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Multigroup analysis of compositions of 
microbiomes with covariate adjustments 
and repeated measures

Huang Lin    1,2 & Shyamal Das Peddada    1 

Microbiome differential abundance analysis methods for two groups are 
well-established in the literature. However, many microbiome studies involve 
more than two groups, sometimes even ordered groups such as stages of 
a disease, and require different types of comparison. Standard pairwise 
comparisons are inefficient in terms of power and false discovery rates. In 
this Article, we propose a general framework, ANCOM-BC2, for performing a 
wide range of multigroup analyses with covariate adjustments and repeated 
measures. We illustrate our methodology through two real datasets. The 
first example explores the effects of aridity on the soil microbiome, and the 
second example investigates the effects of surgical interventions on the 
microbiome of patients with inflammatory bowel disease.

The differential abundance (DA) analysis of microbial taxa between 
two study groups is well-studied in the literature. Often two types of 
parameter are considered, namely the relative abundance and the 
absolute abundance of a taxon in a unit volume of an ecosystem. There 
exist several methods in the literature that can be used for performing 
differential relative abundance analysis between two groups such as 
count regression for correlated observations with the beta-binomial 
(CORNCOB)1. While relative abundance (same as relative proportions) 
is a natural measure to consider, the DA of relative abundances has  
an important limitation. Specifically, differences in the absolute  
abundance of a single taxon between two groups may result in dif-
ferential relative abundances of all taxa between the two groups2,3. 
While this is mathematically correct, it does not help the researcher 
to discover the specific taxon that was DA between the two groups.

As an alternative to differential relative abundance analysis, several 
methods proposed in the literature can be used for differential absolute 
abundance analysis (hereafter referred to as DA analysis), which is the 
focus of this Article. Some examples include analysis of composition 
of microbiomes (ANCOM)2, analysis of compositions of microbiomes 
with bias correction (ANCOM-BC)3, linear models for DA analysis 
(LinDA)4 and logistic compositional analysis (LOCOM)5. However, the 
methodology for multigroup DA analysis is not well-developed in the 
literature. Some researchers perform a series of pairwise tests with a 
false discovery rate (FDR) control within each pairwise comparison and 

pool the results from all such pairwise comparisons to interpret the 
data. Such a strategy does not account for the fact that multiple tests 
and multiple pairwise comparisons are being performed and hence 
the overall FDR is not controlled.

Standard procedures, such as the Benjamini–Hochberg pro-
cedure6, are designed for testing multiple hypotheses between two 
groups. When there are more than two groups, the standard concept 
of FDR, and methods controlling the corresponding error rates, need 
to be modified according to the study design and type of analyses  
to be performed7–9. Some examples of interest include the following.  
(1) Multiple pairwise comparisons, in which a dietitian may be inter-
ested in making all pairwise comparisons of the gut microbial compo-
sitions among participants receiving diets D1, D2 or D3. Furthermore, 
for each pairwise comparison, the goal is often to identify taxa whose 
abundance increased (or decreased). (2) Multiple pairwise compari-
sons against a specific reference group, the same as in scenario (1), 
but the investigator is only interested in comparing groups D2 and D3 
against D1, the reference group. (3) Pattern analysis over ordered study 
groups, where, in some instances, an investigator may be interested 
in discovering trends or patterns in abundances of taxa over ordered 
groups, such as the health of participants, changes in climate, doses 
of a drug and so on. For instance, during normal pregnancy, women 
experience major changes in their gut and vaginal microbiome10. These 
changes are necessary for maternal metabolism, immune response and 
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ANCOM-BC (ref. 3), as well as state-of-the-art DA methods for absolute 
abundances: (1) LinDA4 and (2) LOCOM5. Although designed for relative 
abundances, CORNCOB, a DA method based on beta-binomial regres-
sion model, was also included in the simulation studies.

The absolute abundances were simulated using the Poisson 
log-normal (PLN) model as done in linear decomposition model frame-
work18. The PLN model postulates that absolute abundance follows a 
Poisson distribution with a multivariate log-normal distribution for 
the mean. The population mean and covariance matrix for absolute 
abundance in the PLN model were derived from the upper respiratory 
tract (URT) microbiome data, featuring 60 samples and 382 operational 
taxonomic units (OTUs), extracted from the original 856-OTU dataset19. 
OTUs present in less than 5% of samples were omitted. It is important to 
note that ANCOM-BC2 is not based on PLN model and thus, this simula-
tion set-up does not inherently favor ANCOM-BC2 over the competing 
methods described in this Article.

Motivated by the limitations of ANCOM-BC identified through our 
experience and in the literature, we conducted an exhaustive simula-
tion study that includes edge cases where ANCOM-BC performs poorly. 
Additional details regarding the simulation design are provided in 
Extended Data Fig. 1. Many DA methods implicitly assume that many 
taxa (for example, more than 50%) are not DA. To understand the break-
down point of various methods, we varied the proportion of DA taxa 
from 5 to 90%. Our evaluation of pseudo-count effects on zeros led to 
two ANCOM-BC2 versions: ANCOM-BC2 (no filter) and ANCOM-BC2 (SS 
filter, where SS denotes sensitivity score), detailed in the Methods sec-
tion. Notably, ANCOM-BC2 (SS filter) is intrinsically more conservative. 
For the control of FDR due to multiple testing, we favored the Holm–
Bonferroni method20 over the Benjamini–Hochberg procedure6 for all 
DA methods. The Holm–Bonferroni method, which allows arbitrary 
dependence structure among the underlying P values, is recognized to 
be robust to some extent for inaccurate P values21, a common problem 
with all DA methods. Further information regarding the simulation 
study set-up is provided in the Supplementary Methods.

Simulations: continuous and binary exposures
Figure 1a presents the simulation results when the exposure variable is 
continuous. Both versions of ANCOM-BC2 had smaller FDR compared 
to other methods. ANCOM-BC2 (SS filter) consistently controlled FDR 
below the nominal level of 0.05. By contrast, the FDR of ANCOM-BC2 
(no filter) increased with sample size, a consequence of excess zeros 
across the distribution of the exposure variable, which is more likely 
to generate false positives with a larger sample size. Both versions 
of ANCOM-BC2 generally outperformed all other methods, with 
ANCOM-BC2 (no filter) achieving the highest power. Conversely, all 
competing methods had considerably higher FDR than both versions 
of ANCOM-BC2. For instance, the FDR of LOCOM ranged from 5 to 
40%. Similarly, LinDA and ANCOM-BC had FDRs ranging from 5 to 70%. 
LOCOM experienced a substantial decrease in power for small sample 
sizes. For example, the power was as low as 20% for n = 10. Although 
ANCOM-BC and LinDA had larger powers, they suffered from high 
FDR, exceeding the nominal level in most scenarios. We further note 
that as the sample size increased, the FDR of ANCOM-BC, LinDA and 
LOCOM increased. This suggests a systematic bias within these test 
statistics. The FDR of CORNCOB, a method designed for DA of relative 
abundances, consistently exceeded the nominal level and reached its 
maximum when a large number of taxa were differentially abundant 
(between 20 and 50%). This is attributed to the fact that differential 
absolute abundance in a single taxon could induce differential relative 
abundance of many null taxa2,22.

Figure 1b presents the simulation results for DA analysis for a 
binary exposure. These results are generally consistent with those 
presented in Fig. 1a. The FDRs of competing methods were substan-
tially inflated compared to the two versions of ANCOM-BC2, and those 
FDRs monotonically increased with sample size. The two versions 

hormonal changes to support pregnancy and to provide healthy flora 
for babies at birth11,12. Thus, as the pregnancy progresses from the first 
to the third trimester, a researcher may be interested in discovering 
temporal changes in microbiota. Thus, in many scientific investiga-
tions, researchers are interested in studying changes in the microbiome 
over ordered conditions. The patterns of microbial abundance may 
not always be monotonic. They may display other shapes, such as an 
umbrella or an inverted umbrella with the location of the peak or trough 
unknown a priori. Additionally, depending on the scientific question 
of interest, repeated measures are taken on the same participant. 
Although the pattern analyses mentioned here could be accomplished 
by conducting a sequence of pairwise tests over adjacent ordered 
groups, such a strategy may have lower power than a test designed for 
pattern analysis, as will be demonstrated in the analysis of soil aridity 
data described later in this Article.

The objective of this Article is to develop methodologies for per-
forming multigroup DA analyses. A formal methodology for perform-
ing such analyses does not appear to be available in the literature, with a 
few exceptions, such as ANCOM-II (ref. 13). While ANCOM-II considered 
the above testing problems, it does not develop a formal framework 
for bias correction. The more recent methodology LinDA4, which uses 
a model similar to the one developed in ANCOM-II, does not address 
the above multigroup testing problems. Thus, there is a major gap in 
the literature for analyzing multigroup microbiome studies, which will 
be filled by the methodology developed in this Article called analysis 
of compositions of microbiomes with bias correction 2 (ANCOM-BC2).

Although the ANCOM-BC methodology accounted for 
sample-specific bias, for better control of FDR, ANCOM-BC2 also 
accounts for taxon-specific bias. This is important because sequencing 
efficiencies can vary across taxa, leading to a taxon-specific bias when 
some taxa are preferentially measured over others during sequenc-
ing. For example, gram-positive bacteria have stronger cell walls than 
gram-negative bacteria, making them harder to extract during the 
data preparation step. Consequently, gram-positive bacteria may be 
underrepresented in the observed counts, leading to biased results if 
taxon-specific biases are not properly accounted for in the analysis14. 
Also, it is well-known that small effect sizes are associated with small 
variances in high throughput data15. Consequently, in such cases, the 
value of the test statistics is inflated, resulting in a highly significant 
P value. Inspired by the significance analysis of microarrays (SAM)15 
methodology, we regularize the variance to avoid inflated values for 
the test statistics and hence moderate the P values for a better con-
trol of FDR. Lastly, zeros are a common problem for log-abundance 
based DA methods, including ANCOM-BC. Often such methods use 
pseudo-counts to deal with zero before taking logarithms. However, 
the choice of pseudo-count can affect the results for rare taxa con-
taining excess zeros, which potentially leads to an inflated FDR13,16,17. 
To mitigate this issue, we conduct a sensitivity analysis to filter a DA 
taxon that potentially is a false positive. Details of the procedure are 
provided in the Methods section.

Using constrained statistical inference-based methods7 and mixed 
directional FDR (mdFDR) methods for multiple pairwise compari-
sons8,9, along with the above-noted modifications to ANCOM-BC, in this 
Article we develop ANCOM-BC2 for multigroup microbiome studies. 
ANCOM-BC2 allows modeling covariates as well as repeated measures. 
The performance of ANCOM-BC2 is evaluated using extensive simula-
tion studies under a variety of settings. ANCOM-BC2 is also illustrated 
using two publicly available data, namely soil microbiome data and 
irritable bowel disease data.

Results
Simulations: settings
Inspired by applications, we conducted simulation studies under vari-
ous scenarios incorporating different exposure types and covariate 
adjustments. We compared the performance of ANCOM-BC2, with 
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of ANCOM-BC2 consistently maintained lower FDR than all com-
peting methods. Similar to the continuous exposure variable case, 
ANCOM-BC2 (SS filter) always controlled the FDR at the nominal level, 
whereas ANCOM-BC2 (no filter) controlled FDR at the nominal for 
small to moderate sample sizes. For large sample sizes (for example, 
more than 50), it failed to control FDR within the nominal level but still  
had substantially lower FDR than LOCOM, LinDA, ANCOM-BC and 
CORNCOB. However, ANCOM-BC2 (no filter) had the highest power 
among all the methods. On the other hand, ANCOM-BC2 (SS filter) 
sacrificed about 10% of power, a concession that enables the control 
of FDR across all simulation settings.

To evaluate the power and FDR trade-off across the diverse DA 
methods, we computed the FDR adjusted power (FAP), as detailed 
in the Supplementary Methods. This measure (not a probability) is 
represented in relation to power in Extended Data Fig. 2. An elevated 
FAP indicates a superior power and FDR trade-off for a given power. 
Extended Data Fig. 2a corresponds to the continuous exposure case 
and Extended Data Fig. 2b pertains to the binary exposure case. From 
the cumulative distribution plots, we see that for any given power, both 
versions of ANCOM-BC2 have stochastically larger FAP values than all 
other methods (that is, their cumulative distribution functions are 
more to the right), with ANCOM-BC2 (SS filter) being stochastically the 

largest. Since, in practice not all methods have the same FDR, hence to 
account for the power and FDR trade-off, we advocate the use of FAP 
as a measure for comparing DA methods.

Simulations: multiple groups
The simulation settings for multigroup comparisons mimic those out-
lined in the previous section.

Multiple pairwise comparisons against a reference group. We 
assessed the performance of ANCOM-BC2 (SS filter) and ANCOM-BC2 
(no filter), ANCOM-BC and LinDA across three experimental groups 
with covariate adjustments. LOCOM and CORNCOB were not included 
because they are not designed for multiple groups. As illustrated  
in Fig. 2a, both versions of ANCOM-BC2 yielded smaller mixed  
directional FDR (mdFDR)8,9, compared to other methods. Note that 
mdFDR accounts for errors due to multiple testing, multiple com-
parisons and directional errors. Specifically, ANCOM-BC2 (SS filter) 
effectively controlled mdFDR below the nominal level of 0.05. Although 
in some cases it results in a loss of about 10–20% power, it ensures more 
stringent mdFDR control. Even with this power reduction, ANCOM-BC2 
(SS filter) maintains a robust power (more than 0.8) in most scena-
rios. Without the filter, ANCOM-BC2 (no filter) remains to be the most 
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Fig. 1 | FDR and power comparisons for continuous and binary exposures. 
a,b, The FDR and power of various DA methods for continuous (a) and binary 
exposures (b) are summarized. Synthetic datasets were generated using the PLN 
model18 based on the mean vector and covariance matrix estimated from the 
URT dataset19. The x axis represents the sample size (or sample size per group for 

the binary exposure), and the y axis shows the FDR or power. The dashed lines 
denote the nominal level of FDR (FDR = 0.05). The proportion of true DA taxa are 
provided in the top of each panel. The mean estimated FDR (or power) ± standard 
errors (indicated by error bars) derived from 100 simulation runs are provided in 
each panel.
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powerful DA method of all. Despite its mdFDR occasionally surpass-
ing 0.05 for larger sample sizes (more than 50), it was still markedly  
better than both LinDA and ANCOM-BC, which struggled to control 
mdFDR efficiently.

Multiple pairwise comparisons. We assessed ANCOM-BC2’s per-
formance when making all possible pairwise comparisons instead of 
comparing against a specific reference group as done above. Since 
the competing methods considered in this Article are not currently 

designed for multiple pairwise comparisons, they are excluded. As 
depicted in Fig. 2b, ANCOM-BC2 (SS filter) effectively controlled the 
mdFDR below the nominal level of 0.05 while maintaining substantial 
power (more than 0.8) in most scenarios. However, as seen above, 
ANCOM-BC2 (no filter) controlled mdFDR within the nominal level  
for small sample sizes or when a large proportion of taxa are differen-
tially abundant. However, when the sample sizes are large (for  
example, more than 50), it had an inflated mdFDR exceeding the  
nominal level.
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Fig. 2 | FDR (mdFDR) and power comparisons for multiple exposure groups. 
a–c, The FDR (mdFDR) and power of various DA methods for multiple pairwise 
comparisons against a reference group (a), multiple pairwise comparisons (b) 
and pattern analysis (c) are summarized. Synthetic datasets were generated using 
the PLN model18 based on the mean vector and covariance matrix estimated from 
the URT dataset19. The x axis represents the sample size per group, and the y axis 
shows the FDR (mdFDR) or power. The dashed lines denote the nominal level of 

FDR (FDR = 0.05) or mdFDR (mdFDR = 0.05). The proportion of true DA taxa are 
provided in the top of each panel. The mean estimated FDR (or power) ± standard 
errors (indicated by error bars) derived from 100 simulation runs are provided in 
each panel. Within the context of multiple pairwise comparisons, ANCOM-BC2 
(SS filter) effectively controlled FDR (mdFDR) while maintaining power similar to 
ANCOM-BC2 (no filter).

http://www.nature.com/naturemethods


Nature Methods | Volume 21 | January 2024 | 83–91 87

Article https://doi.org/10.1038/s41592-023-02092-7

Pattern analysis. Pattern analysis is another unique feature of 
ANCOM-BC2. In this simulation study, we modeled a scenario demon-
strating a monotonically increasing pattern. Here, the log fold-change 
(denoted by δ) among the DA (or nonnull) taxa between the second 
group and the reference group ranged from 0.5 to 2.0, and the log 
fold-change of the third group relative to the first group was taken 
to be δ + 1. In this setting, a ‘discovery’ in pattern analysis refers to 
the identification of a taxon that displays a monotonically increas-
ing pattern across all three groups. As described in Fig. 2c, both  
versions of ANCOM-BC2 controlled the FDR while maintaining  
high power exceeding 0.8 in most scenarios. Nonetheless, under  
the most extreme scenario where 90% of taxa were truly differen-
tially abundant, ANCOM-BC2 encountered a power loss. The observed  
power loss is largely due to ANCOM-BC2’s built-in bias correction, 
which assumes that there is a sufficient number of null taxa.

Simulations: correlated samples
In this section, we evaluated the performance of ANCOM-BC2 in  
comparison to LinDA when the samples across experimental groups 
were correlated, such as in a repeated measurement design. We also 
considered linear mixed model (LMM) on CLR-transformed data 
(LMM-CLR), a method commonly used for repeated measurements. 
The interpretation of LMM-CLR results differs from the previously 

mentioned DA methods. According to LMM-CLR, a taxon is nonnull if 
it is differentially abundant relative to the geometric mean of all taxa, 
not its absolute. We included this method in our simulation study due 
to its frequent application in repeated measures analyses of micro-
biome data. ANCOM-BC, LOCOM and CORNCOB were excluded in 
this simulation as none of them are equipped to handle correlated 
experimental groups. We considered mixed-effects models with: (1) a 
random intercept and (2) a random intercept and a random slope. The 
random intercept had a standard deviation of 1 and the random slope 
had a standard deviation of 1.5, and both had mean zero. If both random 
effects were present, the correlation coefficient between them was 
set to 0.5. In each of these scenarios, the exposure variable consisted 
of three levels (that is, three experimental groups). The simulation 
study also included a continuous covariate. The remaining simulation 
settings adhered to those described in the previous sections (details 
in Supplementary Methods section). The simulation results for both 
scenarios are provided in Fig. 3. In each case, as in all previous settings, 
ANCOM-BC2 (SS filter) effectively controlled the mdFDR at or below the 
nominal level of 0.05, while maintaining substantial power (more than 
0.8) in most of the simulation settings. On the other hand, ANCOM-BC2 
(no filter) consistently exceeded the nominal mdFDR level of 0.05. 
Despite this, it had a larger power and smaller mdFDR than LinDA and 
LMM-CLR across all settings. LMM-CLR, generally exhibited the lowest 
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Fig. 3 | mdFDR and power comparisons for correlated samples. a,b, The 
mdFDR and power of various DA methods in a random intercept model (a)  
and a random coefficients model (b) are summarized. Synthetic datasets  
were generated using the PLN model18 based on the mean and covariance 
estimated from the URT dataset19. The x axis represents the sample size per 

group, and the y axis shows the mdFDR or power. The dashed lines denote the 
nominal level of FDR (FDR = 0.05) or mdFDR (mdFDR = 0.05). The proportion  
of true DA taxa are provided in the top of each panel. The mean estimated  
mdFDR (or power) ± standard errors (indicated by error bars) derived from  
100 simulation runs are provided in each panel.
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power among all methods while having inflated mdFDR across all simu-
lation scenarios. Notably, LMM-CLR’s rate of mdFDR rise was the most 
rapid with increasing sample size relative to the other methodologies.

Additional simulation studies
In addition to the URT data, we also analyzed a subset from the Quan-
titative Microbiome Project23, comprising 106 samples and 91 OTUs. 
The findings paralleled those from the URT dataset (Extended Data 
Figs. 3–5).

Soil microbiome and aridity
Recently, Neilson et al.24 investigated the differences in soil  
microbiomes according to soil aridity in the Atacama Desert in Chile. 
They classified soil samples into three ordered categories based on 
aridity, namely, arid, margin and hyper-arid, and sequenced data from 
63 sample pits from 18 sites in the desert. Since they did not perform DA 
analyses of those data, we reanalyzed those data using the ANCOM-BC2 
methodology. To begin with, we conducted a pattern analysis of rich-
ness with respect to the ordered aridity categories (arid to hyper-arid) 
(Fig. 4a). Using a constrained inference-based trend test7, executed 
using ORIOGEN25 with 10,000 bootstraps, we discovered a significant 
loss of richness with the increase in aridity (P = 0.0001). This finding is 
consistent with Neilson et al.24.

Next, we conducted a pattern analysis using ANCOM-BC2 (no fil-
ter) to identify trends in microbial abundance across the ordered soil 
categories, with arid soil serving as the reference group. Significant 
genera are presented in Fig. 4b. Genera in green were determined 
to be significant after adjusting for multiple testing. Additionally, 
genera denoted by an asterisk were also identified as significant when 
the conservative ANCOM-BC2 (SS filter) was applied. Blastococcus, 

Rubrobacter and Thermobaculum increased in mean absolute abun-
dance with soil aridity (P < 0.05). The trend in Blastococcus was sig-
nificant even after adjusting for multiple testing (adjusted P < 0.05) 
(Fig. 4b). Thermobaculum is known for its thermophilic properties, 
with some species thriving in temperatures up to 90 °C (ref. 26). It has 
also been documented to possess antimicrobial-resistant genes27,28. 
Similarly, the two Actinobacteria genera, Blastococcus and Rubrobac-
ter, are also known for their antibacterial resistance29,30. Thus, using 
ANCOM-BC2, we discovered genera that increased in abundance with 
aridity and may be antibacterial-resistant.

Elevated aridity in desert ecosystems has profound implications 
on soil health. For instance, increasing aridity in desert soils has been 
found to significantly diminish nitrogen-cycling microbes. Notable 
among the affected microbial taxa are Nitrobacter, a common con-
tributor to nitrification, and potential widespread nitrogen fixers such 
as Sinorhizobium, Rhizobium and Azospirillum. These taxa were not 
detected in samples obtained from hyper-arid environments based on 
the results of the presence and absence test (Supplementary Table 1). 
In agreement with these findings, the ANCOM-BC2 (no filter) pattern 
analysis also revealed that increasing aridity correlates with significant 
reductions in beneficiary genera (Fig. 4b). The ANCOM-BC2 trend anal-
ysis revealed a significant decrease in the mean absolute abundance of 
Jiangella, Kaistobacter, Planctomyces and Pseudonocardia in relation 
to soil aridity (P < 0.05). Among them, Kaistobacter and Pseudono-
cardia remained significant after adjusting for multiple testing, and 
the result for Pseudonocardia did not change when the conservative 
ANCOM-BC2 (SS filter) was used. Pseudonocardia has been recognized 
for its nitrogen-fixing properties31 and its significance to biotechnology 
stems from its ability to synthesize secondary metabolites with anti-
bacterial, antifungal and antitumor properties32. Likewise, Kaistobacter 
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Samples encompass 63 biologically independent pits obtained from 18 distinct 
Atacama Desert sites in Chile24. Each violin’s median value is signified by a central 
black dot, while the interquartile range is represented by a black bar. The violin’s 
width mirrors the density of data points at each richness value. Individual data 
points are also displayed as jittered dots. A trend test using the constrained 
inference-based approach7 suggests a significant decline in richness with 
increase in soil aridity (P = 0.0001). b, ANCOM-BC2 (no filter) pattern analysis 
heatmap in relation to aridity. Monotonically increasing and decreasing trends 

were evaluated across ordered soil categories, with arid soil as the reference. 
The columns denote soil categories and the significant genera identified by 
ANCOM-BC2 pattern analysis are provided in the rows. Each cell color represents 
abundance change: blue indicates reduction and red signifies increase. The 
log fold-changes relative to the reference group (arid group) are noted in each 
cell. The Holm–Bonferroni method was used for multiple testing correction. 
Genera represented in black are significant without a multiple testing correction, 
whereas those highlighted in green are significant after multiple testing 
correction. Additionally, genera marked with an asterisk are also significant  
after applying the ANCOM-BC2 (SS filter).
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is known to foster homeostasis within soil microbial communities and 
acts as a suppressor of soil-borne pathogens33. Moreover, Jiangella,  
a halotolerant actinobacterium, is distinguished by its association 
with nitrate solution, sulfonate transport systems, nitrite reductase 
and nitrogen fixation34.

Gut microbial composition of patients with IBD
We illustrate ANCOM-BC2 using a longitudinal inflammatory bowel 
disease (IBD) dataset obtained from Fang et al.35 to investigate the 
changes in the gut microbiome following gastrointestinal surgery in 
patients with IBD. The data in this study are based on 322 stool sam-
ples collected from 125 patients. Of these, 46 patients were diagnosed 
with ulcerative colitis and 79 with Crohn’s disease. Stool samples  
were obtained from each participant at approximately 6-month inter-
vals, beginning at the baseline time point. Specifically, 21 patients 
provided one sample, 38 patients provided two samples, 41 patients 
provided three samples, 23 patients provided four samples and two 
patients provided five samples. Of the total patient population, 87 
(70.0%) had no history of intestinal surgery, while 22 patients with 
Crohn’s disease had undergone ileocolonic resection and 13 patients 
with Crohn’s disease and three patients with ulcerative colitis had 
undergone different types of colectomy. These surgeries occurred 
before the collection of the baseline stool sample. For the purposes 
of this study, we focused on comparing the microbial compositions 
between patients who had not undergone gastrointestinal surgery, 
those who had undergone ileocolonic resection and those who had 
undergone colectomies. We adjusted the ANCOM-BC2 model for IBD 
disease type (ulcerative colitis versus Crohn’s disease) and two potential 

confounders, namely disease state (inactive versus active) and anti-
biotic use (absent versus present).

We performed multiple pairwise comparisons among the  
three groups controlling the overall mdFDR at 0.05 using ANCOM-BC2 
(no filter). The results are depicted in Fig. 5. The log fold-changes 
emphasized in green are significant after adjusting for mdFDR. Further, 
changes marked with an asterisk were also significant by ANCOM-BC2 
(SS filter) method. Ileocolonic section is the surgical removal of the 
diseased section of the ileum, which is the junction area between the 
small and last intestines. By contrast, colectomy is the surgical removal 
of most or all of the large intestine. Our analysis revealed that almost 
no microbial species were differentially abundant between the two 
surgical groups of patients, except for F. prausnitzii, which is more 
abundant in the colectomy group.

We observed marked reductions in the absolute abundance of 
several commensal gut bacterial species in patients who had undergone 
either ileocolonic resection or colectomy, in comparison to patients 
without any history of intestinal surgery. The affected species included 
Bacteroides spp. (ovatus and uniformis), Faecalibacterium prausnitzii 
and Roseburia faecis. Of particular note is the significant decrease 
in Faecalibacterium prausnitzii in patients subjected to ileocolonic 
resection. This reduction remained noteworthy even after using the 
conservative ANCOM-BC2 (SS filter) together with multiple testing 
corrections. A crucial aspect to consider is that most of these bacterial 
species are intrinsically involved in the production of short-chain fatty 
acids such as acetate, propionate and butyrate36–42. These short-chain 
fatty acids are essential for maintaining gut health, bolstering gut  
barrier function, exhibiting anti-inflammatory properties and serving 
as energy sources for colonocytes. Thus, the surgical intervention  
on these patients, which was necessary, may have unintended effects 
on the host’s immune response and overall health due to the reduction 
of some important gut microbiota.

Discussion
In this article, we introduced a general framework called ANCOM-BC2 
for performing DA analysis when the exposure variable is continuous, 
binary or (ordered) categorical. The proposed methodology allows for 
adjusting for covariates and repeated measures (longitudinal meas-
ures) while controlling for FDR, or mdFDR when the exposure variable 
has more than two groups and the researcher is interested in inferring 
whether the absolute abundance of a taxon increased or decreased 
within each pairwise comparison. Furthermore, using the theory of con-
strained statistical inference, ANCOM-BC2 allows researchers to infer 
patterns in microbial absolute abundance over ordered categories of 
exposure variables. For example, it allows a researcher to test whether 
a particular microbe increased (or decreased) in absolute abundance 
over ordered disease categories (very healthy to least healthy). This is 
a unique feature of ANCOM-BC2.

Driven by observed shortcomings of ANCOM-BC in specific edge 
cases, highlighted in our work and recent literature, we tailored our 
simulation study to evaluate ANCOM-BC2’s performance in these 
scenarios as well. The results of our simulation study demonstrate that 
ANCOM-BC2 provides a better FDR control over competing methods 
tested here while maintaining high power. In particular, ANCOM-BC2 
(SS filter) consistently controlled the FDR or mdFDR below the nominal 
level in all simulation settings considered in this Article while maintain-
ing high power. By contrast, ANCOM-BC2 (no filter) emerged as the DA 
method with the highest power, displaying a smaller FDR or mdFDR 
when compared with competing methods other than ANCOM-BC2 
(SS filter). According to the FAP score introduced in this Article, 
ANCOM-BC2 (SS filter) and ANCOM-BC2 (no filter) had stochastically 
larger FAP scores than competitors with ANCOM-BC2 (SS filter) having 
the highest score. In terms of practical application, we endorse the 
use of ANCOM-BC2 (no filter) for small to moderate sample sizes (for 
example, n ≤ 50) when repeated measurements are absent. For larger 
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Fig. 5 | Heatmap of ANCOM-BC2 (no filter) pairwise analysis evaluating the 
impact of surgical resection on microbial species. In a cohort of patients 
with IBD35, the analysis entailed multiple pairwise comparisons among three 
distinct groups: ileocolonic resection, colectomy and no intestinal surgery, 
while maintaining an overall mdFDR at 0.05. The columns denote the specific 
comparisons: ileocolonic resection versus no intestinal surgery, colectomy 
versus no intestinal surgery and ileocolonic resection versus colectomy. The rows 
list significant species as identified by ANCOM-BC2. Each cell is color-coded to 
represent significant changes in absolute abundance: blue represents reduced 
abundance and red indicates increased abundance. Multiple testing corrections 
were performed using the Holm–Bonferroni method. The text within each cell 
represents the log fold-change value. The log fold-change values displayed in black 
represent significant changes without adjustment for mdFDR, whereas those in 
green are significant after applying mdFDR control. Furthermore, values with an 
asterisk are significant following the application of the ANCOM-BC2 (SS filter).
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sample sizes (for example, n > 50) or in cases of repeated measures, 
ANCOM-BC2 (SS filter) is recommended due to its superior FDR control. 
In pattern analyses, both ANCOM-BC2 (no filter) and ANCOM-BC2 (SS 
filter) perform equally well in terms of FDR control within the nominal 
level, although ANCOM-BC2 (no filter) demonstrates a marginally 
superior power.

The power of ANCOM-BC2’s pattern analysis was demonstrated in 
the soil microbiome data analyzed in this Article. When standard pair-
wise analyses were performed, only Pseudonocardia was differentially 
abundant across different groups (data not shown). However, using 
the pattern analysis, we discovered several taxa display increasing or 
decreasing trends over the ordered soil aridity groups. This is because, 
unlike pairwise comparisons, pattern analysis uses constrained infer-
ence methods, which ‘borrow’ information from ordered groups, thus 
increasing the effective sample size and the power7,43,44.

The ileocolonic section and colectomy are procedures that sur-
gically remove different regions of the intestines, and yet based on 
our analysis of the IBD data, there were no significant differences 
in the absolute abundance of most of the gut bacteria in these two 
groups. Furthermore, the two groups of patients have similarly reduced 
absolute abundances of certain bacteria relative to those who did not 
undergo either of the two surgeries. Based on these findings, it may 
be reasonable to hypothesize that most species of gut microbiota are 
spatially uniformly distributed in the ileum and large intestines.
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Methods
Notation
Notations used in the ANCOM-BC2 methodology are summarized in 
Table 1. The overall procedure of the ANCOM-BC2 methodology is 
summarized in Extended Data Fig. 6.

ANCOM-BC2 for fixed-effects models
Model assumptions. Assumption 1. Multiplicative model for observed 
counts:

Oij = SiCjAijEij.

Assumption 1 indicates that, in expectation, the observed counts 
of a taxon in a random sample is in constant proportion to the true 
absolute abundance in a unit volume of the ecosystem of the sample. 
This proportion can be decomposed into two parts: (1) sample-specific 
sampling fraction and (2) taxon-specific sequencing efficiency.

According to Assumption 1, for nonzero observed count, the above 
multiplicative model can be transformed into an additive model by 
log transformation

oij = si + cj + aij + e(o)ij .

Assumption 2. Linear model for log true absolute abundances: for each 
taxon j, aij, i = 1, …, n are independently distributed, and

aij = bj
Txi + e(a)ij ,

where

 (1) xi = (1, xi1, xi2,… , xip)
T  are the covariates of interest (including the 

intercept) for the ith sample,
 (2) bj = (bj0,bj1,bj2,… ,bjp)

T  are the corresponding coefficients for xi.

 (3) e(a)ij , i = 1,… ,n are independently distributed random errors for 
log true absolute abundances with E(e(a)ij ) = 0,Var(e

(a)
ij ) = σ

(a)
jj .

Assumption 3. (Independent random error for log observed counts): 
assume there are random errors, e(o)ij , i = 1,… ,n, j = 1,… ,d , for log 
observed counts oij, which are independently distributed with 
heteroskedasticity:

E(e(o)ij ) = 0, Var(e
(o)
ij ) = σ

(o)
ij , e

(o)
ij ⟂⟂e

(a)
ij .

Regression framework. Based on the Assumptions 2 and 3, oij can be 
modeled as:

oij = si + cj + bj
Txi + e(a)ij + e(o)ij ∶= si + cj + bj

Txi + eij, (1)

with

E(oij) = si + cj + bj
Txi, Var(oij) = Var(eij) = σ(a)jj + σ(o)ij ∶= σ(t)ij .

where σ(t)ij  denotes the total variance.
Equation (1) can also be written in a vector notation as follows:

oj = s + cj1 + Xbj + ej, (2)

with

E(ej) = (0,… ,0)T,

E(oj) = s + cj1 + Xbj,

Cov(oj) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ(t)1j 0 … 0

0 σ(t)2j … 0

⋮ ⋮ ⋱ ⋮

0 0 … σ(t)nj

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

where

 (1) 1 = (1, 1, …, 1)T,
 (2) oj = (o1j,o2j,… ,onj)

T ,

 (3) s = (s1, s2,… , sn)
T ,

 (4) bj = (bj0,bj1,bj2,… ,bjp)
T ,

 (5) ej = (e1j, e2j,… , enj)
T ,

 (6) X =
⎡
⎢
⎢
⎣

1 x11 x12 … x1p
1 x21 x22 … x2p
⋮ ⋮ ⋮ ⋱ ⋮
1 xn1 xn2 … xnp

⎤
⎥
⎥
⎦

.

It is important to note that within each sample i, for taxa l ≠ m, oil  
and oim are not necessarily independent due to correlations  
between ail and aim. Thus vectors ol and om are not independent random 
vectors.

Remove the effect of taxon-specific sequencing efficiency
To eliminate the effect of cj, we first center the log observed counts 

across samples, that is

yij ∶= oij − ̄o⋅j = (si − ̄s) + bj
T(xi − x̄) + (eij − ̄e⋅j),

∶= θi + βTj xi + ϵij,
(3)

where

 (1) βjk = bjk for k = 1, …, p, and βj0 = bj
Tx̄,

 (2) Var(ϵij) =
(n−1)2

n2
σ(t)ij + 1

n2
∑i′≠iσ

(t)
i′ j ∶= σij.

Estimation of sample-specific bias
As can be seen from equation (3), βj are not identifiable without deter-
mining the nuisance parameter θi. We define bias-corrected log  
absolute abundance y(crt)ij = yij − θi , then the ordinary least squares 
estimators of θi and βj can be obtained by iteratively solving the  
following equations. For ease of exposition, the algorithm is described 
in the vector form, that is yj = (y1j, y2j,… , ynj)

T,θ = (θ1,θ2,… ,θn)
T  and  

so on.

Table 1 | Summary of notation

Notation Description

i Sample index, i = 1, 2, …, n.

j Taxon index, j = 1, 2, …, d.

k Index of fixed effects, k = 1, 2, …, p.

l Index of random effects, l = 1, 2, …, q.

xik The kth fixed effect of interest for the ith sample.

zil The lth random effect of interest for the ith sample.

Aij
b True absolute abundance of jth taxon in a unit volume of 

ecosystem of ith sample.

Oij b Observed count of jth taxon in a random specimen taken 
from a unit volume of ecosystem of ith sample.

Eij b Random error for taxon j in sample i.

Si a Sample-specific sampling fraction.

Cj a Taxon-specific sequencing efficiency.

aij b logAij.
oij b logOij.
eij b Random error for taxon j in sample i in log scale.

si a Sample-specific sampling fraction in log scale.

cj a Taxon-specific sequencing efficiency in log scale.
aParameter. bRandom variable.
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Algorithm 1. Iterative maximum likelihood estimation
Initialize:
  For j = 1, …, d
  θ ← 0
  y(crt)j ← yj − θ = yj

  βj ← (XTX)−1XTy(crt)j = (XTX )−1XTyj
While not converge do
  θ← 1

d
∑d
j=1(yj − Xβj)

  y(crt)j ← yj − θ

  

end while
On convergence,

θ∗ = 1
d

d
∑
j=1
(yj − Xβ∗j ), y

(crt)
j

∗
= yj − θ∗, β∗j = (XTX)−1XTy(crt)j

∗
. (4)

Therefore

θ∗ = 1
d

d
∑
j=1
(yj − Xβ∗j ) =

1
d

d
∑
j=1
(yj − Py(crt)j

∗
)

= 1
d

d
∑
j=1
(yj − Pyj + Pθ∗) =

1
d

d
∑
j=1
[y(crt)j + θ − P(y(crt)j + θ) + Pθ∗]

= (I − P)θ + Pθ∗ + 1
d

d
∑
j=1
(I − P)y(crt)j

= (I − P)θ + Pθ∗ + 1
d

d
∑
j=1

ϵj,

(5)

where

 (1) P = X(XTX)−1XT  is the projection matrix onto 𝒞𝒞(X), the column 
space of X,

 (2)  with E(εj) = 0.

Rearranging equation (5), we see that

Taking expectations on both sides leads to

(I − P)[E(θ∗) − θ] = 0.

As I − P is an orthogonal projector onto 𝒞𝒞(X), the above equation holds 
as long as either of the following is valid:

 (1) E(θ*) − θ = 0,
 (2) E(θ∗) − θ ∈ 𝒞𝒞(X).

It is sufficient to consider (2) because (1) is the trivial case.  
If (1) were true then from (4) we deduce that there is no sample- 
specific effect and that . Suppose (2) is true, then there  
exists a vector δ ≠ 0 ∈ ℝp, such that

Then by combining with equation (4), we have

We shall denote θ* and  obtained from the above iterative algo-
rithm as preliminary estimators of θ and βj, respectively. Without loss 
of generality, throughout this Article we assume XTX is a full rank matrix. 
If it is not a full rank matrix, then we may use any generalized inverse 

of XTX because  in equation (5) is invariant of the choice of gene-
ralized inverse (XTX )g  used in β∗j = (XTX )gXTy(crt)j . Thus the preliminary 
estimator θ* provided above is invariant of the choice of generalized 
inverse used in deriving β∗j . Furthermore, throughout this Article, we 
are interested in testing a hypothesis regarding linearly estimable 
parameters Aβj, that is 𝒞𝒞(AT) ⊂ 𝒞𝒞(XT)  (ref. 45). Consequently, the  
estimator Aβ∗j  is invariant of the generalized inverse used in the estima-
tion of β∗j . Hence, throughout this text, for simplicity of exposition, we 
shall assume XTX is of full rank.

For each taxon j = 1, …, d, by equation (7), β∗j  is a biased estimator 
if δ ≠ 0. Suppose we wish to test the following hypothesis

Under the null hypothesis, E(Aβ∗j ) − Aβ
0
j = Aδ ≠ 0  and hence  

biased. The next step is to estimate this bias δ and accordingly modify 
the estimator Aβ∗j  so that the resulting estimator is asymptotically 
centered at Aβ0j  under the null hypothesis and hence the test statistic 
is asymptotically centered at zero.

First we make the following observations. As E( β∗j ) = δ + βj , we 
note that as n → ∞, for finite dimension d,

Σj
− 1
2 ( β∗j − (δ + βj))→dNP(0, I ), (8)

where

Σj = lim
n→∞

(XTX)−1(
n
∑
i=1
σ2ijxixi

T)(XTX )−1. (9)

As

E(θ∗ + Xβ∗j ) = θ − Xδ + X(δ + βj) = θ + Xβj,

that is θ∗ + Xβ∗j  is an unbiased estimator of θ + Xβj, hence a pos-
sible estimator of Σj is given by

Σ̂j = (XTX )−1 (
n
∑
i=1

( yij − θ∗i − β∗j
Txi)

2
xixiT) (XTX)

−1. (10)

Under some mild regularity conditions46, with finite d, we have the 
following consistency result

n( ̂Σj −Σj)→P0, asn→∞. (11)

Therefore, replacing Σj with ̂Σj  in equation (8) and appealing to 
Slutsky’s theorem, we have

̂Σj
− 1
2 ( β∗j − (δ + βj))→dNP(0, I ), asn→∞.

By equations (9) and (11), under some mild regularity conditions, 
for finite d, we obtain

̂Σj→p0, asn→∞.

Consequently,

β∗j →Pδ + βj, asn →∞. (12)

The above observation regarding the convergence of β∗j  plays  
a critical role in the following. Since the sampling fraction is constant 
for all taxa within a sample, we pool information across taxa within 
each sample when estimating δ. We model each taxon abundance using 
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the following Gaussian mixture model. For the jth taxon and the kth 
covariate, let C0 denote the set of taxa that are not differentially abun-
dant with respect to xik, that is, C0 = {j ∈ (1, 2, …, d): βjk = 0}; let C1 denote 
the set of taxa whose abundance decreases with xik, that is, C1 = {j ∈ (1, 2,  
…, d): βjk < 0}, and let C2 denote the set of taxa whose abundance 
increases with xik, that is, C2 = {j ∈ (1, 2, …, d): βjk > 0}. Let πr denote the 
probability that a taxon belongs to set Cr, r = 0, 1, 2. For simplicity of 
estimation of parameters, similar to generalized estimating equations, 
we shall assume that β∗jk, j = 1, 2,… ,d , are independently distributed.  
As commonly done in the analyses of various omics data, we ignore  
the underlying correlation structure when estimating δ. Thus, we 
model the distribution of β∗jk  by Gaussian mixture model as follows:

f(β∗jk) = π0ϕ(
β∗jk − δk
νj0

) + π1ϕ(
β∗jk − (δk + l1)

νj1
) + π2ϕ(

β∗jk − (δk + l2)
νj2

) ,

(13)

where

 (1) ϕ is the standard normal density function,
 (2) δk, δk + l1 and δk + l2 are means for β∗jk|C0,β

∗
jk|C1 and β∗jk|C2, 

respectively. l1 < 0, l2 > 0,
 (3) νj0, νj1 and νj2 are variances of β∗jk|C0,β

∗
jk|C1 and β∗jk|C2, respectively.

Note that instead of fitting a multivariate Gaussian mixture model 
for all covariates together, we choose to fit a univariate Gaussian  
mixture model repeatedly for every single covariate. This repetition  
is simply because the sets of taxa {C0, C1, C2} are not necessarily the  
same for different covariates. Also, note that for a categorical  
covariate of s + 1 levels, this contains s coefficients, for example 
βj1, …, βjs, and we shall fit the Gaussian mixture model for these  
s coefficients separately.

For computational simplicity, we assume that νj1 > νj0, νj2 > νj0. Thus, 
without loss of generality for κ1, κ2 > 0, let νj1 = νj0 + κ1 and νj2 = νj0 + κ2. 
While this assumption is not a requirement for our method, it is rea-
sonable to assume that variability among differentially abundant taxa  
is larger than that among the null taxa. By making this assumption,  
we simplify the computation.

Assuming samples are independent, we begin by first estimat-
ing ν2j0 = Var( β

∗
jk). Note that ν2j0 is the function of heteroscedastic vari-

ances, a consistent estimator of ν2j0, which we refer to as ν̂2j0, is the kth 
diagonal element of ̂Σj  stated in equation (10). In all future calcula-
tions, we plug in ν̂2j0 for ν2j0. This is similar in spirit to many statistical 
procedures involving nuisance parameters. The following lemma47 
is useful in the sequel.

Lemma 1. Introducing the latent variable in calculating log-likelihood:

log f(x|θ) = Ef(z|x,θ)[log f(z|θ) + log f(x|z,θ)].

Let Θ = (δk,π1,π2,π3, l1, l2, κ1, κ2)
T  denote the set of unknown para-

meters, then for each taxon the log-likelihood can be reformulated 
using Lemma 1, as follows:

Θ← argmax
Θ

d
∑
j=1

2
∑
r=0

Pr, j[log Pr( j ∈ Cr) + log f( βjk| j ∈ Cr)]. (14)

Then the EM algorithm is described as follows:

•	 E step: compute conditional probabilities of latent variables. 

Define Pr, j = Pr( j ∈ Cr|βjk,Θ) =
πrϕ(

βjk−(δk+lr)

νjr
)

∑rπrϕ(
βjk−(δk+lr)

νjr
)
, r = 0, 1, 2; j = 1,… ,d, 

which are conditional probabilities representing the probability 
that an observed value follows each distribution. Note that l0 = 0.

•	 M step: maximize the likelihood function with respect to the 
parameters, given the conditional probabilities.

We shall denote the resulting estimator of δk on convergence of 
the algorithm by δ̂EMk .

As stated in Lin and Peddada3, compared to ν̂2j0, the variance  
and covariance contributed by δ̂EMk  is negligible when the number of 
nondifferentially abundant taxa is large, such as when analyzing  
the microbiome data at the OTU, amplicon sequence variant (ASV) or 
species level of the phylogenetic tree.

The above procedure is applied to every βjk, k = 1, …, p, eventually, 
we obtain the estimator of δ as

δ̂EM = (δ̂EM1 , δ̂EM2 ,… , δ̂EMP )
T
. (15)

Therefore, the final estimator of βj is defined as

with

β̂j→Pβj, asn→∞, (17)

given that δ̂EM is a good approximation of δ.
The estimation procedure is summarized in Algorithm 2.

Algorithm 2. EM algorithm
(1) input:
  β∗j ,Σj, j = 1,… ,d
(2) procedure EM (β∗j ,Σj)
(3)  return δ̂EMk , k = 1,… ,P
(4) end procedure
(5) for k = 1, …, p do
(6)  β̂jk ← β∗jk − δ̂

EM
k

(7) end for
For taxon j, we now describe our methodology for testing the 

following hypotheses

H0 ∶ Aβj = Aβ0j ,

H1 ∶ Aβj ≠ Aβ0j .

From Slutsky’s theorem, as n → ∞, the following test statistic is 
approximately central chi-square distributed under the null hypothesis

Wj = (Aβ̂j − Aβ0j )
T
(A ̂ΣjAT)

−1(Aβ̂j − Aβ0j )

= (Aβ∗j − Aδ̂
EM − Aβ0j )

T
(A ̂ΣjAT)

−1(Aβ∗j − Aδ̂
EM − Aβ0j )

→dχ2q,

where q = rank(A).
To control the FDR due to multiple testing, we recommend apply-

ing Holm–Bonferroni method20 instead of Benjamini–Hochberg pro-
cedure6 because the Holm–Bonferroni method does not require any 
assumptions regarding the dependence structure in the underlying P 
values, and is also known to be a better method to control FDR when P 
values are not accurate21.

Sample-specific biases estimation. After obtaining δ̂EM, the estimator 
of sample-specific biases θ is defined as follows:

θ̂ = 1
d

d
∑
j=1
(yj − Xβ̂j). (18)

Let Σ(i) = [σ(i)lm]l,m=1,…,d
 denote the d × d covariance matrix of 

, where σ(i)lm is the (l, m)th element of Σ(i) and σ(i)jj   
is the jth diagonal element of Σ(i). Furthermore, suppose
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From Assumption 4, we have

0 ≤ 1TΣ(i)1 =
d
∑
l=1

d
∑
m=1

σ(i)lm =
d
∑
j=1
σ(i)jj +

d
∑
l≠m

σ(i)lm ≤ dK +
d
∑
l≠m

σ(i)lm.

Hence

0 ≤ 1TΣ(i)1
d2

≤ K
d
+
∑d
l≠m σ

(i)
lm

d2
= o(1).

Thus, for each taxon j = 1, 2, …, d, we have

1
d

d
∑
j=1
(yj − (θ + Xβj))→P0, asd→∞. (19)

Therefore, according to equations (17) and (19), as both n, d → ∞,

θ̂ → θ. (20)

Assumption 4. Sparse correlations among taxa:

σ(i)jj < K < ∞,

∑d
l≠m σ

(i)
lm

d2
= o(1).

Remark 1. Regularization of variance: to avoid the spurious detection of 
significance due to extremely small standard errors, particularly for rare 
taxa, we incorporated a small positive constant in the denominator of 
the ANCOM-BC2 test statistic for each taxon. This approach was inspired 
by the significance analysis of microarray methodology15. Specifically, 
the regularization factor was set as the fifth percentile of the distribu-
tion of standard errors for each fixed effect, unless otherwise specified.

Remark 2. Sensitivity analysis for the pseudo-count addition: to miti-
gate the risk of inflated false-positive rates resulting from the choice 
of pseudo-count in ANCOM-BC2, we conducted a sensitivity analysis 
to assess the impact of varying pseudo-count values on DA results. 
This is particularly important, as several studies have shown that the 
choice of pseudo-count can significantly influence the results of DA 
analysis methods16,17. For details regarding the sensitivity analysis and 
the definitions of the two version of ANCOM-BC2, refer to the section 
‘Strategies implemented in ANCOM-BC2 to handle zeros’ below.

Multigroup comparison. In some applications, for a given taxon, 
researchers are interested in drawing inferences regarding DA among 
different pairs of experimental groups. We refer to this kind of problem 
as a multigroup comparison problem, and extra caution needs to be 
exercised to correct P values due to multiple comparisons. For simplic-
ity, we drop the subscript j (taxon index) in the following discussions.

Global test
For a given taxon and a total of g + 1 experimental groups (including the 
reference group), researchers may want to test whether there exists 
at least one group that is significantly different from others. For ease 
of exposition, we split the covariates X into two parts, where X1 stands 
for the group assignment and X2 denotes the remaining covariates. 
Note that the difference of group effects against the reference group 
is estimable, while the individual group effect is not. For simplicity, in 
the discussions of multigroup comparisons among group 0 to group 
g, we assume group 0 is the reference group. We use βk, k = 1, …, g to 
denote the group effect, but notice that it actually estimates βk − β0. 
We rewrite the model stated in equation (3) as

y = θ + X1β + X2γ + ϵ, (21)

where

 (1) θ is the sample-specific bias,
 (2) β is the vector of group effects (as compared to group 0) of the 

order g × 1,
 (3) X1 is the design matrix of the order n × g consisting of 0s and 1s,
 (4) X2 is the known matrix of other covariates (including the inter-

cept) of the order n × (p − g + 1) with the corresponding regres-
sion parameter vector γ of the order (p − g + 1) × 1.

The global test intends to test

H0 ∶ ∩k∈{1,…,g}βk = 0,

H1 ∶ ∪k∈{1,…,g}βk ≠ 0,

which can be reformulated as

H0 ∶ Aβ = 0,

H1 ∶ Aβ ≠ 0,

where

A = Ig =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 … 0

0 1 0 … 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

with the test statistic

W = (Aβ̂) T(A ̂Σ
(g)AT) −1(Aβ̂)→dχ2g, asn→ ∞,

where ̂Σ
(g)

 is the corresponding submatrix of ̂Σ  defined in  
equation (10).

Similarly, to control the FDR due to multiple testing, we recom-
mend applying Holm–Bonferroni method20 instead of the Benjamini–
Hochberg procedure6 due to the underlying complex dependence 
structure between taxa.

Example 1. Suppose there are three groups, namely, groups 0 (refer-
ence), 1 and 2, and no other covariates. For each sample i, i = 1, …, n, 
we have:

yi = θi + μ + β1I{group = 1} + β2I{group = 2} + ϵi.

To test whether there is at least one group among 0, 1 and 2, that 
is significantly different from others, we test:

H0 ∶ β1 = β2 = 0,

H1 ∶ β1 ≠ 0 ∪ β2 ≠ 0,

which is the same as testing:

H0 ∶ Aβ = 0,

H1 ∶ Aβ ≠ 0,

where A = [ 1 00 1 ], and β = (β1,β2)
T .

Multiple pairwise comparisons
If we are interested in knowing whether the abundance increased or 
decreased between various pairs of groups, then it amounts to testing 
the following hypotheses:

H0,k,k′ ∶ βk = βk′

H1,k,k′ ∶ {βk < βk′ } ∪ {βk > βk′ },
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where k ≠ k′ ∈ {1, … , g} . Denote the test statistic for a given pairwise 
comparison as

Wkk′ =
β̂k − β̂k′

√V̂ar( β̂k) + V̂ar( β̂k′ )
→dN(0, 1), asn→∞,

where V̂ar( β̂k), V̂ar( β̂k′ )  are the kth and k′th diagonal elements of  
̂Σ
(g)

, respectively. Thus, the raw P value for comparing group k and 
group k′ is defined as:

Pkk′ = 2[1 − ϕ(|Wkk′ |)].

For comparing with the reference group (group 0), the hypotheses 
become:

H0,k ∶ βk = 0

H1,k ∶ {βk < 0} ∪ {βk > 0}.

We also replace β̂k′ and V̂ar( β̂k′ ) with 0s in the test statistic.
Note that the null and alternative hypotheses for the global  

test are denoted as H0 and H1, a Type I error might occur due to  
wrongly rejecting H0 or correctly rejecting H0 but wrongly rejecting 
H0,k,k′. A directional error might occur due to correctly rejecting H0  
but wrong assignment of the direction between βk and βk′ while  
correctly rejecting H0,k,k′. In this case, we need to control the error  
rate combining both type I and the directional errors in the FDR frame-
work, which is referred to as mixed directional FDR (mdFDR)8,9.

Definition 1. mdFDR: let V(j) denote the indicator function of at least 
one type I error or directional error committed, that is

V( j) = {
1 if Type I or directional error occurs,

0 otherwise.

Then, mdFDR is defined as the expected proportion of Type I and 
directional errors among all discovered taxa.

mdFDR = E(
∑d
j=1 V( j)

max(R, 1) ) ,

where R denotes the number of taxa discovered.
To control the mdFDR for all pairwise tests, we adopt the general 

mdFDR controlling procedure9, and do the following:

 (1) Apply the global test method stated above to obtain the P value 
for each taxon. We denote these P values as screening P values. 
Apply the Benjamini–Hochberg procedure to identify taxa that 
are differentially abundant in at least one pairwise comparison. 
Let R denote the number of taxa discovered.

 (2) For each taxon discovered in step (1), apply any mixed direc-
tional family wise error controlling procedure, such as Holm–
Bonferroni (default), Hochberg and so on, to the pairwise P 
values (Pkk′) at level Rα/d.

 (3) For a given taxon discovered in step 1, if a pairwise hypothesis is 
rejected in step (2), then we declare βk < βk′ or βk > βk′ according 
to Wkk′ < 0 or more than 0.

It has been proved that under the assumption of independence 
of P values obtained from the global test, the mdFDR of the above 
procedure is strongly controlled at level α (ref. 9).

Example 2. Suppose there are three groups, namely, groups 0 (refer-
ence), 1 and 2, and no other covariates. For each sample i, i = 1, …, n, 
we have:

yi = θi + μ + β1I{group = 1} + β2I{group = 2} + ϵi.

To test whether the taxon is differentially abundant between group 
1 and 0 (reference), we test:

H0 ∶ β1 = 0,

H1 ∶ {β1 < 0} ∪ {β1 > 0},

with the test statistic:

W10 =
β̂1

√V̂ar( β̂1)
.

Additionally, if we want to test whether the taxon is differentially 
abundant between group 1 and 2:

H0 ∶ β1 = β2,

H1 ∶ {β1 < β2} ∪ {β1 > β2}.

The test statistic is:

W12 =
β̂1 − β̂2

√V̂ar( β̂1) + V̂ar( β̂2)
.

Test against a specific group. Often, researchers are interested in 
knowing whether the abundance increased or decreased in an ecosys-
tem relative a prespecified group, say the control group. Again, assume 
group 0 is the reference group and β0 = 0, then one may be interested 
in testing the following hypotheses:

H0,k ∶ βk = 0,

H1,k ∶ {βk < 0} ∪ {βk > 0},

where k ∈ {1, …, g}.
As before, the pairwise test statistic is defined as follows:

Wk =
β̂k

√V̂ar( β̂k)
→dN(0, 1), asn→∞,

where V̂ar( β̂k) is the kth diagonal elements of ̂Σ
(g)

. Thus, the raw P value 
for comparing group k and group 1 is defined as

Pk = 2[1 − ϕ(|Wk|)].

Likewise, we apply the mdFDR controlling procedure for all pair-
wise tests. To improve power, we modify the global test mentioned 
earlier to a Dunnet-based test48–50 as described below:

 (1) The test statistic W = max
k∈{1,…, g}

|Wk|,

 (2) Generate W (b)
k ≈ N(0, 1), k = 1,… , g .

 (3) Compute W (b) = max
k∈{1,…, g}

|W (b)
k |.

 (4) Repeat the above steps B times, we get the null distribution of W.

The screening P value is calculated as:

P = 1
B

B
∑
b=1

I(W (b) > W ).

Pattern analysis. When the experimental groups are ordered naturally, 
such as doses of exposure or duration of exposure or stages of a disease 
and so on, for a given taxon, researchers may be interested in testing 
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whether the abundance of the taxon is changing with the ordered 
experimental groups according to some specific pattern. Thus, the null 
and alternative hypotheses one wants to test become (assume group 
0 is the reference group):

H0 ∶ β1 = β2 = … = βg = 0,

H1 ∶ β = ( β1,… ,βg)
T ∈ ℂ,

where ℂ is one or a collection of patterns. Examples of patterns are 
given below.

Example 3. Simple order

ℂ1 = {0 ≤ β1 ≤ β2 ≤ … ≤ βg}with at least one strict inequality. (22)

Example 4. Tree order

ℂ2 = {βk ≥ 0, k = 1,… , g}with at least one strict inequality. (23)

Example 5. Umbrella order

ℂ4 = {0 ≤ β1 ≤ … ≤ βk−1 ≤ βk ≥ βk+1… ≥ βg}

with at least one strict inequality.
(24)

Estimation of β under a certain pattern (constraint) can be 
obtained by solving the following convex optimization (opt) problem51:

β̂opt = argmin
β∈ℂ

(β̂ − β)
T ̂Σ

(g)−1 ( β̂ − β), (25)

where ̂Σ
(g)

 is the corresponding submatrix of ̂Σ defined in equation 
(10). The solution to equation (25) can be numerically obtained by using 
a suitable convex optimization algorithm, such as CVXR (ref. 52).

Example 6. Suppose there are three groups, namely, groups 0 (refer-
ence), 1 and 2, and no other covariates. For each sample i, i = 1, …, n, 
we have:

yi = θi + μ + β1I{group = 1} + β2I{group = 2} + ϵi.

To test whether the group effect is monotonically increasing, we 
test:

H0 ∶ β1 = β2 = 0,

H1 ∶ β ∈ ℂ = {0 ≤ β1 ≤ β2}, with at least one strict inequality.

The estimation of β under ℂ can be obtained by solving:

β̂opt = arg min
β∈ℝ2

(β̂ − β)
T ̂Σ

(g)−1 ( β̂ − β),

s.t.Aβ ≥ 0,

where A = [ 1 0
−1 1 ], and β = ( β1,β2)

T .

Once the constrained estimator is obtained, there exist a variety of 
options to test the above hypotheses. For example, one may consider 
William’s type of statistic53. We adopt the following definitions from 
Peddada et al.7 to facilitate the construction of the test statistic.

Definition 2. Linked parameters: two parameters in a given pattern are 
said to be linked if the inequality between them is specified a priori.

Definition 3. Nodal parameter: for a given pattern, a parameter is 
said to be nodal if it is linked with every other parameter in the profile.

For example, every parameter is a nodal parameter in ℂ1; no nodal 
parameter in ℂ2 and βk is the only nodal parameter in ℂ3.

Definition 4. Norm of maximum difference: define the norm l∞(ℂ)  
of pattern ℂ as the maximum difference between the estimates of  
two linked parameters.

For example, l∞(ℂ3) = max{β̂k, β̂k − β̂g}.
Given a collection of potential patterns, ℂ1, ℂ2,… , ℂT, the William’s 

type of test statistic is defined as:

W = max{l∞(ℂt), t = 1,… ,T },

with t opt = argmax{l∞(ℂt), t = 1,… ,T },

where topt is regarded as the optimal pattern for the microbial abun-
dance of a specific taxon.

Under null hypothesis, the expectations for β̂k, k = 1,… , g  are 0s; 
thus, we can construct the null distribution of W as follows:

 (1) Generate β̂(b)k ≈ √V̂ar( β̂k)N(0, 1), k = 1,… , g .
 (2) Obtain constrained regression estimators for β̂opt,(b)k  using the 

convex optimization problem described above.
 (3) Compute W (b) = max{l∞(ℂt), t = 1,… ,T } using the simulated data 

under prespecified patterns.
 (4) Repeat the above steps B times, and we get the null distribution 

of W.

The raw P value is calculated as

P = 1
B

B
∑
b=1

I(W (b) > W ).

We then apply the Holm–Bonferroni correction or Benjamini–Hoch-
berg procedure on raw P values to control the FDR.

ANCOM-BC2 for mixed-effects models
Similar to the fixed-effects model stated in equation (3), for each  
taxon j, j = 1, …, d, and each sample i, i = 1, …, n, suppose each  
sample has ni observations and ∑ini = n. The offset-based mixed- 
effects log-linear model is set up as

yij = θi1ni + Xiβj + Ziαi + ϵij, (26)

where

 (1) yij is the ni vector-centered observed counts,
 (2) 1ni = (1,… , 1)T ∈ ℝni is a vector of 1s,
 (3) Xi is the ni × p design matrix for fixed effects,
 (4) βj is the p vector of fixed-effects regression coefficients to be 

estimated,
 (5) Zi is the ni × q design matrix for the random effects,
 (6) αi is the q vector random effects,
 (7) ϵij is the ni vector residuals.

The following distributional assumptions are made

αi ∼ N(0,Dq×q),

ϵij ∼ N(0,σ2j 1ni ),

αi⟂⟂ϵij for i = 1,… ,n.

Thus, for each taxon j, j = 1, …, d, and each sample i, i = 1, …, n, we  
have

yij ∼ N(θi1ni + Xiβj,Hij(τ)),

where Hij(τττ) = ZiDZi
T + σ2j Ini (or Hij for short) denotes a general covariance 

matrix parametrized by τ.
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Stack up observations across samples, we have:

where

That is,

yj ∼ N

⎛
⎜
⎜
⎜
⎜
⎝

θ + Xβj,Hj(τ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

H1j(τ) 0 … 0

0 H2j(τ) 0 0

⋮ ⋮ ⋱ ⋮

0 0 … Hnj(τ)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎠

,

where Hj(τ) (or Hj for short) is a block diagonal matrix.
Similarly, we estimate θ and βj iteratively to obtain the corre-

sponding preliminary estimators. Compared to Algorithm 1, the 
maximum likelihood is replaced with restricted maximum likelihood 
(ReML)54,55.

Algorithm 3. Iterative ReML estimation
1: Initialize:
  For j = 1, …, d
  θ ← 0
  y(crt)j ← yj − θ = yj

  βj ← ReML(y(crt)j ) = ReML(yj)

(2) While not converge do

(3)  θ ← 1
d
∑d
j=1(yj − Xβj)

(4)  y(crt)j ← yj − θ

(5)  βj ← ReML(y(crt)j )
(6) end while

Note that the estimators for regression coefficients βj and variance 
components τ are obtained iteratively by maximizing the following 
log-likelihood function:

L(τ|yj) = −
n
∑
i=1
log |Hij| −

n
∑
i=1
log |Xi

TH−1
ij Xi| −

n
∑
i=1

(yij − Xiβj)
TH−1

ij (yij − Xiβj),

(28)

where βj ← (XTHj
−1X )

−1
XTHj

−1yj . As close-form solutions of equation 
(28) do not exist, the Newton–Raphson method56 is usually used.

Suppose on convergence, θ ← θ∗,y(crt)j ← y(crt)j

∗
,H← H∗,βj ← β∗j ,  

we have

θ∗ = 1
d

d
∑
j=1
(yj − Xβ∗j ),

y(crt)j

∗
= yj − θ∗,

β∗j = (XTH∗
j
−1X)

−1
XTH∗

j
−1y(crt)

∗

j .

It is easy to show that there exists a vector δ ∈ ℝP, such that

E(θ∗) = θ − Xδ,

E( β∗j ) = δ + βj.

that is, β∗j  is a biased estimator for βj.
Similar to the case of fixed-effects model, we fit the Gaussian 

mixture model to each βjk, k = 1, …, p separately, to correct the bias δ, 
and final estimators for βj and θ are given by

β̂j = β∗j − δ̂EM,

θ̂ = 1
d

d
∑
j=1
(yj − Xβ̂j).

The statistical inference, including multi-group comparisons, for 
mixed-effects models, aligns with those outlined in previous sections 
for fixed-effects models, and therefore, it is not repeated here.

Strategies implemented in ANCOM-BC2 to handle zeros
ANCOM-BC2 deals with zero-related challenges in microbiome data as 
follows. (1) Structural zero identification: taxa that are exclusively pre-
sent in one ecosystem but absent in another, result in structural zeros. 
For example, some taxa are exclusive to desert regions but entirely 
absent in rainforests. Hence, they are structural zeros in rainforests. 
Those zeros should not be imputed or ignored, and such taxa are DA 
between the two regions. As the first step, using ANCOM-II (ref. 13), 
ANCOM-BC2 identifies all DA taxa that are due to structural zeros, and 
no further analysis is performed on such taxa and they are cataloged 
separately in the software output. (2) Prevalence-based filtration: after 
filtering structural zeros, ANCOM-BC2 applies a prevalence-based 
filtration, akin to other DA methods. By default, taxa that feature in 
less than 10% of all samples are removed from further analysis. (3) Sen-
sitivity analysis for pseudo-count addition to zeros: for the remaining 
taxa with some zeros, we perform a sensitivity analysis to assess their 
robustness to pseudo-counts as follows. Much like many DA analy-
sis methodologies, since ANCOM-BC2 log transforms the observed 
counts, the counts need to be positive. Often pseudo-counts are added 
to deal with zeros. However, it is well-known that the choice of the 
pseudo-count can considerably influence the false-positive as well 
as false-negative rates13,16,17. To mitigate this concern, we conduct a 
sensitivity analysis to evaluate the effect of varying pseudo-counts 
on zeros for each taxon. This procedure incorporates the addition 
of an array of pseudo-counts (ranging from 0.01 to 0.5 in increments 
of 0.01) to the zero counts for each taxon. Corresponding to each 
pseudo-count, ANCOM-BC2 is used for each taxon and P values for DA 
analysis are derived. The sensitivity score for each taxon is the propor-
tion of instances where the P values exceed the specified significance 
level. If the proportion of significant (or non-significant) results is 1 
and the significance (or non-significance) aligns with significance (or 
non-significance) using complete data (excluding zeros), then the 
taxon is regarded as insensitive to the pseudo-count addition. Other-
wise, it is deemed sensitive. This step remains a recommendation and 
is at the discretion of the users. We offer two versions of ANCOM-BC2 
for flexibility: (1) ANCOM-BC2 (no filter): this version only uses the first 
two steps for handling zeros and uses complete data (that is, excludes 
zeros by treating them as missing completely at random) for bias cor-
rection and inference. While it has larger power, it might display an 
inflated FDR, especially with larger sample sizes or repeated measures. 
(2) ANCOM-BC2 (SS filter): this version uses all three aforementioned 
steps for dealing with zeros and also uses complete data for both bias 
correction and inference. Specifically, if a taxon is found to be sensitive 
to pseudo-counts then it is declared as non-significant taxon. While 
more conservative, it provides rigorous control of FDR, albeit with a 
possible decrease in power.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The URT data were sourced from the LOCOM R package https://github.
com/yijuanhu/LOCOM-Archive. The Quantitative Microbiome Project 
data are accessible via the SPRING R package (https://github.com/Grac-
eYoon/SPRING) or the ANCOMBC package (https://www.bioconductor.
org/packages/release/bioc/html/ANCOMBC.html). Data pertaining 
to soil microbiome for aridity and gut microbiome in patients with 
IBD are hosted on Qiita, with respective links available at https://qiita.
ucsd.edu/study/description/10360 and https://qiita.ucsd.edu/study/
description/11546, respectively. Please note that accessing data on Qiita 
requires account registration and sign-in.

Code availability
ANCOM-BC2 has been implemented in the R package ANCOMBC, 
which is available on Bioconductor at https://www.bioconductor.org/
packages/release/bioc/html/ANCOMBC.html. The code used for all 
analyses, with the exception of the trend test related to soil microbiome 
richness, in this Article is available in the associated GitHub repository 
and the corresponding Code Ocean capsule https://doi.org/10.24433/
CO.0628172.v1. The specific trend test was conducted using ORIOGEN 
4.01, obtainable at https://www.niehs.nih.gov/research/resources/
software/biostatistics/oriogen/index.cfm.
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Extended Data Fig. 1 | Illustration of batch effects in simulation studies where 
sampling fractions were programmed to correlate highly with the exposure 
of interest. (a) Continuous exposure versus sampling fractions. Scatter plot 
for 150 simulated samples reveals the positive linear relationship between 
continuous exposure (X-axis) and sampling fractions (Y-axis). The regression fit 
is shown in blue. The strong correlation is emphasized by a Pearson’s R of 1 and 
a two-sided p value < 2.2 × 10−16(b) Binary exposure versus sampling fractions. 
Box plots detail distributions of sampling fractions (Y-axis) across two groups 
(X-axis) based on 150 simulated samples (75 per group). Each box signifies the 
interquartile range (IQR) of the data, the median is indicated by the interior 

line, and whiskers extend to the maximum and minimum values within 1.5 
times the IQR from the box. Potential outliers are represented as points outside 
the whiskers, and jittered points indicate individual data points. A two-sided 
p-value < 2.2 × 10−16 from a Wilcoxon rank-sum test denotes significant group 
differences. (c) Categorical exposure versus sampling fractions. Box plots 
showcase distributions of sampling fractions (Y-axis) for three groups (X-axis) 
using 150 samples (50 per group). Each box, line, whisker, and point represents 
the same elements as in (b). Pairwise significant differences are denoted by two-
sided p-values < 2.2 × 10−16 following a Wilcoxon rank-sum test.
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Extended Data Fig. 2 | FDR Adjusted Power (FAP) among various DA methods. 
FAP, defined as the log ratio of power and FDR, was employed to illustrate the 
power/FDR trade-off among all DA methods. FAP values were calculated using 
power and FDR metrics obtained from the simulation studies carried out for both 
(a) continuous and (b) binary exposure scenarios utilizing the URT dataset19. The 
far left panels of this figure present scatter plots of FAP (Y-axis) corresponding 
to the power (X-axis) for all DA methods considered in the simulation study 
reported in Fig. 1 in the main text. FAPs are expressed as mean values deduced 

from 100 simulation iterations per setting, with the linear regression line of FAP 
against power superimposed over the points. On the right of the scatter plots in 
each panel are the three cumulative density function (CDF) plots of FAP scores 
of various DA methods corresponding to powers exceeding 0.5, 0.8, and 0.9, 
respectively. These results underscore that both versions of ANCOM-BC2 have 
stochastically larger FAP scores than the competitors, with ANCOM-BC2 (SS 
Filter) being stochastically the largest.
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Extended Data Fig. 3 | Evaluations of FDR (mdFDR) and power in identifying 
DA taxa in (a) continuous or (b) binary exposure. Synthetic datasets were 
generated using the PLN model18 based on the mean and covariance estimated 
from the QMP dataset23. The X-axis shows the sample size (or sample size per 
group for the categorical covariate), and the Y-axis shows the FDR (mdFDR) or 
power. Each panel title designates the proportion of true DA taxa. The depicted 

metrics represent mean values ± standard errors (indicated by error bars) 
derived from 100 simulation runs for each setting. This visualization underscores 
the superiority of ANCOM-BC2-both with and without the sensitivity score 
(SS) filter-in consistently preserving minimal FDR or mdFDR while attaining 
satisfactory power, outpacing all other assessed methods.
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Extended Data Fig. 4 | Evaluations of FDR (mdFDR) and power in identifying 
DA taxa in (a) multiple pairwise comparisons against a reference group, 
(b) multiple pairwise comparisons, and (c) pattern analysis. Synthetic 
datasets were generated using the PLN model18 based on the mean and 
covariance estimated from the QMP dataset23. The X-axis shows the sample size 
per group, and the Y-axis shows the FDR (mdFDR) or power. Each panel title 
designates the proportion of true DA taxa. The depicted metrics represent mean 
values ± standard errors (indicated by error bars) derived from 100 simulation 

runs for each setting. Within the context of multiple pairwise comparisons, 
ANCOM-BC2-when implemented with the SS filter-effectively controlled FDR 
(mdFDR) while maintaining power akin to its performance without the SS filter. In 
the pattern analysis, ANCOM-BC2-both with and without the SS filter-most often 
maintained the FDR under the nominal level while achieving adequate power, 
barring the scenario with 90% DA taxa. In this instance, ANCOM-BC2-both with 
and without the SS filter-experienced power loss due to inherent assumptions in 
bias correction.
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Extended Data Fig. 5 | Evaluations of FDR (mdFDR) and power in identifying 
DA taxa in (a) a random intercept model, and (b) a random coefficients 
model. Synthetic datasets were generated using the PLN model18 based on the 
mean and covariance estimated from the QMP dataset23. The X-axis shows the 
sample size per group, and the Y-axis shows the FDR (mdFDR) or power. Each 
panel title designates the proportion of true DA taxa. The depicted metrics 

represent mean values ± standard errors (indicated by error bars) derived 
from 100 simulation runs for each setting. The outcomes accentuate that, 
when integrated with the SS filter, ANCOM-BC2 effectively moderates FDR 
(mdFDR) while retaining power parallel to its performance without the SS filter. 
In the absence of the SS filter, ANCOM-BC2 surpasses LinDA and LMM-CLR in 
maintaining consistently low FDR and equivalent power.
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Extended Data Fig. 6 | Flowchart of the ANCOM-BC2 overall procedure.
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