER, the formation of stress granules (SGs), 
and the upregulation of stress-response genes18. Importantly, UPR 
deregulation is associated with disease states including neurodegen-
eration19, cancer progression20 and diabetes21. Combining LoRNA and 
dLOPIT, we simultaneously quantified the extensive reorganization of 
the transcriptome and proteome upon the activation of the UPR and 
resultant inhibition of translation, including the loss of RNAs from the 
ER and the relocalizations of proteins from the secretory pathway. Our 
integrative approach enabled the discovery of cytosolic granules in our 
multiomic framework and reveals that ER-localized RNAs are recruited 
to granules to a greater extent than previously thought22–24. Our data 
also show that RNAs encoding cytoskeletal proteins are retained and 
targeted to the periphery of organelles during UPR and that this pro-
cess involves eIF3d. Importantly, while messenger RNAs undergo a 
profound subcellular reorganization upon UPR activation, noncoding 
RNAs sharing the same properties (for example, size and nucleotide 
composition) do not, indicating the importance of trans factors in 
determining RNA localization. Altogether, this uniquely integrative 
approach has allowed us to generate the most comprehensive analysis 
of RNA and protein cell-wide localization dynamics so far, which can be 
readily explored using dedicated open-source resources25,26.

Results
Cell-wide RNA and protein subcellular localization
Organelles can be separated on the basis of their physicochemical 
properties to determine the localization of macromolecules5,27,28. Unfor-
tunately, the application of this principle to interrogate RNA has so 
far failed to capture the complete subcellular distribution of RNA13,14. 
To resolve this issue, we developed a new approach to sort the entire 
cellular content on the basis of the density of its constituents (Fig. 1a). 
We applied this framework to U-2 OS cells. Cells were first mechani-
cally lysed with a ball-bearing homogenizer, using a 12-μm pore to lyse 
the cells while preserving the integrity of the intracellular organelles. 
The complete cell lysate was then loaded into a precast equilibrium 
gradient (1 to 1.6 g ml−1, see experimental details). Crucially, unlike 
previous methods that use density gradients to resolve subcellular 
compartments13, the cell lysate was loaded at the density of free RNA 
(1.17 g ml−1). This ensured that organelle-associated RNAs migrated 
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To comprehensively validate our system-wide RNA localiza-
tion results, we developed an orthogonal method to sort the cel-
lular content by a different physicochemical property, namely the 
sedimentation coefficient of the different organelles instead of 
density. Previous attempts to study RNA localization using this 
concept applied high g forces14,32, and analysis of the published 
data highlights that this creates an RNA length-dependent localiza-
tion bias; longer RNAs precipitate with organelles and are depleted 
from the cytoplasm (Supplementary Fig. 2b,c). We developed a 
fractionation approach that separates the major subcellular locali-
zations while avoiding the RNA length-dependent sedimentation 
bias. (Fig. 2c, Supplementary Fig. 2b–d and Supplementary Tables 1  
and 2). While the low g force required to avoid this bias precludes 
subcytosolic resolution, differential centrifugation provides better 
separation between mitochondria and ER than density centrifugation 

(Fig. 2d). To assess the agreement between our two orthogonal 
approaches, we projected the density-based RNA proportions 
onto the sedimentation-based data. Notably, the two fractionation 
approaches showed a remarkable agreement for membranes, nucleus 
and cytosol RNAs (Fig. 2e). In addition to the excellent separation of 
the main RNA localization niches, reliable estimates of cytosol and 
membrane proportions were also achieved (Fig. 2f and Supplemen-
tary Fig. 2e). These proportions show Pearson’s correlations of 0.77 
and 0.83, respectively, confirming the reliability of our estimates. 
Importantly, LoRNA provides accurate estimates, even when com-
pared with targeted single-localization enrichment techniques, 
including APEX-seq and IF-aided multiplexed error-robust fluores-
cence in situ hybridization (MERFISH; Supplementary Fig. 2f–i).  
Thus, LoRNA provides an accurate quantitative system-wide over-
view of RNA localization.
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Fig. 1 | Simultaneous analysis of RNA and protein subcellular localization.  
a, Schematic representation of the subcellular fractionation framework.  
Cells are lysed and fractionated by density equilibrium centrifugation.  
RNA and protein are extracted from each fraction to perform LoRNA and  
dLOPIT. Cell lysate and the gradient banding pattern are represented in yellow. 
Aqueous and organic phases are blue and red, respectively. b, Application of 
LoRNA to U-2 OS cells. c, Mean profiles for RNA markers along pooled gradient 
fractions in a single experiment. Shaded regions denote ± one standard error.  

d, Principal component analysis projection of RNA profiles across three  
replicate experiments, with marker RNAs highlighted. e, Application of 
dLOPIT to U-2 OS cells. f, Distributions of F1 scores for protein markers for each 
localization using support vector machine classification. n = 50 iterations. PM, 
plasma membrane. g, t-Distributed stochastic neighbor embedding projections 
for protein localization profiles across three replicate experiments, with marker 
proteins highlighted.
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Key RNA features drive subcellular localization. We next explored 
the RNA features associated with proportional localization. While 
mRNAs are observed throughout the cell, and relatively depleted 
from the nucleus, lncRNAs were observed to be strictly within the 
nucleus:cytosol axis (Fig. 3a). Many lncRNAs have well-described 
nuclear functions for example as scaffolds for histone modification 
complexes29, and nuclear/cytoplasm fractionation RNA-seq experi-
ments indicate lncRNAs are relatively enriched in the nucleus29. As 
expected, in our dataset lncRNAs were more nuclear localized than 

mRNAs33. However, in line with a recent re-analysis of fractionation 
RNA-seq that accounted for the total RNA content per fraction34, our 
quantification of localization proportions indicates that lncRNAs are 
still predominantly cytosolic (Fig. 3b). A comparison of the propor-
tions between our two cell fractionation approaches demonstrated 
that 59.7% of lncRNAs were consistently cytosolic. It has been shown 
previously that some lncRNAs have coding potential35. Consistently, 
we identified that ribosome association correlates with greater lncRNA 
cytosol localization36 (Supplementary Fig. 3a). Importantly, we found 
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that cytosolic lncRNAs are generally shorter, have a lower AU content, 
and are more likely to be polyadenylated, compared with nuclear 
lncRNAs (Fig. 3c). A simple model using these features is as accurate 
as a more complex model built from a penalized regression over a 
wide range of potential features (receiver operating characteristic 
area under curve 0.86 for both models; Supplementary Fig. 3b). We 
therefore suggest that these are the key features driving cytosolic 
localization for lncRNAs (Fig. 3c).

While generally we found mRNAs predominantly in the cytosol, 
RNAs encoding proteins with signal peptides and/or transmembrane 
(TM) domains were much more prominently membrane localized, 

consistently with their co-translational targeting to the ER (Fig. 3d,e). 
Furthermore, our data confirmed the relationship between the dis-
tance from the first signal peptide/TM domain to the stop codon and 
the membrane proportion (Supplementary Fig. 3c)30,37. Surprisingly, 
we also identified 87 membrane-localized mRNAs that did not encode 
a signal peptide or TM (Supplementary Table 2). These included the 
mRNA encoding the ER-localized signal recognition receptor subunit 
β, which co-translationally binds to the α subunit38, and mRNAs encod-
ing for mitochondrial proteins (Supplementary Fig. 3d), but most of 
the RNAs were not previously described as membrane localized. Gene 
Ontology (GO) analysis revealed a significant enrichment for terms 
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associated with membrane or cytoskeleton localization (Fig. 3f), sug-
gesting potential localized translation at the surface of the membranes. 
To confirm ER association of these RNAs, we combined smFISH/IF with 
a digitonin-based cytosol extraction approach, focusing on two mRNAs 
that do not encode signal peptides or TM domains, Microtubule-actin 
cross-linking factor 1 (MACF1) and Dystonin (DST) RNAs. Both mRNAs 
are only marginally affected by digitonin treatment, similarly to known 
ER-associated transcript PIGT (Fig. 3g,h). By contrast, cytosolic tran-
script Calpain2 is strongly affected by the treatment. These results are 
in agreement with LoRNA data and indicate that LoRNA can accurately 
uncover novel, noncanonical ER-associated transcripts.

Assessing global transcriptome and proteome relocalization. 
System-wide RNA localization is especially suited for studying RNA 
redistribution upon stimulation, where transcripts can migrate to 
unexpected localizations. As a showcase, we used LoRNA to interrogate 
RNA relocalization upon activation of the UPR, which was induced via 
inhibition of the SERCA Ca2+ pump by treating U-2 OS cells with 250 nM 
of thapsigargin (TG) for 1 h. This reduces calcium in the ER lumen, 
impairing protein folding and activating the UPR, which, in turn, rapidly 
induces a global translational shutdown through phosphorylation of 
eIF2α (Supplementary Fig. 4a,b). This results in the formation of SGs 
(Supplementary Fig. 4c) and the increased expression of UPR genes 
including XBP1 and CHOP (Supplementary Fig. 4d). LoRNA allows 
quantification of the cell-wide redistribution of RNA upon inhibition 
of translation, clearly showing a profound RNA migration from the 
membranes towards the cytosol (Fig. 4a and Supplementary Fig. 4e). 
Surprisingly, we found a pronounced relocalization of RNAs to the 
‘cytosol light’, both from the cytosol and from membranes (Fig. 4b). 
We therefore hypothesized that the cytosol light profile may represent 
RNP granules.

To test this hypothesis and gain a deeper understanding of the cel-
lular reorganization upon UPR activation, we exploited our fractiona-
tion approach to yield simultaneous data on proteome relocalization 
by applying dLOPIT to the same gradient fractions that had been used 
for LoRNA. A Bayesian analysis framework39 was applied to identify 
protein relocalization 1 h post UPR activation, at three levels of confi-
dence depending on the differential localization probabilities, ‘highly 
confident’ (>99%), ‘confident’ (>95%) and ‘candidate’ (>85%). This 
identified 73 proteins that were differentially localized with confidence  
(Fig. 4c,d and Supplementary Table 3). The Golgi apparatus was the 
most affected organelle, as expected given its role in the trafficking 
of newly synthesized proteins. Interestingly, four SG proteins (STAU2, 
UPF1, PABPC1 and PABPC) relocalized away from the ribosomes towards 
the fraction that differentiates the cytosol light (Fig. 4e and Supple-
mentary Fig. 4f). We used these 4 proteins to identify a further 22 
proteins with correlated UPR profiles, including 5 members of the 
P-body associated CCR4-NOT complex40, P-body proteins DCP1A/
B41 and SG components YBX3 (ref. 42), SECISBP2 (ref. 42) and CASC3 
(ref. [43), further suggesting that the cytosol-light profile represents 
cytosolic granules. To confirm that cytosolic granules are enriched in 
the fractions discriminating the cytosol-light profile, we engineered 
U-2 OS cells to express green fluorescent protein (GFP)-tagged DCP2 
and G3BP1 proteins. DCP2 is a canonical P-body protein44, while G3BP1 
is a well-known constituent of SGs45. By performing density-based cell 
fractionation experiments on cells expressing these two engineered 
proteins and imaging them along the gradient we confirmed that 
cytosolic granules sediment at the density ranges of ‘cytosol light’ 
(Supplementary Fig. 4g,h).

RNA features driving granule localization. The proteins relocalizing 
to the cytosol light upon UPR are associated with RNA condensation 
into granules; therefore, we further characterized the RNA composi-
tion of this fraction and interrogated the features of the enriched 
RNAs. RNAs with higher cytosol light abundance in unstressed cells 

were correlated with lower ribosome association and longer transcript 
length (Supplementary Fig. 5a,b), both features associated with RNAs 
partitioning to granules46,47. Furthermore, RNAs enriched in P-bodies48 
and TIS granules49 using fluorescence-activated particle sorting have 
a similar distribution to the cytosol light profile (Supplementary  
Fig. 5c,d). Finally, we observed a positive correlation between the cyto-
sol light proportions upon UPR activation and SG enrichment upon 
arsenite treatment using targeted SG purification23 (Supplementary 
Fig. 5e). Altogether, these data provide strong evidence that our cytosol 
light profiles represent cytosolic ribonucleoprotein-containing gran-
ules, and we henceforth refer to this localization as ‘granule’.

As expected, mRNAs are recruited to granules upon UPR activation 
in a length and AU content-dependent manner. Surprisingly, lncRNAs 
do not relocalize to granules, irrespective of these features (Fig. 5a–c). 
Importantly, LoRNA provides cell-wide quantification of RNA locali-
zation before and after stimulation. This allowed us to uncover that, 
upon activation of the UPR, although many cytosolic mRNAs migrate 
to granules, membrane mRNAs do so at a higher proportion (Fig. 5d). 
However, not all membrane mRNAs relocalize to granules (Fig. 4b 
and Supplementary Fig. 5f). The recruitment of specific mRNAs to 
granules was confirmed with smFISH (Fig. 5e) and agrees with a recent 
targeted study of the relocalization of six RNAs upon UPR induction 
(Supplementary Fig. 5g)50. To fully characterize the features driv-
ing mRNAs towards granules upon UPR activation, we modeled the 
contribution of a broad range of RNA features, including transcript 
length, localization before stress, RNA-binding protein (RBP) bind-
ing (from enhanced cross-linking and immunoprecipitation (eCLIP) 
data51), k-mer content, codon usage and presence of internal ribosome 
entry site (IRES) or upstream open reading frames (uORFs). Overall 
transcript length, especially longer 3′ untranslated regions (UTRs) in 
membrane mRNAs, was observed to be the greatest positive predictor 
of relocalization to granules (Fig. 5f). RBPs whose binding according 
to eCLIP was positively predictive of RNA relocalization to granules 
included the granule proteins FAM120A, IGF2BP1 and G3BP1 (Fig. 5g). 
Moreover, the binding of canonical SG proteins TAIL1, TIA1 and IGFBP3 
to membrane-localized mRNAs also showed a significant predictive 
value. Intriguingly, unexpected associations between RBP binding and 
relocalization to granules were observed, including ZNF622, which is 
involved in ribosome subunit joining52 and ribosome stalling53, and 
upregulated upon viral infection and UPR stress54. Importantly, ZNF622 
was a ‘candidate’ relocalizing protein, with movement from the cyto-
sol to the ER upon UPR (Supplementary Fig. 5h,i), a step that may be 
required for the membrane-RNA recruitment to granules.

A higher AU content in the coding and 3′ UTR regions was pre-
dictive of greater relocalization of mRNAs to granules (Fig. 5h). The 
latter is consistent with the known role of 3′ UTR AU-rich elements 
in regulating RNA stability. Interestingly, higher G content, but not 
C content, in the coding region was a predictor of lower granule relo-
calization (Fig. 5h). In addition, a higher frequency of AUG k-mers in 
the 5′ UTR was predictive of lower relocalization, although presence 
of annotated uORFs was not. This may indicate that the presence of an 
AUG at the 5′ UTR inhibits granule association, regardless of the ORF 
capacity of the sequence. Finally, while overall codon optimality was 
not a selected predictive feature, the frequency of UUA, GAU, AAU and 
CAC codons were predictive of granule relocalization (Fig. 5i). Three 
of these are NAC/U codons, decoded by queuosine-modified transfer 
RNAs (tRNAs). Notably, the two NAU codons are predictive of greater 
relocalization to granules and the NAC codon predictive of lower relo-
calization, pointing to a potential role of this modification in the stress 
response and RNA recruitment to cytosolic granules.

RNAs retaining organelle association upon UPR. Despite the 
global loss of RNA from the membranes, some RNAs remain 
membrane-associated upon UPR activation (Fig. 6a). We modeled this 
nonlinear relationship using a generalized additive model (GAM) with 
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a cubic regression spline and used the residuals from the GAM to iden-
tify RNAs with unexpectedly high membrane localization after the 
induction of the UPR. Notably, RNAs with longer sequences between 
the signal sequence and stop codon are retained more efficiently in 
membranes, suggesting the involvement of the signal recognition 
particle for these RNAs37 and therefore active reassociation with the 
membranes (Fig. 6b). However, many of the membrane-localized 
RNAs that do not encode a TM or signal peptide (Fig. 3) were retained 
at the membrane upon UPR activation (Supplementary Table 2), 
indicating a signal recognition particle-independent mechanism 
for their retention. To gain an understanding of the mechanisms of 
RNA retention in the periphery of organelles upon UPR activation, 
we investigated protein–RNA interactions using publicly available 
eCLIP data51. Applying a lasso penalization model to select the pro-
teins whose binding predicts RNA localization, we observed that the 
binding of 11 out of 177 RBPs was predictive of greater membrane 
localization, including eIF3h and eIF3d (Fig. 6c and Supplementary 
Fig. 6a). Surprisingly, genes whose translation is affected by the 
knockdown of the core eIF3 component eIF3e55, do not show a dif-
ferential membrane retention upon UPR activation (Supplementary 
Fig. 6b,c), suggesting that membrane retention may be specific to 
specialized eIF3 components. Interestingly, eIF3d has been found 
to maintain translation upon ER stress56 and can directly bind at 
the 5′ cap57. We confirmed that RNAs known to be bound by eIF3d at 

their 5′ cap58 (Fig. 6d) are more retained in the membranes upon UPR 
activation, indicating that 5′ cap binding of eIF3d may contribute 
to the maintenance of this localization. Membrane-localized RNAs 
bound by eIF3d show an overrepresentation for GO terms relating 
to the actin cytoskeleton, cell morphogenesis and focal adhesions 
(Fig. 6e). These membrane-localized eIF3d-bound RNAs include two 
cytoskeletal protein coding transcripts, MACF1 and DST transcripts, 
which we previously showed are among the cytoskeletal-protein 
encoding transcripts unexpectedly associated with the ER (Fig. 3g). 
Using detergent-based subcellular fractionation, we further validated 
that the membrane localization of MACF1 and DST is eIF3d dependent 
(Fig. 6f and Supplementary Fig. 6e,f).

Finally, we hypothesized that the retention of eIF3d-bound tran-
scripts in the ER upon UPR induction may be required to remodel the 
cytoskeleton in processes that depend on localized translation, such as 
cell migration, particularly during activation of the UPR. In agreement 
with this, specifically decreasing eIF3d expression reduces cell migra-
tion overall, with a significantly stronger effect in cells undergoing UPR 
(Fig. 6g,h and Supplementary Fig. 6g–j). While eIF3d has been shown 
to bind cytoskeletal RNAs58 and cytoskeleton remodeling is required 
for calcium homeostasis upon UPR induction59, to our knowledge, this 
is the first time these two processes have been connected as poten-
tially being part of the same integrated response. Altogether, our 
results suggest that eIF3d is required for continued translation of actin 
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cytoskeleton components localized in the periphery of membranes 
during the UPR.

Discussion
In this work, we present an integrative multiomics subcellular locali-
zation framework composed of two different methods (LoRNA and 
dLOPIT) to generate the first cell-wide analysis of RNA and protein 
subcellular localization in membranous (nucleolus, ER and mitochon-
dria) and membraneless (cytosol, nucleolus and cytosolic granules) 
compartments. By precisely reconstructing RNA localization, our 
transformative approach allows the quantitative determination of the 
complete subcellular distribution of each RNA. We combined LoRNA 
and dLOPIT to characterize the dynamic transcriptome and proteome 
subcellular redistribution upon UPR. This established the RNA features 
driving relocalization to granules, identified those transcripts that are 
targeted to the periphery of the organelles during the integrated stress 
response, and revealed the role of eIF3d in maintaining cytoskeleton 
function upon UPR.

When interpreting LoRNA proportions, it is important to consider 
that the RNA marker profiles that are used to estimate localization pro-
portions do not represent spatial coordinates in the cell, but rather the 

typical profile for RNAs that predominantly reside in that localization. 
For example, the distribution of the cytosolic RNA markers includes 
nascent RNA copies that are also nuclear localized. As such, propor-
tions are with respect to RNAs that are paradigmatic representatives 
of localization, and do not represent absolute localizations. Another 
important consideration is that, while RNA nuclear export is a tightly 
regulated process, small proteins diffuse freely. Therefore, when inter-
preting cell fractionation experiments it is important to consider that 
small nuclear proteins with weak interactions can diffuse out from the 
nucleus60. Fixing protein–protein interactions could overcome this 
limitation; however, cross-linking agents such as formaldehyde may 
limit organelle separation. Development of reagents to efficiently stabi-
lize protein–protein interactions without affecting organelle integrity 
and lipid content should overcome this limitation. Here we identified 
nucleoplasm protein markers reflecting this phenomenon to ensure 
nucleoplasm proteins are correctly classified to the nucleus. Further-
more, in cases where gradients are of interest, such as across the cytosol 
of a polarized cell, targeted methods such as FISH or IF are required as 
any high-throughput method involving cell lysis will necessarily result 
in a loss of subcellular coordinates. When RNA compartments not 
amenable to biochemical fractionation are of interest (for example, 
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the nucleopore), alternative methods like APEX-seq may be applicable. 
However, it is worth noting that multiple APEX-based experiments 
need to be combined to determine RNA localization at a cell-wide level, 
making this approach incompatible with the proportional estimation 
of RNA localization and especially challenging to apply in dynamic 
systems or to study multiple biological systems. Nonetheless, APEX 
and LoRNA can function as complementary approaches to interrogate 
molecular subcellular distribution at different resolutions.

One of our most striking findings regarding RNA relocalization 
after UPR activation is that membrane-localized mRNAs are recruited 
more efficiently to granules than cytosolic mRNAs, while lncRNAs do 
not relocalize to granules. We show that the two features most asso-
ciated with mRNA recruitment to granules, length and AU content,  

do not affect lncRNA relocalization to granules. This suggests that RNA 
recruitment to granules may depend on more than RNA length and ribo-
some occupancy as previously stated23 or that there is a mechanism to 
exclude lncRNAs from granules. Notably, membrane-localized mRNA 
recruitment to granules conflicts with transcriptomic studies that have 
claimed ER-targeted RNA are depleted from SGs23. However, targeted 
methods to purify SGs typically focus on specific engineered bait 
proteins and require multiple purification steps, while LoRNA recov-
ers granules regardless of their specific composition, based on their 
distinct density sedimentation profile, which may explain the apparent 
discrepancy between SG transcriptomics and LoRNA. Since our results 
suggest ER-RNA relocalization to granules during stress is widespread, 
we speculate that novel subtypes of stress-induced granules may be 
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the ultimate destination for membrane-associated RNAs upon UPR 
activation, opening new avenues for future research. Furthermore, we 
observed previously uncharacterized predictors of RNA relocalization 
to granules. Notably, the relocalization of RNA to granules is corre-
lated with frequencies for three NAU/C codons that are decoded by 
queuosine modification of the G in the wobble position of the cognate 
tRNA, with opposite effects for NAU and NAC codons. Considering the 
emerging role that tRNA modifications play in translation61,62, it would 
be interesting to explore if a tRNA-specific co-translational mechanism 
could regulate the recruitment of RNAs to SGs.

Using dLOPIT under UPR induction, we revealed the relocalization 
of specific proteins, many of which have been previously implicated 
in the formation of P-bodies and SGs. We also observed relocalization 
of ZNF622 to the ER upon UPR and that RNAs containing ZNF622 bind-
ing sites relocalize more readily to granules. Given that ZNF622 has 
been recently shown to inhibit ribosome subunit joining52, and may 
be involved in the ER-associated degradation machinery or ER quality 
control following viral infection54, ZNF622 relocalization to the ER may 
be required to inhibit ER-localized translation and drive ER-targeted 
RNAs to granules upon UPR activation.

The precise measurement of RNA proportionality afforded by 
LoRNA allowed characterization of the relocalization of RNA away 
from membranes in unprecedented detail. Intriguingly, we found that, 
despite the general loss of mRNA from the ER upon induction of the 
UPR63, many RNAs are partially retained in association with organelles, 
or even migrate to the ER. Notably, we found that many of these mRNAs 
encode for proteins involved in cytoskeletal remodeling. Furthermore, 
eIF3d binding correlates with membrane localization and decreasing 
its expression impairs cell migration, a process highly dependent on 
cytoskeletal remodeling. Actin cytoskeleton remodeling plays a key 
role to restore Ca2+ homeostasis in the ER upon UPR induction through 
promotion of ER–plasma membrane contact59. Separately, eIF3d has 
been found to maintain RNA translation upon stress56. Altogether, we 
speculate that the cytoskeleton remodeling required to overcome 
UPR is eIF3d dependent and that it involves the in situ translation of 
cytoskeletal mRNAs.

In summary, our framework, combining LoRNA and dLOPIT, pro-
vides a quantitative system-wide determination of RNA and protein 
relocalization. This has allowed us to evaluate the transcriptome 
and proteome dynamics during UPR induction with unprecedented 
resolution. The resulting data have invaluable potential for future 
studies characterizing the functions of specific RNAs and proteins. 
To facilitate this, we have generated a user-friendly graphical inter-
face to explore our data available at refs. 25,26. Notably, the LoRNA 
method allows for the unbiased cell-wide determination of RNA 
compartmentalization. This will support a paradigm shift from the 
study of RNA localization through relative enrichments between two 
localizations, towards a cell-wide analysis of RNA proportional dis-
tribution. We anticipate others will build upon LoRNA. For example, 
coupling it with metabolic labeling such as 4-thiouridine, and direct 
RNA-seq methods, would enable the precise temporal interrogation 
of the role of RNA modifications in the regulation of RNA localization. 
The simultaneous characterization of proteome and transcriptome 
relocalization represents a transformative approach to study how 
the cell coordinately responds to physiological signals, stress con-
ditions, exogenous cues or infectious pathogens. Importantly, this 
approach can contribute to the translation of molecular biology 
observations to medical benefits by fostering new studies into the 
role of RNA and protein localization dynamics in cell homeostasis 
and disease.
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Methods
Cell culture and UPR induction
U-2 OS cells were obtained from the American Type Culture Collec-
tion, maintained in McCoy’s A5 medium (Gibco-BRL) supplemented 
with 10% of fetal bovine serum (Gibco-BRL), at 37 °C and 5% CO2, and 
regularly tested for mycoplasma contamination with negative results. 
UPR was induced by directly adding 250 nM of TG (UPR) or equivalent 
volume of dimethyl sulfoxide (DMSO, control) to cells at 90% conflu-
ency. Cells were incubated with TG or DMSO for 1 h at 37 °C unless 
specified otherwise.

Density-based cell fractionation
Seven milliliters discontinuous density gradients of 15%, 20% and 25% 
iodixanol (OptiPrep, STEMCELL Technologies), 0.25 M sucrose, 75 mM 
KCl, 5 mM MgCl2, 50 nM CaCl2, 10 mM HEPES pH 7.4 and ethylenedi-
aminetetraacetic acid (EDTA)-free protease inhibitor were prepared in 
polyallomer optiSeal ultracentrifuge tubes (11.2 ml capacity; Beckman 
Coulter), and gradients were allowed to diffuse 1 h at 20 °C. Partially dif-
fused gradients were stored at 4 °C for 1 h while cells were prepared for 
fractionation. Cells were cultured in 500 mm2 plates until 90% conflu-
ence, using a single plate per replica per condition. Cells were treated 
with TG or DMSO for 1 h. After treatment, cells were washed twice with 
phosphate-buffered saline (PBS) and detached using EDTA-free trypsin 
(Thermo Scientific) for 10 min. Trypsin was quenched by adding equal 
volumes of medium (supplemented with DMSO or TG). Detached 
cells were transferred to a 50-ml tube and spun down 10 min at 250g. 
Cell pellets were washed twice with ice-cold PBS and resuspended in 
900 μl of lysis buffer (0.25 M sucrose, 75 mM KCl, 5 mM MgCl2, 50 nM 
CaCl2, 10 mM HEPES pH 7.4 and EDTA-free protease inhibitor) and lysed 
with a ball-bearing homogenizer (Isobiotec) on ice. Fifty microliters 
of lysate was stored at −80 °C as total cell lysate. Cell lysate iodixanol 
and ion concentration was adjusted by adding 1.5 ml of 50% iodixanol 
solution (in 75 mM KCl, 5 mM MgCl2, 50 nM CaCl2, 10 mM HEPES pH 7.4 
and EDTA-free protease inhibitor) to a 1-ml cell lysate, and underlaid 
in the previously prepared density gradient with a 2.5-ml syringe and a 
wide-bore blunt-end needle (Sigma-Aldrich). Finally, a 40% iodixanol 
(in 75 mM KCl, 5 mM MgCl2, 50 nM CaCl2, 10 mM HEPES pH 7.4 and 
EDTA-free protease inhibitor) cushion was underlaid until the tube 
was filled. Density gradients were centrifuged in a NVT65 fixed-angle 
near-vertical ultracentrifuge rotor (Beckman Coulter) in a Optima 
L-80 XP ultracentrifuge (Beckman Coulter) for 16 h at 100,000g and 
collected using an auto Densi-Flow peristaltic pump fraction collec-
tor with a meniscus-tracking probe (Labconco) to obtain 20 fractions 
of 500 μl each. The refractive index (RI) of each fraction is measured 
with a hand-held refractometer (Reichert), and the iodixanol concen-
tration was calculated as iodixanol% = (RI/0.83) − 10.111, and fraction 
density calculated by d = m/V. The iodixanol concentration per frac-
tion was adjusted to 30% in a volume of 600 μl. All fractions were fro-
zen and dried by sublimation using vacuum centrifuge with cold trap 
(Labconco, Refrigerated CentriVap concentrator). Dried pellets were 
solubilized in 1 ml of TRIzol (Thermo Scientific) and stored at −80 °C.

Differential sedimentation speed-based cell fractionation
Cells were cultured in 500-mm2 plates until 90% confluence, using a 
single plate per replicate. Five replicates were performed for the dif-
ferential sedimentation speed based cell fractionation experiment. 
Cells were washed twice with PBS and detached using trypsin/EDTA 
(0.05%) (Thermo Scientific) for 5 min. Trypsin was quenched with an 
equal volume of medium. Detached cells were transferred to a 50-ml 
Falcon tube and spun down for 5 min at 200g at 4 °C. The pellets were 
washed twice with ice-cold PBS and resuspended in 1 ml of lysis buffer 
(0.25 M sucrose, 75 mM KCl, 5 mM MgCl2, 50 nM CaCl2, 10 mM HEPES 
pH 7.4 and EDTA-free protease inhibitor) and homogenized on ice using 
ball-bearing homogenizer (Isobiotec). A total lysate sample of 75 μl was 
obtained and stored at −80 °C. The remaining sample was fractionated 

into five consecutive fractions at centrifugation speeds (100g, 500g, 
2,000g and 5,000g) using the supernatant of every centrifugation as 
starting material for the next, with an Eppendorf Centrifuge 5424R. The 
supernatant of the last centrifugation was retained as the final fraction.

RNA and protein sample precipitation
RNA and protein were obtained from TRIzol solubilized fractions by 
adding 200 μl of chloroform and phase partitioning the sample for 
15 min at 12,000g at 4 °C. RNA was purified by collecting and transfer-
ring the TRIzol/chloroform upper aqueous phase to a new tube and 
the RNA precipitated with 750 μl of isopropanol (Sigma-Aldrich) for 
10 min at 16,000g. RNA pellets were washed twice with 70% ethanol 
and solubilized in 200 μl of RNAse-free water (Thermo Scientific). 
RNA samples were treated with DNAse in RNeasy columns (Qiagen) 
according to manufacturer’s instructions using the RNase-free DNAse 
Set kit (Qiagen). RNA concentration was measured with a DS-11 UV 
spectrophotometer (Denovix). RNA samples were pooled as indicated 
in Supplementary Table 4. Protein was purified by precipitating the 
TRIzol/chloroform lower organic phase (and interface) using 9:1 v:v 
of methanol:sample. Samples were solubilized in 1% sodium dodecyl 
sulfate (Thermo Fisher Scientific) 100 mM tetraethylammonium bicar-
bonate (Sigma-Aldrich) using a Bioruptor sonicating bath (Diagenode). 
Protein concentration was measured with a Pierce BCA protein concen-
tration assay kit (Thermo Fisher Scientific) on a spectrophotometer 
plate reader (Molecular Devices, SpectroMax M2).

RNA-seq
RNA-seq libraries for the density fractionation were generated 
using 1 μg of RNA as starting material and depleting ribosomal RNA 
using Ribocop V3 (Lexogen). Post ribosomal RNA depletion, RNA 
content was measured with a Bioanalyzer pico kit (Agilent). Then 
1% RNA spike-in RNA variants (SIRVs) were spiked-in (Lexogen), and 
RNA-seq libraries were generated and amplified using the CORALL 
RNA-seq kit (Lexogen) according to the manufacturer’s instructions. 
All CORALL-generated libraries were sequenced in parallel on four 
Novaseq S4 lanes (Illumina). RNA-seq libraries for the differential 
sedimentation speed based cell fractionation experiment were per-
formed using QuantSeq 3′ mRNA-Seq kit (Lexogen) according to 
manufacturer’s instructions. A total of 400 ng of total RNA and 0.1% 
RNA SIRVs (Lexogen) were used for library preparation of each frac-
tion. All libraries were balanced, multiplexed and pooled, and run on 
two single-end Novaseq SP lanes (Illumina).

Proteomic sample preparation
Samples were resuspended in 100 µl of 100 mM tetraethylammo-
nium bicarbonate (Sigma-Aldrich), reduced with 10 mM dithiothreitol  
(DTT, Sigma-Aldrich) at room temperature (RT) for 60 min and 
alkylated with 40 mM iodoacetamide (Sigma-Aldrich) at RT in the 
dark for 60 min. Samples were digested overnight at 37 °C with 1 µg of 
trypsin (Promega). Subsequently, 1 µg of modified trypsin (Promega) 
was added, and the samples were incubated for 3–4 h at 37 °C. Samples 
were then acidified with trifluoroacetic acid (TFA) (0.5% (v/v) final 
concentration (Sigma-Aldrich) and centrifuged at 21,000g for 10 min. 
The supernatant was immediately desalted.

For peptide clean-up and quantification, 200 µl of Poros Oligo 
R3 (Thermo Fisher Scientific) resin slurry (approximately 150–200 µl 
resin) was packed into Pierce centrifuge columns (Thermo Fisher Sci-
entific) and equilibrated with 0.1% TFA. Samples were loaded, washed 
twice with 200 µl 0.1% TFA and eluted with 300 µl 70% acetonitrile 
(ACN) (adapted from ref. 64). From each elution, 10 μl was taken for 
Qubit protein assay (Thermo Fisher Scientific) quantification and the 
remaining sample was retained for MS.

Tandom mass tag (TMT)-10plex or TMTpro-16plex (Thermo Fisher 
Scientific) labeling from desalted peptides was performed according 
to the manufacturer’s protocol. Equal amounts of desalted peptides 
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were labeled immediately after being quantified with Qubit protein 
assay (Thermo Fisher Scientific). Multiplexed TMT samples were then 
fractionated using high-pH reverse phase chromatography. In detail, 
the TMT-labeled peptide samples were resuspended in 100 μl of 20 mM 
ammonium formate pH 10 (Buffer A). The total volume of each sample 
was injected onto an Acquity UPLC BEH C18 column (2.1-mm inner 
diameter × 150 mm; 1.7-μm particle size) on an Acquity UPLC System 
with a diode array detector (Waters), and the peptides were eluted 
from the column using a linear gradient of 4–60% (v/v) ACN in 20 mM 
ammonium formate pH 10 over 50 min and at a 0.244 ml min−1 flow 
rate (with a total run time of 75 min). The gradient was set up as fol-
lows: 0 min—95% Buffer A–5% Buffer B (20 mM ammonium formate 
pH 10 + 80% (v/v) ACN), 10 min—95% Buffer A–5% Buffer B, 60 min—25% 
Buffer A–75% Buffer B, 62 min—0% Buffer A–100% Buffer B, 67.5 min—0% 
Buffer A–100% Buffer B, 67.6 min—95% Buffer A–5% Buffer B. Approxi-
mately 40–50 1-min fractions, representing peak peptide elution, were 
collected starting from initial peptides elution, and were reduced to 
dryness by vacuum centrifugation shortly thereafter. For downstream 
MS analysis, the fractions were concatenated into 20 samples by com-
bining pairs of fractions that eluted at different time points during  
the gradient.

Each sample was analyzed in an Orbitrap Eclipse mass spec-
trometer (Thermo Fisher Scientific). Mass spectra were acquired in 
positive ion mode applying data acquisition using synchronous pre-
cursor selection MS3 (SPS-MS3) acquisition mode65 triggered using 
Real-time Search (RTS) against human protein sequences from Uni-
Prot/Swiss-Prot. Carbamidomethylation of cysteine and TMT-6plex 
(total proteome samples) or TMTpro-16plex tagging (subcellular 
fractionated samples) of lysine and peptide N-terminus were set as 
static modifications, with oxidation of methionine as a variable modi-
fication. Scoring thresholds were set as follows: Xcorr = 1.4, dCn = 0.1 
and Precursor ppm = 10.

MS spectra processing and peptide and protein identification
Raw data were viewed in Xcalibur v.2.1 (Thermo Fisher Scientific), 
and data processing was performed using Proteome Discoverer v2.3 
(Thermo Fisher Scientific). The raw files were submitted to a database 
search using Proteome Discoverer with SequestHF and MS Amanda66 
algorithms against the Homo sapiens database downloaded in June 
2020 from UniProt/Swiss-Prot. Common contaminant proteins (sev-
eral types of human keratin, bovine serum albumin (BSA) and porcine 
trypsin) from the common Repository of Adventitious Proteins (cRAP) 
v1.0 (48 sequences, adapted from the Global Proteome Machine 
repository67) were added to the database. The spectra identification 
was performed with the following parameters: MS accuracy, 10 ppm.; 
MS/MS accuracy of 0.5 Da; up to two missed cleavage sites allowed; 
carbamidomethylation of cysteine and TMT-6plex (total proteome 
samples) or TMTpro-16plex tagging (subcellular fractionated sam-
ples) of lysine and peptide N-terminus as a fixed modification; and 
oxidation of methionine and deamidation of asparagine and glu-
tamine as variable modifications. Percolator was used for false dis-
covery rate (FDR) estimation and only rank 1 peptide identifications 
of high confidence (FDR <1%) were accepted. TMT reporter values 
were assessed through Proteome Discoverer v2.3 using the Most 
Confident Centroid method for peak integration and integration 
tolerance of 20 ppm. Reporter ion intensities were adjusted to correct 
for the isotopic impurities of the different TMT reagents (following 
manufacturer specifications). Sample labels for each TMT tag are 
presented in Supplementary Table 4.

Spatial proteomics
Previous marker proteins defined for U-2 OS were annotated in ref. 6. 
Twelve of 733 markers were deemed outliers on the basis of manual 
curation of their profile and consideration of localization assigned in 
Human Protein Atlas (HPA)68 and GO. To ensure accurate assignment 

of nuclear proteins, nuclear markers were annotated de novo, utilizing 
the COMPARTMENTS database69. COMPARTMENTS localizations were 
mapped to the localizations defined by the standard LOPIT marker sets. 
Proteins with a score of 5 for the ‘Nucleus’ and no score over 2 for any 
other localization were denoted as exclusively nuclear. The profiles for 
these nuclear exclusive proteins were split into three groups, which 
were separated on the basis of the following thresholds on the row-sum 
normalized abundances: group 1, over 0.3 in pooled fraction 4; group 2,  
over 0.2 in pooled fraction 5; group 3, over 0.4 in pooled fraction  
8. A GO enrichment analysis, using a hypergeometric test, was then 
used to determine the enriched functionalities, relative to the back-
ground of all quantified proteins. This indicated that the first group 
of nuclear proteins were highly enriched in nucleolus, chromatin and 
ribosome biogenesis proteins, whereas the other two were enriched 
in nucleoplasm proteins but no more specific GO terms. Furthermore, 
proteins annotated as nuclear membrane or nuclear lamina in GO were 
more closely associated with group 1. Thus, group 1 was denoted as 
‘Nucleus’ and the other groups were referred to as ‘Nucleoplasm-1’ and 
‘Nucleoplasm-2’. Finally, the ‘Proteosome’ marker set was expanded to 
define a set of markers for ‘Protein complexes’ by including proteins 
annotated in GO as part of the multiple aminoacyl-tRNA synthetase 
(MARS) complex (‘GO:0017101’), COP9 signalosome (‘GO:0008180’) 
or eIF3 complex (‘GO:0005852’), with 5/42 of the additional protein 
complex markers excluded as outliers. SVM classification in basal 
conditions was performed as described in ref. 31, with hyperparameters 
selected by grid search and 50 iterations.

BANDLE39 v1.0 was used to identify differentially localized proteins 
between the control condition and UPR. Differential localization analy-
sis was performed on each replicate separately, with 10,000 Markov 
chain Monte Carlo iterations, 5,000 burn-in iterations, 4 chains and 
1/20 thinning. Off-diagonal values for the matrix of Dirichlet priors 
were set at 0.01, with default values used for the penalized complexity 
priors. Markov chain Monte Carlo chains were inspected for conver-
gence on the basis of the reported number of localization outliers, 
as suggested in ref. 39, and all chains were found to converge. Locali-
zations in each condition were determined by setting the following 
threshold: bandle localization probability × (1 − bandle outlier prob-
ability) > 0.95. Where this threshold was not met, the localization was 
deemed ‘undefined’. Proteins were deemed differentially localized if 
they were never assigned to the same localization across the two condi-
tions and at least 2/3 replicates had BANDLE differential localization 
probabilities over the following thresholds to define three levels of 
confidence were for relocalization: ≥0.99, ‘highly confident’; ≥0.95, 
‘confident’; ≥0.85, ‘candidate’.

Comparison of dLOPIT with other methods
Subcellular location data (The Cell Atlas) was downloaded from HPA 
(version 22.0) and compared with dLOPIT localization classifications 
obtained with BANDLE and hyperLOPIT and LOPIT-DC classifications6. 
LOPIT and HPA classifications were standardized to eight localiza-
tions that were interrogated with both approaches; cytosol, ER, Golgi 
apparatus, lysosome, mitochondria, nucleus, peroxisome and plasma 
membrane. For the HPA classifications, we considered cytosol to be 
cytoplasmic bodies, and nucleus to be nuclear bodies, nuclear mem-
brane, nuclear speckles, nucleoli fibrillar center, nucleoli and nucleo-
plasm. For the LOPIT classifications, we considered nucleus to be 
nucleoplasm-1, nucleoplasm-2 and chromatin, and cytosol to be protein 
complex, proteasome, ribosome 40S, ribosome 60S and ribosome. All 
other classifications not part of the standard localizations were dis-
carded. Proteins not classified by both LOPIT and HPA were excluded.

HPA may classify a single protein with multiple localizations. For 
each protein, agreement between HPA and LOPIT was deemed to have 
occurred when the LOPIT classification was within the set of HPA clas-
sifications. HPA classifies at increasing levels of confidence, from 
Approved, to Supported, Enhanced and Uncertain. We separately 
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considered all HPA classifications meeting a minimal level of confi-
dence from Approved to Enhanced.

RNA-seq data processing for CORALL RNA-seq samples
RNA-seq fastq processing and quantification was performed using 
bespoke pipelines built with CGAT-core70. Fastq files were demul-
tiplexed using idemux71 and concatenated into one fastq per sam-
ple. To assess polymerase chain reaction duplication rate, UMIs were 
extracted from the read sequences using UMI-tools v1.1.0 (ref. 72). 
Reads were aligned to a concatenation of the hg38 reference genome 
and the artificial SIRV genome using hisat v2.2.1 (ref. 73) using default 
settings. Secondary reads and reads with MAPQ <10 were discarded. 
Duplicate reads were identified with UMI-tools dedup using default 
settings. Transcript isoform quantification was performed from the 
fastqs without deduplication, using Salmon v1.4.0(ref. 74) against 
a concatenation of the ensembl v102 human transcriptome and the 
artificial SIRV annotations, using default settings.

Data analysis
Data analyses post RNA and peptide quantification steps above were 
performed using R v4.0.3 (ref. 75) and R markdown notebooks76, mak-
ing extensive use of the tidyverse v1.3.2R packages77, ggplot2 v3.4.2, 
tidyr v1.2.0, dplyr v1.0.8 and MSnbase v2.20.4 (ref. 78), pRoloc v1.34.0  
(ref. 79) and camprotR v0.0.0.900 (ref. 80).

Differential abundance analysis
Gene-level quantifications (transcripts per million; TPM) were parsed 
using tximport81. Differential gene abundance was tested using DESeq2 
v1.34.0 (ref. 82) with default settings, with an FDR threshold of 5% used 
to identify significant changes in abundance.

Spatial transcriptomics
Transcript isoform and gene-level quantifications (TPM) were parsed 
using tximport v1.22.0 (ref. 81) to generate objects to hold the quan-
tification estimates for a single experiment. To take advantage of 
the spatial proteomics functionalities available through pRoloc79, 
we stored the RNA quantification data in MSnSets. Separate objects 
were created to hold transcript isoform and gene-level abundance 
estimates. Transcripts and genes with average TPM <0.5 or TPM of 0 in 
≥2/3 samples in a given condition were discarded. Post TPM-filtering, 
41,547 transcript isoforms and 14,203 genes were quantified in at least 
2 replicates in both conditions.

Localization markers were identified using a combination of 
a priori markers and semi-supervised clustering by non-negative 
matrix factorization (NNMF). A priori markers were defined as fol-
lows. Nuclear markers were >16-fold nuclear enriched in nuclear/
cytoplasm fraction RNA-seq29 or manually defined known nuclear 
lncRNAs (XIST, MALAT1, MEG3, DLX6-AS1, PINCR, UCHL1-AS1 and 
NEAT1). Cytosol markers were significantly enriched in nuclear 
export signal (NES) APEX-seq11, or manually defined from known 
cytosolic lncRNAs (LINCMD1, NORAD, H19, NKILA, SNHG5, DANCR, 
OIP5-AS1 and SNHG1). ER markers were defined as having enrichment 
in ER-Ribo-Seq >20.5 (ref. 30) and significant enrichment >8-fold in ER 
(KDEL) APEX-seq11 and a predicted signal peptide or TM according 
to ensembl. Mitochondrial markers were mitochondrially encoded 
mRNAs. To determine the optimal number of clusters (k) for NNMF, 
the imputation-based approach was used83, with the selected k value 
minimizing the mean squared error for NNMF imputation of randomly 
added missing values. This gave k = 5 for the basal condition experi-
ment and k = 4 for the UPR experiment. NNMF cluster assignments 
in basal conditions were then compared with the a priori markers to 
define a set of NNMF-guided gene-level markers, in which each marker 
set was associated with the NNMF cluster with greatest overlap and 
all markers in the NNMF cluster were retained. In addition, the NNMF 
cluster containing the nuclear markers was further used to define a 

nucleolus marker set by intersecting it with the top 30 most abundant 
small nucleolar RNAs according to the total RNA-seq. Finally, a novel 
NNMF cluster was observed in both basal condition and UPR, which 
contained few a priori markers. The genes assigned to the novel NNMF 
cluster in both basal and UPR conditions were used to define a novel 
profile, which was observed to have the greatest relative abundance 
in between the nucleus and cytosol profile peaks, and was hence 
denoted as cytosol light. Gene-level markers were used to generate 
transcript-level markers by taking all the transcript isoforms for 
each gene-level marker where the ensembl transcript biotype and 
gene biotype matched. The final marker sets were manually curated 
to remove 14/135 gene-level markers and 37/202 transcript-level 
markers that were deemed to be outliers. The higher proportion of 
transcript-level markers removed reflects the markers having been 
built at the gene level and extended naively to transcript-level markers 
by assuming all transcripts with the same biotype as the gene biotype 
will have the same localization.

Estimation of localization proportions
RNA content per fraction was estimated using the relative abundance 
of all SIRV features and human RNA and the proportion of the fraction 
used for RNA-seq library preparation. Relative RNA-seq quantifica-
tions in each fraction were adjusted with respect to the RNA content 
per fraction and abundance estimates row-sum normalized across the 
eight fractions per replicate. Non-negative least squares regression was 
used to estimate localization proportions by separately modeling the 
profile of each transcript/gene as a non-negative linear combination of 
the average profile for the markers of each localization. Since most of 
the ER markers relocalized upon UPR and the mitochondrial markers 
represent 100% membrane localization in both conditions (no RNA 
copies in the cytosol), mitochondrial markers were used to estimate the 
membrane proportion. The proportion estimates were bootstrapped 
100 times by resampling the markers, with resampling. Proportion 
estimates for a given transcript/gene were discarded where the model 
did not account for at least 90% of the variance or the absolute value 
or the intercept was greater than 0.05. The mean proportions across 
replicates were estimated for transcripts/genes with estimates from at 
least 2/3 replicates. In total, proportions for 27,368 transcript isoforms 
and 13,274 genes were retained.

Reads were frequently observed to bridge annotations between 
lncRNAs and neighboring protein coding, which resulted in 
mis-estimation of lncRNA proportions. To avoid this, we excluded 
all lncRNAs with a protein-coding gene within 15 kb downstream or 
30 kb upstream.

Comparison of LoRNA with other methods
The comparison of LoRNA proportions with other methods was per-
formed using gold standards for nuclear and ER localization, namely 
nuclear/cytoplasm fractionation RNA-seq and ER Ribo-seq. Compari-
sons were performed with gene-level data, since transcript-level data 
were not available for all experiments. Gene-level quantification (TPM) 
from fractionation polyA + RNA-seq29 was obtained from www.encode-
project.org. Mean nuclear/cytoplasm ratios were calculated across the 
cell lines and genes with ratios quantified in at least 2/9 cell lines were 
retained. ER Ribo-seq data30 was converted from UNIPROTKB identi-
fiers to ensembl gene IDs using the R biomaRt package. APEX-seq11 data 
were obtained from Gene Expression Omnibus GSE116008. APEX-RIP9 
data were obtained from Gene Expression Omnibus GSE106493. Cell 
fractionation RNA-sequencing (CeFra-seq)14 data were taken and 
nuclear/cytosol and membrane/cytosol ratios calculated. Relative 
enrichments from LoRNA were calculated from proportions as for 
example LocalizationX/(1 − LocalizationX), with nuclear proportions 
being the sum of nucleus and nucleolus proportions. All enrichments 
were log2-transformed and Pearson correlation coefficients against 
gold-standard ratios were calculated.
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The classification of ribosome-associated lncRNAs was obtained 
from ref. 36. lncRNAs with multiple transcript IDs were excluded. Ribo-
some profiling data were obtained from ref. 84 and the coding sequence 
(CDS) length obtained from ensembl. Ribosome density was then 
calculated as RNaseI_CDS/CDS length. P-body RNAs were obtained 
from48. RNAs with over 8-fold higher abundance in the sorted frac-
tion and Benjamini–Hochberg85 adjusted P value less than 0.01 were 
deemed P-body RNAs.

MERFISH data for ER and nuclear enrichment was obtained from 
ref. 12. These were presented at the level of RNA transcripts and were 
therefore compared with transcript-level LoRNA proportions.

Defining signal peptide and TM features
Signal peptide and TM domain annotations were obtained from 
ensembl v102 and the distance between the start of the first signal pep-
tide or TM domain and the stop codon was determined. For gene-level 
analyses, the minimum distance across all transcript isoforms was 
used. A conservative annotation of presence/absence of either signal 
peptide and/or TM domain was obtained by taking the union of the 
ensembl annotations with UNIPROT annotations.

eCLIP binding data
eCLIP data in narrowPeak (BED6 + 4) format was obtained from 
ENCODE using ENCODExplorer v2.16.0. Genomic coordinates were 
converted to transcriptomic coordinates using the mapToTranscripts 
function in GenomicFeatures v1.46.5 R package86.

Modelling lncRNA cytosol localization
To model the cytosolic localization of lncRNAs, transcript length, 
spliced status, eCLIP binding data, k-mer frequencies, AU content, 
RNA modifications, PolyA status, presence in FANTOM5 robust cata-
log, and abundance were considered. Transcript length and splicing 
status was obtained from ensembl v102. eCLIP data were obtained 
as described above. Sixty-four RBPs with >10 lncRNA targets were 
retained, and binding data were converted to binary 0 = unbound, 
1 = bound. k-mers (k = 1–7) were counted and expressed as frequencies. 
RNA modifications were obtained from m6A-atlas87, with modifications 
with >10 lncRNA targets retained, namely m6A, m5c, m1A and Psi. The 
FANTOM5 robust catalog and PolyA status were obtained from ref. 88.  
PolyA status was converted to a binary 0 = non-polyadenylated, 
1 = polyadenylated, with ‘undetermined’ encoded as 0 and ‘bimor-
phic’ encoded as 1. Abundance was calculated as the mean TPM from 
the total RNA-seq of basal condition samples. Cytosol proportions 
were converted to a binary feature, where 1 = cytosolic (2/3 cytosol) 
and 0 = not-cytosolic (<1/3 cytosol). The data were then split 80:20 
into training and test data. Elastic net logistic regression was used to 
model the cytosol variable, with 10-fold cross-validation, using the 
glmnet v4.1-3R package89. By default glmnet scales the dependent 
variables but returns the coefficients on the original scale. α values 
were varied between 0 and 1, in steps of 0.1. Cross-validation folds 
were precomputed to ensure they were the same for each α value. The 
α value with the minimum mean cross-validation error was identified 
as 1, for example lasso regression. Lambda was selected to give the 
most parsimonious model, using the ‘one-standard-error’ rule90. The 
final model contained 45/21,918 nonzero coefficients. The predictive 
accuracy of this model was assessed using the hold-out test data and 
compared with the accuracy of a simpler logistic regression model of 
just transcript length, polyA status and AU content.

Modeling UPR-resistant membrane localization
Membrane proportion in UPR was modeled as being dependent upon 
membrane proportion in control conditions using a GAM with a cubic 
regression spline with shrinkage, using the mgcv R package. The resid-
ual from the GAM was taken to represent the degree of UPR-resistant 
localization relative to the overall reduction in membrane proportions. 

Lasso regression (glmnet R package89) was used to model UPR 
resistance, with RBP binding from eCLIP data (see above) being the 
dependent variables. Ten-fold cross-validation was used to select the 
lambda value that minimized the mean cross-validation error, with 
the ‘one-standard-error’ rule used to select the most parsimonious 
model90. Transcripts with signal peptides/TM domains were transcripts 
modeled separately from those without.

Modelling relocalization to granules
Granule relocalization (UPR granule proportion − control granule 
proportion) was modeled according to the following features, which 
were annotated to each mRNA: localization in basal conditions, RNA 
length, RBP binding, sequence k-mers, 5′ AUGs, codon features, uORFs 
and IRES. One-hot encoding was used for the features describing the 
localization in basal conditions, where the highest proportion localiza-
tion was taken to be the single localization for the RNA. Transcript, 5′ 
UTR, 3′ UTR and coding sequence lengths were obtained from ensembl 
v102. eCLIP data were obtained as described above. A total of 177 RBPs 
with >100 mRNA transcript targets were retained, and binding data 
were converted to binary 0 = unbound, 1 = bound. k-mers (k = 1–6) 
were counted and expressed as frequencies. 5′ AUGs were identified 
with separate features to encode in-frame and out-of-frame AUGs. 
Codon, dinucleotide and wobble base frequencies were computed 
from the coding sequence. Codon optimality (MILC91) was computed, 
with separate features for the comparison against all transcripts and 
just the top 1% most abundant. uORFs were identified from ref. 92, 
retaining only ORFs with a score >5 and an AUG start codon. Annotated 
IRES were obtained from IRESbase93. uORF and IRES were converted 
to binary presence/absence features for each transcript. In addition, 
pairwise interactions between the localization in basal conditions 
and the transcript, 3′ UTR, 5′ UTR and coding length features and RBP 
binding features were added as separate features.

Granule relocalization data was split 80:20 into training and test 
data. Elastic net regression was used to model the granule relocaliza-
tion, with 10-fold cross-validation, using the glmnet R package89. By 
default glmnet scales the dependent variables but returns the coef-
ficients on the original scale. α values were varied between 0 and 1, in 
steps of 0.1. Cross-validation folds were precomputed to ensure they 
were the same for each α value. The α value with the minimum mean 
cross-validation error was identified as 1, for example, lasso regression. 
Lambda was selected to give the most parsimonious model, using 
the ‘one-standard-error’ rule90. The final model contained 74/16,895 
nonzero coefficients.

Data processing and analysis for differential 
centrifugation-based LoRNA
Data processing and analysis for samples quantified using 3′ Quant 
Seq was identical to CORALL RNA-seq samples, except for the follow-
ing: Gene read counts were normalized to counts per million (CPM) 
using the total number of assigned reads per sample. Genes with 
average CPM <1 or CPM of 0 in > 20% of the samples were discarded. 
Markers identified from equilibrium density centrifugation-based 
LoRNA were annotated and proportions calculated as indicated 
above, except that proportions were estimated separately for mito-
chondria and ER and summed to give membrane proportions, and 
‘cytosol-light’ proportions were not estimated. The mean proportions 
across replicates were estimated for transcripts/genes with estimates 
from at least 3/5 replicates.

Assessing the technical bias for RNA length and sedimentation
Gene-level CeFra-seq quantification data (TPM) were downloaded 
using the ENCODExplorer v2.16.0 R package. We computed the gene 
length as the mean length of all transcript isoforms included in the GEN-
CODE basic gene set and with Transcript Support Level 1 in ensembl. 
Mean abundances per fraction were computed for the cytosol and 
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membrane fractions, from which ratios were then computed com-
pared with the total RNA-seq samples. High-confidence cytosolic 
and membrane localized RNAs were obtained from LoRNA, setting a 
threshold of proportion >80%. Pearson product-moment correlation 
coefficients were computed for gene length versus cytosol/total for 
cytosolic RNAs and membrane/total for membrane RNAs. The same 
procedure was used for the differential sedimentation-based RNA 
localization approach estimates, with supernatant/total correlated 
with gene length for cytosolic RNAs.

GO enrichment analyses
All GO enrichment analyses were performed using the goseq v1.46.0R 
package94. For the analysis of GO terms enriched in eIF3d-bound 
membrane RNAs, the membrane proportion in basal conditions was 
included as the bias factor and enrichment effect sizes accounting for 
biasing factors were calculated using the probability weight functions 
obtained with goseq using the estimate_go_overrep function in cam-
protR. For the analysis of GO terms enriched in the membrane RNAs not 
encoding a signal peptide or TM domain, no bias factor was included 
and a hypergeometric test was instead used. For both analyses, P values 
were adjusted for multiple testing using the Benjamini–Hochberg 
procedure85 and GO terms with adjusted P value >0.05 (5% FDR) or 
accounting for fewer than 10% of the foreground genes were excluded. 
Redundant GO terms were removed using the remove_redunant_go 
function in camprotR R package.

Single molecule FISH probe design and synthesis
Subcellular RNA localization was assessed by using an adaptation of 
the single-molecule inexpensive FISH protocol95. Z (CTTATAGGGCATG-
GATGCTAGAAGCTGG) and Y (AATGCATGTCGACGAGGTCCGAGTGTAA) 
FLAP DNA handles, labeled at the 5′ and 3′ ends with Atto488, were 
purchased from Sigma (high-performance liquid chromatography 
(HPLC) purified) and resuspended to a concentration of 100 µM in 
nuclease-free water. For each target RNA, 30–48 DNA probes of 20 
nucleotides (nt) were designed with a minimum spacing length of 
2 nt and a guanine–cytosine content of 40–65%. Each gene-specific 
sequence was flanked by a 28-nt sequence complementary to either a 
Z- or Y-FLAP sequence. The resulting 48-nt probes were purchased from 
Sigma (standard desalt purification, 100 µM in nuclease-free water). 
Fluorescently labeled gene-specific probes were then generated as 
follows: 200 pmol of an equimolar mixture of all gene-specific oligos 
for each gene were mixed with 250 pmol of the appropriate FLAP oligo 
in 1× NEBuffer 3 (New England Biolabs, B7003), then incubated in a 
Thermocycler (Bio-Rad) for 3 min at 85 °C, 3 min at 65 °C, and 5 min 
at 25 °C (lid 99 °C).

smiFISH/IF and IF
For smiFISH/IF experiments, 8 × 104 U 2-OS cells were seeded in each 
well of a 12-well plate, on top of no. 1.5 glass coverslips previously 
washed in 1 M HCl. The following day, cells were treated with either 
250 nM TG or the corresponding volume of DMSO, rinsed three times 
with PBS (with MgCl2 and CaCl2, Sigma D8662), then fixed for 10 min in 
3% methanol-free paraformaldehyde (Alfa Aesar, 43368) in PBS at RT. 
The fixative was then quenched in 100 mM glycine (Sigma) in PBS for 
10 min at RT, and samples were then washed twice in PBS for 10 min and 
permeabilized in 70% EtOH at 4 °C for at least 1 h. Samples were then 
prepared for hybridization by washing in 10% formamide (Sigma), 
1 U µl−1 RNasin Plus (Promega) in 2× saline-sodium citrate (SSC) buffer 
for 10 min. From this step onwards, samples were protected from direct 
light. Hybridization was performed by incubating coverslips with 
100–250 nM probes diluted in hybridization buffer (2× SSC buffer, 10% 
dextran sulfate (Sigma), 10% formamide, 2 mM ribonucleoside vana-
dyl complexes (Sigma), 200 µg ml−1 bovine serum albumin (Roche), 
1 mg ml−1 Escherichia coli tRNA (Roche), 1 U µl−1 RNasin Plus (Promega)), 
for 3 h at 37 °C in a humid chamber. Coverslips were then transferred 

to a clean 12-well plate and washed twice in 10% formamide, 1 U µl−1 
RNasin Plus, 2× SSC buffer, for 10 min at 37 °C. Further washes were 
then performed (three times in 2× SSC with no incubation, twice in PBS 
for 10 min), before incubation with blocking buffer (3% nuclease-free 
bovine serum albumin (Sigma) in PBS) for 30 min at RT. Samples were 
then incubated with primary antibody diluted 1:500 in blocking buffer, 
for 2 h at RT. They were then washed three times in PBS for 10 min, incu-
bated with a secondary antibody diluted 1:2,000 in blocking buffer, for 
1 h at RT. After three additional washes in PBS, the nucleus was stained 
by incubation with 4′,6-diamidino-2-phentylindole (Sigma, 200 ng ml−1 
in PBS) for 1 min at RT. Coverslips were then washed twice in PBS for 
5 min before being mounted onto glass microscope slides with a drop 
of ProLong Glass Antifade Mountant (Invitrogen).

For consistency, IF experiments were performed following the 
smiFISH/IF procedure with the omission of the FISH hybridization step 
and the washes in 10% formamide, 2× SSC.

Digitonin cytosol extraction for smFISH/IF experiment was per-
formed following the protocol described in ref. 96. Briefly, cells grown 
on glass coverslips were washed twice in warm CHO buffer (115 mM KAc, 
25 mM HEPES pH 7.4, 2.5 mM MgCl2, 2 mM egtazic acid and 150 mM 
sucrose). The coverslips were then placed (cell-side down) on a droplet 
of 0.025% digitonin in CHO buffer, on top of a metal plate warmed to 
40 °C, for 20 s. Cells were then immediately blocked in 4% paraform-
aldehyde/PBS for 15 min at RT, then extensively washed with PBS and 
immersed in ice-cold MetOH for 30 min. After additional washes in PBS 
and two washes in 10% formamide/SSC buffer, hybridization with FISH 
probes and IF were performed as described above.

Confocal microscopy
Images were acquired on a Zeiss Axio Observer.Z1 LSM 980 microscope 
equipped with Airyscan 2, using ZEN Blue software (version 3.3), in Airy-
scan super-resolution imaging mode. A C-Plan-Apochromat 63×/1.4 
numerical aperture oil objective was used with Zeiss Immersol 518F 
(23 °C) immersion oil. Twenty Z-slices per image were acquired at an 
interval of 0.13 µm.

Image processing and quantification
Airyscan processing with standard parameters was applied to each 
image in Zen Blue software. Further processing and analysis was per-
formed using FiJi software97 (version 2.3.051).

siRNA transfection
Transfections were performed in detached cells post trypsinization to 
ensure maximum exposure. Per condition, 10 nM of each small inter-
fering RNA (siRNA) was transfected using Lipofectamine RNAiMAX 
(ThermoFisher) according to the manufacturer’s instructions. Knock-
down experiments were performed using ON-TARGETplus SMARTpool 
siRNAs (Horizon): control siRNA #1 #D-001810-01-05; eIF3d siRNA 
#L-017556-00-0005; eIF3j siRNA #L-019532-00-0005. All subsequent 
experiments were performed 48 h post transfection.

Cell migration assay
Cell migration assays were performed using the xCELLigence RTCA 
DP instrument (ACEA Biosciences) according to the manufacturer’s 
instructions. Cells were treated with TG for 1 h, collected by trypsiniza-
tion and washed in PBS to remove all traces of serum. A total of 30,000 
cells were seeded in the upper chamber of a 16-well migration plate 
(CIM-16 plate) in 100 μl of medium containing 0.1% serum. Cells migrate 
to a lower chamber containing 160 µl of medium supplemented with 
10% serum. As cells migrate across the microelectrodes into the lower 
chamber they generate impedance measurements (cell index), which 
enables label-free quantification of cell migration for 24 h. Cell indexes 
for Tg-treated samples were expressed as fold changes relative to the 
DMSO control sample. Significance testing between eIF3d and control 
siRNA knockdowns was performed with a paired Student’s t-test.
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Digitonin cytosolic RNA extraction
Digitonin extraction protocol was adapted from ref. 98. Cytosolic 
and membrane-associated RNA fractionation experiments were 
performed in 80% confluent 12 multiwell plates. Cells were washed 
twice in ice-cold PBS and incubated for 5 min in 200 µl of digitonin 
extraction buffer (0.03% of digitonin (ThermoFisher) 5 mM KCl, 5 mM 
MgCl2, 50 nM CaCl2, 10 mM HEPES pH 7.4 and EDTA-free protease 
inhibitor). The supernatant was transferred to a new tube, and the 
cells were incubated for 5 min with 200 µl of digitonin wash buffer 
(0.004% of digitonin (ThermoFisher) 5 mM KCl, 5 mM MgCl2, 50 nM 
CaCl2, 10 mM HEPES pH 7.4 and EDTA-free protease inhibitor). The 
second supernatant was transferred to the same tube as the first one. 
This combined fraction is enriched in cytosol transcripts. The plates 
were then scraped in 400 µl of digitonin extraction buffer. This sec-
ond fraction is enriched in membrane-associated RNAs. Cytosolic 
and membrane-associated RNA fractions were frozen and dried 
by sublimation using a vacuum centrifuge with cold trap. RNA was 
extracted and DNAse treated using the RNeasy kit according to the 
manufacturer’s instructions. A total of 200 µg of RNA were reverse 
transcribed using Moloney murine leukemia virus reverse tran-
scriptase and random decamers (Ambion). Quantitative polymer-
ase chain reaction amplification reaction was performed using the 
LightCycler 480 SYBR Green I Master Mix (Roche Diagnostics) and the 
following set of primers: MACF1 Fw 5′-TAGAGATGACTGCTGTGGC-3′-  
and MACF1 Rv 5′-TGTCTTGTAACCTCATCTTCGA-3′, DST Fw 5′-ATT- 
GGTACAGAGGGTTGCA-3′ and DST Rv 5′-CGTCCTTTGCTGTACA- 
CAG-3′, TMX1 Fw 5′-ACGGACGAGAACTGGAGAGA-3′ and TMX1 Rv-  
5′-ATTTTGACAAGCAGGGCACC-3′, SSR2 Fw 5′-GTTTGGGATG- 
CCAACGATGAG-3′ and SSR2 Rv 5′-CTCCACGGCGTATCTGTTCA-3′, 
PSK1N Fw 5′–3′ and PSK1N Rv 5′–3′. Quantitative expression data 
were normalized to the mitochondrial transcript MT-ND6 using 
the MT-ND6 Fw 5′-GGGTTGAGGTCTTGGTGAGT-3′ and MT-ND6 Rv 
5′-ACCAATCCTACCTCCATCGC-3′ primers. TMX1, SSR2, PSK1N and 
MT-ND6 primers were obtained from ref. 9.

Cell death assay
All flow cytometry data were acquired using a BD LSRFortessa (BD Bio-
science) and analyzed with BD FACSDiva software (version 9.0.1). A total 
of 10,000 counts were acquired for each experimental condition. Cells 
were collected in Annexin binding buffer (BD Biosciences #556454), 
and cell death was determined after incubation with Annexin-V-FITC 
(ThermoFisher, BMS500FI-100) and Draq7 (Abcam, ab 109202).

Liquid chromatography–tandem MS acquisition
TMT-labeled samples were analyzed in an Orbitrap Eclipse coupled 
to a nanoLC Dionex Ultimate 3000 UHPLC (Thermo Fisher Scien-
tific). Peptides were trapped on a 100 μm × 2 cm, C18, 5 μm, 100 trap-
ping column (Acclaim PepMap 100) in μl-pickup injection mode at 
15 μl min−1 flow rate for 3 min. Samples were then loaded on a rapid 
separation liquid chromatography, 75 μm × 50 cm nanoViper C18 3 μm 
100 column (Acclaim, PepMap) at 50 °C retrofitted to an EASY-Spray 
source with a flow rate of 300 nl min−1. Analytical chromatography was 
performed over 120 min (buffer A, HPLC H2O, 0.1% formic acid; buffer 
B, 100% ACN, 0.1% formic acid; 0–3 min: at 2% buffer B, 3–105 min: 
linear gradient 2% to 40% buffer B, 105–105.3 min: 40% to 90% buffer 
B, 105.3–110 min: at 90% buffer B, 110–110.3 min: 90% to 3% buffer 
B, 100.3–120 min: at 3% buffer B). Each MS1 scan was performed in 
the Orbitrap analyzer (mass range of m/z 400–1,500, resolution of 
120,000). Precursors with charge between 2 and 6 and intensity above 
5,000 were selected for collision-induced dissociation MS2 frag-
mentation, with normalized automated gain control (AGC) target of 
200% and maximum accumulation time of 50 ms. Mass filtering was 
performed by the quadrupole with 0.7 m/z transmission window, fol-
lowed by collision-induced dissociation fragmentation in the linear 
ion trap with 30% normalized collision energy. Selected fragmented 

ions were dynamically excluded for 60 s. RTS was used to trigger 
SPS-MS3 acquisition. RTS used Human UniProt/Swiss-Prot database, 
carbamidomethylation of cysteine and TMT-6plex (total proteome 
samples) or TMTpro-16plex tagging (subcellular fractionated samples) 
of lysine and peptide N-terminus as static modification, oxidation of 
methionine as variable modification, as scoring thresholds Xcorr = 1.4, 
dCn = 0.1, Precursor PPM = 10, one missed cleavage and maximum 
search time of 35 ms. SPS was applied to co-select ten fragment ions 
for higher-energy collisional dissociation-MS3 analysis. SPS ions were 
all selected within the 400–1,500 m/z range and were set to preclude 
selection of the precursor ion and TMT or TMTpro ion series. Nor-
malized AGC targets and maximum accumulation times were set to 
200% and 120 ms. Co-selected precursors for SPS-MS3 underwent 
HCD fragmentation with 55% normalized collision energy and were 
analyzed in the Orbitrap with a nominal resolution of 50,000. The 
number of SPS-MS3 spectra acquired between full scans was restricted 
to a duty cycle of 3 s.

Proteomics data processing
Peptide-spectrum match (PSM)-level quantifications were filtered to 
conservatively remove peptides from common contaminants. Along-
side the cRAP proteins, further potential contaminants were identified 
by considering all proteins that shared an observed peptide with a 
cRAP protein as further contaminants. PSMs without a unique master 
protein assigned or more than 20% missing values were excluded. 
Remaining missing values were imputed using knn imputed (k = 10), 
with sum normalization before imputation and de-normalization post 
imputation, to ensure nearest neighbors shared similar abundance 
profiles over the fractions, rather than similar average abundance. We 
then identified and removed outlier PSMs that had a median euclidean 
distance over 0.2 from all other PSMs for the same master protein. In 
doing so, PSMs with higher co-isolation and lower average signal to 
noise were selectively removed where these low-quality PSMs disagreed 
with other PSMs. Remaining PSMs were then median center normal-
ized. Protein-level abundances were estimated by summing PSM-level 
abundances, for proteins with at least two PSMs. Protein abundances 
were row-sum normalized such that the total abundance across all 
fractions from a given replicate equaled one.

Polysome profiling
The 10%–50% (w/v) sucrose gradients were prepared in gradient buffer 
(100 mM NaCl, 5 mM MgCl2, 15 mM Tris–HCl pH 7.5, 1 mM DTT and 
0.1 mg ml−1 cycloheximide). Cells were washed in PBS–cyclohexa-
mide (100 g ml−1) and scraped into lysis buffer (100 mM NaCl, 5 mM 
MgCl2, 15 mM Tris–HCl pH 7.5, 1 mM DTT, 0.2 M sucrose, 0.1 mg ml−1 
cycloheximide, 0.5% IGEPAL, and 5 μl RNasin per 1 ml). Lysates were 
incubated on ice for 3 min, and cells were pelleted by centrifugation 
at 1,300g for 5 min. The supernatant was layered on top of a gradient 
and centrifuged at 247,767g (acceleration 9, deceleration 6) for 2 h at 
4 °C using a Beckman Coulter ultracentrifuge. Polysome profiles were 
obtained by measuring absorbance at 254 nm using a UA-6 UV–Vis 
detector (Presearch).

Reporter gene expression analysis
DCP2–GFP tagged mammalian cell expression plasmid was directly 
acquired from Adgene (pT7–EGFP–C1–HsDCP2, ref. 25031). G3BP1–
GFP plasmid was kindly provided by Dr. Dee Scadden (University of 
Cambridge). Plasmids were purified using EasyPep Mini MS Sample 
Prep Kit (Qiagen). One plate of 500 mm2 of 90% confluent U-2 OS cells 
were transfected per plasmid, per condition using 100 μg of plasmid 
with Lipofectamine 3000 Transfection Reagent (Thermo Scientific) 
according to manufacturer instructions. Two days post-transfection, 
cells were treated with DMSO or TG as indicated above and lysed and 
fractionated as specified in the ‘Density-based cell fractionation’ sec-
tion. Gradient fractions were imaged on a Zeiss Axio Observer.Z1 LSM 
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980 microscope and fluorescence intensity quantified with ImageJ 
1.8.0_172 for Mac OS X.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The MS proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE99 partner repository with the dataset iden-
tifier PXD030456. The RNA-seq data have been deposited in ENA 
with study accession PRJEB49479. The processed data including the 
data underlying the Shiny app are available as serialized R objects 
in RDS format from https://github.com/CambridgeCentreForPro-
teomics/LoRNA_UPR (v1.0 and archived with Zenodo, https://doi.
org/10.5281/zenodo.8375646). RNA annotations were obtained from 
ensembl v102 using biomaRt R package. FANTOM5 data were down-
loaded from https://www.nature.com/articles/s41587-021-00936-1. 
eCLIP and CeFra-seq data were downloaded from https://www.enco-
deproject.org. The hyperLOPIT and LOPIT-DC data were obtained 
using R package pRolocdata (object names: hyperLOPITU2OS2018, 
lopitdcU2OS2018). The following additional publicly available data-
sets were used. In all cases the data used are available from https://
github.com/CambridgeCentreForProteomics/LoRNA_UPR v1.0 in 
the directory 1_external. HPA data were downloaded from https://
www.proteinatlas.org/about/download on 3 May 2023. MERFISH data 
were downloaded from https://www.pnas.org/doi/10.1073/pnas.19
12459116#data-availability. Ribosome-associated lncRNA classifica-
tion was obtained from https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5975437. ER Ribo-seq data were obtained from https://www.sci-
ence.org/doi/10.1126/science.1257521. P-body enriched RNA data were 
obtained from https://doi.org/10.1016/j.molcel.2017.09.003. APEX-seq 
data were obtained from https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE116008. APEX-RIP data were obtained from https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106493. IRES data 
were downloaded from IRESbase (http://reprod.njmu.edu.cn/cgi-bin/
iresbase/download.php#human). uORF data were downloaded from 
https://doi.org/10.1093/nar/gky188. GO term annotations were down-
loaded from ensembl v102 using biomaRt R package. Data pertaining 
to the effect of eIF3D Knockdown on translation were downloaded 
from https://doi.org/10.1016/j.molcel.2020.06.003 (Supplementary 
Information; Supplementary Data 1). 5′ cap eIF3d binding data was 
obtained from https://doi.org/10.1126/science.abb0993. Signal pep-
tide and TM annotations were downloaded from Uniprot (https://www.
uniprot.org/) using the search string ‘(annotation:(type:signal) OR 
annotation:(type:transmem)) AND organism: ‘Homo sapiens (Human) 
[9606]’ on 6 September 2021. Data pertaining to SG enrichment upon 
arsenite treatment were downloaded from https://doi.org/10.1016/j.
molcel.2017.10.015. Data pertaining to TIS-granules were downloaded 
from https://doi.org/10.1101/2022.11.04.515216. RNA modification data 
were downloaded from m6A Atlas (http://180.208.58.19/m6A-Atlas/
download.html) on 2 November 2022.

Code availability
Data analysis code is available from https://github.com/Cambridge-
CentreForProteomics/LoRNA_UPR (v1.0), archived with Zenodo 
(https://doi.org/10.5281/zenodo.8375646).
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