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Uncovering developmental time and tempo 
using deep learning

Nikan Toulany    1,2,3,5, Hernán Morales-Navarrete    1,4,5, Daniel Čapek    1, 
Jannis Grathwohl1, Murat Ünalan    1,2,6  & Patrick Müller    1,2,3,4,6 

During animal development, embryos undergo complex morphological 
changes over time. Differences in developmental tempo between species 
are emerging as principal drivers of evolutionary novelty, but accurate 
description of these processes is very challenging. To address this challenge, 
we present here an automated and unbiased deep learning approach to 
analyze the similarity between embryos of different timepoints. Calculation 
of similarities across stages resulted in complex phenotypic fingerprints, 
which carry characteristic information about developmental time and 
tempo. Using this approach, we were able to accurately stage embryos, 
quantitatively determine temperature-dependent developmental tempo, 
detect naturally occurring and induced changes in the developmental 
progression of individual embryos, and derive staging atlases for several 
species de novo in an unsupervised manner. Our approach allows us 
to quantify developmental time and tempo objectively and provides a 
standardized way to analyze early embryogenesis.

The development of an animal from a fertilized egg to a mature adult 
is a complex and multifaceted process that stereotypically and almost 
invariably produces body plans with species-specific features and 
appearance. During early embryogenesis, animals pass through similar 
and characteristic stages of development1–3. First, during cleavage and 
blastula stages, embryos produce the building blocks of the future body 
plan through a series of cell divisions. Second, during gastrula stage, 
the cells are specified and arranged to set up the initial body axes of the 
animal. Third, during organogenesis stages, cells are rearranged to form 
specialized tissue systems. Fourth, during segmentation stages, the 
tissue systems are subdivided into repeated parts along the anterior–
posterior axis. Finally, during larval stages, the body is functionalized 
to form an autonomous and integrated feeding, moving, sensing and 
responding entity1,4–14.

Our knowledge of these different developmental stages and the 
transitions between them has been derived from careful—but tedious—
manual microscopic observation (Supplementary Note 1)4–12. Idealized 
images in the resulting species-specific atlases capture the essence of 

characteristic stages and link them to absolute developmental time, 
assuming that morphological traits are constant within a develop-
mental stage and that stages can be correlated reliably with absolute 
measured time. However, in reality embryos rarely look like the ideal-
ized illustrations in staging atlases (Supplementary Fig. 1a), and tran-
sitions between developmental stages usually do not occur abruptly 
but smoothly (Supplementary Fig. 1b and Supplementary Video 1). The 
appearance of different phenotypic traits during development and 
the persistence of these traits over different lengths of time results in 
overlapping morphologies (Supplementary Fig. 1c and Supplementary 
Video 1), and it can therefore be difficult to strictly define sharp bounda-
ries between subsequent developmental stages. Even when examining 
a group of sibling embryos at the same nominal developmental stage, 
the morphology among individuals rarely looks exactly the same due 
to different imaging conditions and embryo rotations as well as idi-
osyncratic features resulting from external and internal noise15–17. In 
addition, numerous factors can influence the rate of embryogenesis, 
thus separating developmental stage from absolute developmental 
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the calculation of similarities between embryo images would allow to 
accurately account for complex morphological changes in silico in an 
unbiased manner. Therefore, we considered this model architecture 
to be ideally suited for the analysis of development.

We first used high-content microscopy to generate a dataset 
of more than 15,000 zebrafish embryos with high temporal resolu-
tion, covering the first day of development from cleavage to early 
larval stages (Extended Data Fig. 1a). A total of two million images was 
acquired, where each image position comprised up to 30 zebrafish 
embryos. We trained a ResNet101 deep learning model for image seg-
mentation and zebrafish embryo detection with a positive predictive 
value of 99%. Application of this model to our experimental dataset 
combined with manual quality control facilitated segmentation into 
more than three million embryo image segments sorted by embryo 
and acquisition timepoint (Extended Data Fig. 1a). We then developed a 
Twin Network architecture designed to learn phenotypic features from 
triplets of image segments by training with triplet loss44 (Extended 
Data Fig. 1b,c). This allowed us to calculate similarities between pairs 
of images by creating image embeddings and calculating the cosine 
similarity between them (Fig. 1a). By comparing two images of zebrafish 
embryos with the Twin Network, we obtained a similarity score for the 
compared individuals (Fig. 1a).

We reasoned that, if a test image of an embryo was compared 
with a set of other embryo images, the test image could be classified 
into similar embryonic phenotypes based on the similarity scores 
(Fig. 1b). We therefore used a timeseries of developing embryos as 
a reference with which a single test image was compared (Fig. 1c). 
The resulting graphs of similarities over time have two main char-
acteristics relevant for our analysis. First, the peak of the curve, that 
is, the maximum similarity of the test embryo to reference images, 
reveals in which developmental stage the test image embryo is located  
(Fig. 1b). Repeated calculations of predicted developmental stages 
for a set of timeseries images of one embryo allow a trajectory based 
on predicted developmental stages to be constructed (Fig. 1d,e). 
Second, the nonpeak region of the curve contains additional informa-
tion, such as the width of the peak (green box; Fig. 1b) and similarities 
to distant embryonic stages. These features are distinct at different 
timepoints and may resemble morphological similarity between 
unrelated developmental phases (for example, similarity of cleavage 
and blastula stages). Importantly, when comparing similarity curves of 
two images of an embryo taken a few minutes apart, the Twin Network 
attributes the successively acquired image to later stages by showing 
increased similarity values of the nonpeak part of the similarity curve 
to later developmental stages. Likewise, the difference between the 
similarity plots of these images is positive following the peak of the 
curve, indicating higher similarity to later developmental stages of 
the image that was acquired later (Extended Data Fig. 2). Furthermore, 
our Twin Network showed good precision in image ordering with-
out a priori knowledge (Supplementary Note 2 and Supplementary  

time18–26. As a consequence of structural and temporal variation, char-
acterization of embryonic development and the transitions between 
morphological states remains subjective. Computer-driven methods 
have been proposed to tackle this problem and to enable standardi-
zation by addressing structural or temporal variability27–35. However, 
approaches based on supervised machine-learning techniques require 
large databases, training resources and human-assisted annotation. 
Moreover, they admit only a limited number of predefined classes 
and therefore do not provide a generalizable method to characterize 
the multitude of rapid time-dependent developmental features in 
different phyla.

To address these challenges, we present a new approach to analyze 
developmental time by calculating the similarity between embryos 
of different timepoints. Our approach is based on Twin Networks, 
which can be used for the calculation of similarities between complex 
input vectors36 with main previous applications in security verifica-
tion tasks37,38 and object tracking39–41. Using a high-throughput imag-
ing pipeline, we first created a dataset comprising more than three 
million images with more than 15,000 zebrafish embryos. We then 
trained a Twin Network based on image triplets of normally developing 
embryos and applied the resulting model to accurately determine the 
developmental age of zebrafish. We applied our developmental age 
estimation approach to study how developmental tempo in zebrafish 
and medaka is affected by temperature, and found that classical physi-
cal biology theories42,43 captured temperature-dependent develop-
ment within a species-specific thermally adapted range. Moreover, 
we found that the Twin Network model can be used to characterize 
natural variability of zebrafish development and to robustly identify 
a small fraction of embryos that developed abnormally. Similarly, the 
Twin Network was able to detect small-molecule-induced phenotypic 
changes in embryonic development. Finally, we demonstrate that the 
Twin Network can be used to highlight key points of development, to 
describe transitions between stages and to automatically detect the 
main epochs of embryogenesis from developmental trajectories in an 
automated manner. Our method thus offers multimodal possibilities to 
analyze developing embryos with minimal previous knowledge about 
the process of interest and might also have widespread applications in 
other fields where complex processes unfold over time.

Results
Using similarity profiles to automatically stage embryos
Twin Networks consist of two identical parallel neural networks that 
share both architecture and weights to learn hidden representations 
of input data (Fig. 1a). These networks serve as the core for nonlinear 
dimensionality reduction of complex two-dimensional input matrices—
such as images—to feature embeddings consisting of a series of num-
bers. Twin Networks compare images through similarity calculations 
based on feature embeddings, in contrast to classification algorithms 
that assign classes as two images are compared. We hypothesized that 

Fig. 1 | Characterization of zebrafish development with Twin Networks. 
 a, Architecture of the Twin Network pipeline. b, Schematic for embryonic age 
prediction. A test image (top) is compared with a sequence of reference images 
with known temporal order (middle). The age of the test image corresponds to 
the age of embryo images with highest similarity (red dashed line); expectation 
based on absolute (gray curve) or relative (blue curve) similarity of input data. 
The width of the peak is indicated by green shading. c, Similarity plots between 
test embryos (top) and reference images (bottom). Each test embryo was 
compared with three reference image sets. The mean of cosine similarities to 
these reference sets is plotted as a datapoint for each reference image timepoint. 
Boxplots are based on the distribution of similarity values above 0.8. The center 
represents the median, box limits represent upper and lower quartiles, whiskers 
the 1.5× interquartile range and red points the curve maxima. Three images 
from the acquisition of one embryo, representative for three independent 

experiments, are shown. d, Schematic for prediction of embryonic trajectories. 
Calculation of similarities between a test embryo (top) and a reference image 
timeseries (bottom row) with the peak of the similarity curve corresponding 
to the predicted embryonic age of the test image. Bottom row, left plot shows 
similarity curves calculated for several test images with known temporal order 
of one test embryo. For each image in the test image sequence, predicted 
embryonic age can be calculated. The right plot shows predicted embryonic age 
for each image in the test image sequence plotted based on the known temporal 
order of the test images. e, Developmental trajectory reconstructed for one 
representative test embryo (n = 126, see Extended Data Fig. 3e for median of full 
dataset). The blue scattered datapoints show the Twin Network prediction and 
the red line is the expected groundtruth trajectory. Test images are shown next to 
the x axis, reference images are shown next to the y axis. Scale bars, 500 μm.
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Figs. 2 and 3). These analyses show that the Twin Network can be used 
to extract complex phenotypic fingerprints of embryos, which enables 
accurate automatic staging (Fig. 1e).

Developmental tempo as a function of temperature
Temperature is a ubiquitous environmental factor that has a direct influ-
ence on developmental rates, affecting various aspects of an organism’s 
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life cycle from reproduction to ecological distribution45–47. Under-
standing the temperature dependence of embryogenesis can provide 
valuable data for developmental biology, offering new insights into  
the underlying molecular and physiological mechanisms that orches-
trate the early stages of life21,48–52. This not only sheds light on the adap-
tive strategies employed by different species in diverse environments 
but also provides critical knowledge for predicting the impacts of cli-
mate change on natural populations and ecosystems45,53.

Previous efforts to quantify the temperature dependence of 
embryonic development involved manual or semiautomated anno-
tation of developmental time, limiting the number of experiments 

that could be analyzed in a reasonable timespan51,54,55. Recent work 
has shown that machine learning can be used to automate this process 
and distinguish zebrafish embryos developing at 25.0 °C and at 28.5 °C  
(ref. 33). To test whether our Twin Network could be used for automated 
analysis of temperature-dependent shifts in developmental tempo, 
we analyzed zebrafish embryos between 23.5 °C and 35.5 °C as well 
as evolutionarily distant medaka embryos that can tolerate a wider 
temperature range from 18 °C to 36 °C. The lower end of the tempera-
ture range was chosen because medaka embryos arrest below 15 °C  
(ref. 56), and zebrafish did not survive below 23 °C (Supplementary 
Video 2)54,57. For each temperature condition, we analyzed between 100 
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Fig. 2 | Automated analysis of fish developmental temperature dependence 
using Twin Networks. a–f, Analysis of zebrafish and medaka embryo 
development at various temperatures. a,d, Schematic for age estimation of 
zebrafish (a) and medaka (d): image of an embryo at a given timepoint (y hpf), 
raised at the temperature of interest (x °C), is compared with all timepoints  
(three examples are shown) at the reference temperature. Developmental  
age is assigned by the highest cosine similarity (φ). Scale bars, 500 μm.  
b,e, Developmental age estimation for zebrafish (b) embryos at 26.5 °C, 28.5 °C 
and 31.5 °C (n = 209, 126 and 130, respectively) and medaka (e) embryos at 

26.0 °C, 28.0 °C and 31.0 °C (n = 47, 46 and 21), respectively. Error envelopes 
represent two times the median absolute deviation (MAD) over the embryos 
and are shown together with the corresponding linear fit (solid line). c,f, Natural 
logarithm of the estimated growth rates for zebrafish (c) and medaka (f) at 
various temperatures. Error bars represent 99.99% confidence intervals from 
bootstrapping with 100 repetitions around the estimated slope of the linear fit to 
the data shown in Extended Data Figs. 3 and 4. Blue shading shows the Arrhenius 
range; the apparent activation energy is stated.
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and 200 zebrafish embryos or between 20 and 100 medaka embryos, 
ensuring robustness and reliability in our analysis (Fig. 2). We utilized 
a Twin Network trained exclusively on embryos at a reference tempera-
ture for each species (28.5 °C for zebrafish and 28.0 °C for medaka).

Classical physical biology theories predict that reaction rates 
scale with temperature42,43. Indeed, developmental tempo varied pro-
foundly at different incubation temperatures for zebrafish and medaka 
embryos: Whereas at lower temperatures embryonic development 
proceeded at a slower pace, higher temperatures elicited a marked 
acceleration in development compared with the reference tempera-
ture (Fig. 2a,b,d,e, Extended Data Figs. 3 and 4 and Supplementary 
Video 3). Strikingly, zebrafish and medaka adjusted their develop-
mental tempo by a factor of approximately two when subjected to a 
temperature change of 10 °C—in good agreement with the Q10 rule of 
thumb for chemical reactions58. To analyze temperature-dependent 
developmental tempo more quantitatively, we used the Twin Network 

to estimate the growth rate for different temperatures and fitted the 
data with the classical Arrhenius equation43. From the slope of the lin-
ear fit within a species-specific range of temperatures, we estimated 
apparent activation energies of 65 kJ mol–1 for zebrafish and 77 kJ mol−1 
for medaka, comparable with other poikilotherm organisms like frogs, 
flies or yeast—and notably different from homeotherms like mice 
or humans55,59 (Fig. 2c,f). Interestingly, the temperature ranges cor-
related with the temperatures that support normal development in 
these fish species, in accordance with the notion of the Arrhenius range 
that refers to the spectrum of temperatures in which regular growth 
and biochemical reactions of specific organisms scale with tempera-
ture59. However, at higher temperature regimes the developmental 
rate no longer accelerated but instead stabilized, displaying intriguing 
deviations from the idealized theories (Fig. 2c,f). A similar behavior has 
been found in Drosophila and might reflect a reaction to heat stress51. 
Interestingly, the two species that we analyzed reacted differently to 
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set with images of embryos at the age of 0.2–24.2 hpf. c, A decrease in average 
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seven embryos is shown, each represented by a colored line. Images of a normal 
(top) and a defectively (bottom) developing embryo are shown at corresponding 
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temperatures at the lower edge of their comfort zone. Zebrafish devel-
opment slowed down linearly (Extended Data Fig. 3), and temperatures 
below 23 °C were lethal. Medaka embryos, on the contrary, displayed 
a nonlinear development—that is, initial linear development followed 
by a partial arrest—at the two coldest temperatures analyzed, spending 
a disproportionately long timespan in blastula stages (Extended Data 
Fig. 4a,b). These findings underscore the importance of automated 
techniques in comprehending intricate biological phenomena, open-
ing new possibilities for further research and application in diverse 
biological systems.

Quantifying natural variability during embryogenesis
Animal development is a remarkably reliable process that consist-
ently results in a complete embryo despite genetic variation, external 
perturbations and the noise and stochasticity associated with gene 
expression60–63. However, even if embryos were laid at the same time and 
incubated under the same conditions, growth rates may vary between 
embryos and can lead to deviations in developmental stages over time6 
(Fig. 3a and Supplementary Videos 4–6).

To test whether this divergence of individual phenotypes in an 
ensemble of similarly aged sibling embryos can be detected by our 
Twin Network, we calculated similarities to reference images for sev-
eral embryos of similar age. We found that, for several siblings laid at 
the same time, the early stages of embryonic development predicted 
with our Twin Network had a narrow distribution (green; Fig. 3b and 
Extended Data Fig. 5a,b). Interestingly, and consistent with expert 
human assessment6, the distribution width of predicted embryonic 
stages increased after the beginning of the segmentation period (blue 
and purple; Fig. 3b and Extended Data Fig. 5a,b), whereas average 
similarities decreased during embryonic development (Extended Data  
Fig. 5a,b). These results show that our Twin Network can be used to 
quantify even small and fine-grained developmental changes as well 
as natural variability during embryogenesis.

In contrast to these small variations, developmental robustness 
can fail in a fraction of abnormally developing embryos64,65. Indeed, in 
our dataset of more than three million zebrafish embryo images, we 
found that 1% of the embryos developed abnormally, frequently due 
to spontaneous disintegration or dorsal–ventral patterning defects66,67 
(Supplementary Videos 4–6). To test whether such naturally occur-
ring phenotypes can also be detected by our Twin Network, we first 
used trajectories of aphenotypic embryos to define a normal range 
of predicted developmental stages for each acquisition timepoint 
(Fig. 3c,d). Strikingly, embryos identified to be abnormal by a human 
scientist frequently deviated from this normal range much earlier (Fig. 
3c,d). Based on low average similarity values, abnormally developing 
embryos could be detected in a batch of sibling embryos at early stages 
(Fig. 3c). It will be interesting in the future to use this approach com-
bined with genomics, transcriptomics and proteomics techniques as 
a tool to reveal the molecular details of why robust development fails 
in these deviating embryos.

Identifying drug-induced embryonic phenotypes
Embryonic development is coordinated by signaling molecules, 
and modulating their activity can cause characteristic phenotypic 
changes68. During zebrafish development, seven main signaling path-
ways play a pivotal role in coordinating the establishment of the body 
plan. While germlayer patterning and the formation of anterior–pos-
terior and dorsal–ventral axes are regulated largely by bone mor-
phogenetic protein (BMP), retinoic acid (RA), Wnt, fibroblast growth 
factor (FGF) and Nodal signaling, the elongation and morphogenesis 
of the body axis is under strong control of the sonic hedgehog (Shh) 
and planar cell polarity (PCP) signaling pathways69. When the activity 
of any of these pathways is modulated, distinct patterning defects 
emerge. We recently developed a deep learning-based classification 
algorithm—EmbryoNet—trained with manually annotated images to 

detect such defects and link them to one of the main embryonic sign-
aling pathways31. This classification approach used a finite number of 
predetermined classes. We reasoned that Twin Networks could be used 
to detect abnormally developing embryos without predefined classes, 
and instead detect deviating embryos based solely on similarity scores. 
This would enable unbiased automated analyses of large-scale drug 
screens to discover compounds that potentially elicit new phenotypes 
or intermediate phenotypes between previously defined classes.

To test the utility of Twin Networks in the detection of abnormal 
embryos, we compared the phenotypes of untreated embryos with 
those of embryos treated with BMP, Nodal, FGF, Shh, PCP and Wnt 
inhibitors as well as RA exposure (Fig. 4). We used the Twin Network to 
compare groups of embryos of each condition with a reference group 
of untreated embryos over time (Fig. 4a). Comparison of embryos in 
the untreated group revealed high similarity values (Fig. 4b), indicat-
ing coherence within a developmental cohort. In contrast, similarity 
values between untreated and small-molecule drug-treated embryos 
were consistently lower for most of the treatments (Fig. 4c–i and Sup-
plementary Videos 7–13). Next, we analyzed the differences statistically 
to identify the timepoints at which the group of embryos deviated 
significantly from the reference. This allowed us to detect groups of 
embryos with phenotypic defects without previous knowledge of the 
specific alteration. The accuracy of detection depended on the number 
of analyzed embryos and the type of perturbation (Fig. 4j).

To determine how accurately our method can identify pheno-
types with different levels of penetrance and severity, we used the 
well-characterized phenotypic spectrum in zebrafish embryos with 
different levels of BMP pathway inhibition, resulting in the previously 
defined classes C2, C3, C4 and C5 with increasing degree of dorsaliza-
tion70. bmp mutants and highly penetrant phenotypes resulting from 
treatment with high doses of small-molecule BMP signaling inhibitors 
required only a few embryos for accurate detection of developmental 
deviations, and milder phenotypes could be detected with a larger 
number of ~30 embryos (Extended Data Fig. 6 and Supplementary 
Videos 14–18). These analyses show that the Twin Network—which 
had previously been trained only with images of normally developing 
embryos—can detect phenotypic changes in an unbiased manner.

Automated derivation of developmental epochs
Images of reference embryos can be used to assess the developmental 
timing of a test embryo (Fig. 1b–e), but such reference images are not 
always available, for example, for newly discovered or uncharacterized 
species. Another way to characterize a developmental process with 
minimal previous knowledge is to calculate the similarities of a test 
image to other images of the same embryo at earlier timepoints (Fig. 5a).

To test this idea, we calculated similarity profiles in this manner 
for zebrafish embryos, which resulted in distinct similarity profiles at 
different development times (Fig. 5b). We noted a common pattern, 
where high similarity values were clustered locally; in contrast, similar-
ity values at more distant timepoints were lower and formed plateaus 
(Fig. 5b). Interestingly, the local and global statistical similarity of 
image pairs measured by the network were coherent with the sequence 
of key stages during development; embryos at timepoints that fell 
into an extended plateau were characterized by stable morphologies  
(Fig. 5b), highlighting principal developmental epochs such as the 
classical cleavage, blastula, gastrula, organogenesis and segmenta-
tion stages6. In contrast, embryos at timepoints that fell into a bound-
ary between plateaus represented short-lived epochs with principal 
changes in developmental morphologies (Extended Data Fig. 7 and 
Supplementary Fig. 4). Thus, the Twin Network allows the automatic 
generation of staging atlases akin to human assessment, but de novo, 
without previous knowledge of the developmental stages and without 
a model that was specifically trained for this purpose.

We next asked whether this approach to generate species-specific 
staging atlases in an automated manner could be generalized. We first 
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Fig. 4 | Application of Twin Networks to identify drug-induced phenotypes. 
a, Strategy of similarity calculation between embryos at the same developmental 
stage under different drug treatments. An untreated embryo (top) serves as 
reference to which drug-treated embryos (bottom) are compared. Examples 
for untreated, BMP-inhibited and PCP-inhibited embryos are shown at 1.25, 10 
and 26 hpf. The cosine similarity between a treated embryo and the reference 
embryo is calculated for every timepoint. Scale bar, 500 μm. b–i, Upper panel, 
mean similarities and s.d. of similarities for untreated (n = 44) (b) and –BMP 
(n = 44) (c), –PCP (n = 14) (d), –FGF (n = 44) (e), –Shh (n = 44) (f), –Nodal (n = 44) 

(g), +RA (n = 44) (h) and –Wnt (n = 18) (i) embryos relative to the reference group 
of untreated embryos as a function of time. Lower panel, significance levels of the 
difference from untreated embryos determined using a nonparametric one-sided 
Mann–Whitney U test over each timepoint of the image series. No adjustments for 
multiple comparisons were made. j, Dependency of the accuracy of abnormality 
detection on the number of embryos used to analyze –BMP, –PCP, –FGF, –Shh, 
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addressed this question with two other fish species—medaka (Oryzias 
latipes) and three-spined stickleback (Gasterosteus aculeatus)—that 
had diverged from zebrafish (Danio rerio) hundreds of millions of 
years ago31. When applied to timeseries of these morphologically 
diverse embryos, the Twin Network yielded an informative atlas for 
each embryo (Extended Data Figs. 8 and 9). We then extended this 
approach to an even more distant taxon represented by the nematode 
Caenorhabditis elegans. We used open data available from different 
independent sources such as published papers71 and YouTube videos 
for training and evaluation, respectively. This allowed us to identify 
the first cleavage cycles automatically, giving rise to the first four 
blastomeres in C. elegans (Extended Data Fig. 10).

These results show that the Twin Network approach can be used to 
determine staging atlases de novo for different organisms and using a 
broad range of size and quality of image datasets.

Discussion
Here we present a machine-learning-based approach to describe devel-
oping processes in an automated and objective manner. The central ele-
ment of our approach is the unsupervised computation of similarities 
between states. Our model can be applied to multimodal tasks in the 
analysis of animal development and compares favorably with classical 
vector diffusion maps for image registration in terms of precision.

Our Twin Network results have four main implications. First, 
our approach provides a standardized way to stage and compare 
embryos. Accurate estimation of an individual’s age is important for 
any developmental biology study because research results may vary 
at different embryo stages. However, phenotypic transitions can be 
very fluid, and it is often difficult to relate an observed embryo to the 
idealized description in staging atlases. Our Twin Network approach 
takes into account the smooth transitions between developmental 
stages, where phenotypic traits may appear at one point in develop-
ment and persist or disappear at another timepoint. By performing 
systematic similarity calculations of a test image with a reference 
image sequence, we retrieve a similarity plot that can be used to accu-
rately assign an embryo to a range of developmental steps within 
the reference sequence. Depending on the length of the reference 
sequence, this can be done within seconds on a GPU-based worksta-
tion. It seems that our Twin Network learns to dynamically represent 
phenotypic traits and combine them for similarity computations at 
different developmental stages, instead of creating static sets of fea-
tures for distinct classes of phenotypes. Furthermore, our Twin Net-
work is able to point a theoretical arrow-of-time that represents the  
developmental direction.

Second, we found a tight connection between ambient tempera-
ture and developmental tempo in agreement with predictions from 
classical physical biology theories42,43. Apparent activation energies 
of zebrafish and medaka are on the order of ~60–70 kJ mol−1, poten-
tially making their enzymatic reactions highly efficient even at lower 
temperatures59. It is tempting to speculate that this range of meta-
bolic rates is optimal to adapt to a diverse array of temperatures. In 
contrast, mammalian cells—being more specialized and sensitive 
to environmental changes—have evolved with narrower Arrhenius 
ranges. This trait enables them to function optimally within specific 
temperature limits, but it also comes at the cost of higher apparent 
activation energies of 120 kJ mol−1. This higher energy requirement 
could be important for maintaining the intricacies of cellular pro-
cesses at warmer temperatures59. Our findings provide support for 
the notion of an inverse relationship between Arrhenius ranges and 
apparent activation energies across different taxa. Interestingly, 
in contrast to zebrafish embryos with a sharp lower temperature 
limit, medaka embryos nonuniformly slowed down at colder tem-
peratures. It is conceivable that this nonuniformity is the basis for the 
medaka embryos’ ability to arrest development below 15 °C for up to 
3 months56,72. These findings shed light on the evolutionary strategies 

adopted by various organisms to cope with temperature fluctuations 
and highlights the interplay between temperature adaptation and  
biochemical kinetics59.

Third, our approach enables the detection of phenotypic vari-
ability within a population. We parametrized the divergence of features 
using similarity scores as indicators of temporal and feature deviations. 
Using our Twin Network, we found that variability increased over the 
course of embryonic development. Even though our Twin Network 
was trained only on images of normally developing embryos, it also 
detected spontaneous as well as small-molecule-induced malforma-
tions. This shows that the Twin Network is impartial to the specific 
treatment and robustly identifies embryos that deviate from normal 
developmental trajectories. The Twin Network approach might there-
fore be ideally suited to study embryonic phenotypes associated not 
only with one, but also with combined signaling defects, extending our 
previous approach to investigate embryonic phenotypes associated 
with signaling defects31.

Fourth, Twin Networks can be used to automatically generate 
atlases of the main epochs during development in diverse species. 
Large areas of similarity correspond phenotypically to principal devel-
opmental phases, and smaller areas correspond to a finer subdivi-
sion of embryogenesis into developmental steps. Thus, development 
is characterized by the stereotypic alternation of periods, in which 
embryonic morphologies change, and phases, in which embryonic 
morphologies undergo little change. Strikingly, this allows essential 
developmental epochs in the course of embryogenesis to be identi-
fied on the basis of a single individual in an unsupervised manner for 
different specimens, amount of training data and quality of images. 
We expect that this approach will be widely applicable and useful to 
describe the development of uncharacterized species and to facilitate 
their use in studies of development and evolution. A current limitation 
is that a direct application of our models to different image data (for 
example, different species, different imaging conditions) is not pos-
sible. However, this could be achieved by fine-tuning or retraining 
the models to adapt them to specific applications. Moreover, more 
general and robust models could potentially be generated by future 
methodological improvements such as taking advantage of Generative 
Adversarial Networks to create expansive datasets when experimental 
data is scarce.

In summary, Twin Networks can capture complex systems and map 
several facets of their development by computing similarities between 
images. Developmental time can be accurately measured de novo, 
allowing unbiased quantitative studies of robustness from limited 
visual cues. In general, precise and objective assessment of phenotypic 
traits in spite of several sources of variation is not only necessary for 
the description of embryogenesis, but a principal problem in many 
fields of biology and beyond where Twin Network applications can 
provide new insights.
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Methods
Sample preparation
Zebrafish ages ranged from 2 months to 2.5 years at the time of mating. 
Embryos at the one- to eight-cell stage were obtained from matings 
between two to five female and male zebrafish. Fertilized embryos 
were selected manually using a glass Pasteur pipette. Selected embryos 
were washed three to five times with 200 ml embryo medium and kept 
in the same medium before microscopy. Embryos were transferred to 
1-, 6-, 24- or 96-well plates (Greiner Bio-One) for microscopy in embryo 
medium or 1% low melting-point agarose in embryo medium31,73. 
Depending on the size of the plates, 5–100 embryos on average were 
placed in multititer plates. During microscopy of embryos, plates were 
covered with transparent Saran wrap to prevent medium evaporation. 
To maximize the utility of our approach for different genetic back-
grounds, we used a variety of aphenotypic zebrafish lines: TE (ref. 74), 
Tg(sebox:EGFP)75, Tg(gsc:GFP)76, Tg(gsc:TurboRFP)77, Tg(lhx1a:EGFP)78 
and sqt+/− (ref. 79). An overview of zebrafish crosses used to acquire 
embryo timeseries is given in Supplementary Table 1. For the tempera-
ture experiments, zebrafish eggs were collected within 15 min after 
mating and distributed into multiwell plates with embryo medium. 
Medaka eggs of the Cab strain were collected from standard crosses 
into cold medaka embryo medium (17 mM NaCl, 0.4 mM KCl, 0.27 mM 
CaCl2, 0.65 mM MgSO4) to synchronize them at stage 1 (ref. 7). Adhesive 
filaments were removed with sandpaper, and the separated embryos 
were distributed into multiwell plates with temperature-adjusted 
medaka embryo medium.

Image acquisition
Images of zebrafish embryos for training and aberrant phenotype 
analysis were acquired using an ACQUIFER Imaging Machine (ACQUI-
FER Imaging GmbH) with a 12-bit Hamamatsu sCMOS 2k × 2k sensor 
(Hamamatsu Photonics) and a ×2 magnification objective (Nikon) 
controlled by Imaging Machine control software (Acquifer Imaging 
GmbH, v.ID 4.00.21). Imaging was performed with the acquisition 
parameters listed in Supplementary Table 1 at intervals of 2.0–8.3 min 
at 28 °C. Each well was recorded as a separate image stack for 0.25–25 h, 
resulting in 3–720 acquisition timepoints depending on the acquisi-
tion interval. In total, more than 2 million images were acquired and 
quality-controlled in 52 separate experiment runs, from which 34 
experiments were selected manually for image quality. These images 
were stored as 12-bit TIFF-files with 2,048 × 2,048 pixels (0.31 pix-
els μm−1) in separate files with each image displaying 1 to 30 embryos.

The temperature series were acquired on two Keyence BZ-X810 
microscopes with ×2 apochromate objectives, 3.7 W LED light 
sources and the BZ-X800 viewer software (Keyence, v.01.03.00.01). 
The embryos were imaged in 48-well plates (Eppendorf, catalog no. 
0030723112). The microscopes were set up in a temperature-regulated 
room. Empty wells and the space between wells were filled with filtered 
water to help buffer the temperature. For one system, the experimental 
temperature was determined by the room temperature as measured by 
a ShT4x SmartGadget (Sensirion) directly next to the multiwell plate 
and a custom-built dipping thermometer in a reference well within 
the plate. Experiments outside ±0.5 °C of the target temperature were 
excluded. To image two temperatures in parallel, the second system was 
equipped with a heated chamber (H301-KEYENCE-BZX) with an UNO 
Stage top incubator thermal regulator (Okolab) and a multiwell frame 
providing a thermal uniformity of 0.3–0.4 °C. Zebrafish embryos were 
imaged every 2–5 min for 24 h, and timeseries from temperatures above 
28.5 °C were truncated after the prim-6 stage6. Medaka embryos were 
imaged every 2 min for 24 h, and timeseries from temperatures above 
28 °C were truncated after stage 19 (ref. 7). Varying starting points 
of the timelapse videos were corrected by the experimental ages of 
the first timepoint. The exposure time was 0.13 ms with 50% relative 
intensity and 60% aperture stop. Images were stored as 8-bit JPEG files 
with 1,920 × 1,440 pixels (0.33 pixels μm−1).

For drug-treated zebrafish embryos as well as medaka and 
three-spined stickleback embryos, open-source image data was used 
(https://doi.org/10.48606/15)31. For C. elegans, tiff images for training 
and testing were extracted from published videos71 and https://www.
youtube.com/watch?v=M2ApXHhYbaw, respectively. A total of 232, 56 
and 1 embryos were used for training the models of medaka, stickleback 
and C. elegans, respectively.

Image segmentation: preparation of the segmentation model
For detection and segmentation of zebrafish embryos in microscope 
images, an object detection model was trained using TensorFlow Object 
Detection API (TensorFlow v.2.2.0). An SSD ResNet101 v.1 FPN 640 × 640 
(RetinaNet101) architecture, pretrained on the COCO dataset (https://
github.com/tensorflow/models/blob/master/research/object_detec-
tion/g3doc/tf2_detection_zoo.md), was used as the object detection 
model. For training and testing, 877 images displaying embryos from 
blastula to 12-somite stages were selected manually. Embryo seg-
ments were annotated manually using Visual Object Tagging Tool 
(https://github.com/microsoft/VoTT, v.2.2.0). Training TensorFlow 
record files were created using a custom script (https://github.com/
TannerGilbert/Tensorflow-Object-Detection-API-Train-Model/blob/
master/generate_tfrecord.py). Training was performed according 
to the TensorFlow Object Detection API documentation (https://
tensorflow-object-detection-api-tutorial.readthedocs.io/en/2.2.0/
training.html). Evaluation of segmentation accuracy was performed 
manually using 36 test images containing 230 embryos. Segmented 
images and individual embryo tracking results were stored in separate 
JSON files for each analyzed image. Individual image segments were 
retrieved from the original acquisition images, and all embryo seg-
ment images were stored separately with information on acquisition 
timepoints for further usage.

For the analysis of developmental temperature dependence, single 
embryos were segmented using EmbryoNet (ref. 31) and exported with 
a custom-built Matlab-script. After image acquisition and segmenta-
tion, the segmented timeseries of single embryos were loaded into 
Fiji (ImageJ v.1.54f)80. Unfertilized, dead or malformed embryos were 
excluded manually. For the identification of drug-induced embryonic 
phenotypes, image data and the corresponding segmentations were 
retrieved from (ref. 31) and exported as single embryo images.

Dataset cleaning
Acquired images were evaluated manually and put into different cat-
egories: normal embryos, embryo images that were out of focus or 
overlaid, disintegrating embryos and embryos displaying other abnor-
mal phenotypes. Using a custom Python script, all embryos within 
these categories were divided into subgroups by checking for segment 
brightness, segment size and number of timepoints acquired for each 
single embryo. Dataset cleaning was performed to select high-quality 
images of embryos for model training. This classification resulted in a 
total of ten categories. The cleaning step resulted in a dataset of more 
than 3 million image segments, from originally 15 million acquired 
images. For each experiment, a separate JSON file was created contain-
ing information for embryos belonging to each category.

Twin Network model training
The Twin Network architecture was based on the architecture of a 
vanilla Siamese Network (https://github.com/keras-team/keras-io/
blob/master/examples/vision/siamese_network.py). A ResNet50 
architecture with pretrained weights based on the ImageNet dataset 
(https://www.tensorflow.org/api_docs/python/tf/keras/applications/
resnet50/ResNet50?hl=de) was used as backbone network for the 
embedding model of the Twin Network. The output of the ResNet50 
backbone network was flattened and passed to a custom model head 
consisting of three dense layers with interposed batch normalization 
and an output/embedding size of (1, 256). For transfer learning, all 
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layers of the ResNet50 backbone network were frozen, except for lay-
ers of convolutional block 5 and the model head. ResNet50-generated 
feature embeddings were combined within a distance layer to calculate 
the Euclidean distance between network-generated embeddings of 
different inputs during the training process.

In each training step, three embryo images were combined into 
an image triplet and passed to the Twin Network: first, an image from 
a random developmental stage t1 as ‘anchor’ image, second an image 
from a similar developmental step t1 (model version 1) or the anchor 
image with applied image augmentation (model version 2) as ‘posi-
tive’ image and third an image from another developmental step t2 ≠ t1 
than the first image as ‘negative’ image. For zebrafish, two versions of 
the Twin Network model were trained, the first with 300,000 image 
triplets for ten epochs, and a second with 1,000,000 image triplets 
for two epochs. Triplet loss was applied to the model to minimize 
the distance between the embeddings of the anchor and positive 
image and to maximize the distance between the anchor and nega-
tive image. The loss for each image triplet passed to the network was  
calculated by

L(A, P, N ) = max(0, || f(A) − f(P)||2 − || f(A) − f(N )||2 + a)

with A representing the anchor image, P  representing the positive 
image, N  representing the negative image, f  representing a function 
generating an image embedding and a representing an additional 
margin for increased contrast between the distance of A and P and the 
distance of A and N. The minimization of the resulting cost was per-
formed by reducing the value of ‖f(A) − f(P)‖2 + a  and increasing the 
value of ‖ f(A) − f(N )‖2.

Training was performed with GPU-acceleration using an NVIDIA 
GeForce RTX3070 (ASUS). Training duration was approximately 18, 
12, 10 and 2 h for the models of zebrafish, medaka, stickleback and 
C. elegans, respectively.

The models for the analysis of developmental temperature 
dependence were trained with 1,000,000 and 100,000 image triplets 
for 40 and 70 epochs for zebrafish and medaka, respectively, using 
model version 1. Only data at the corresponding reference tempera-
tures, that is, 28.5 °C and 28.0 °C for zebrafish and medaka, respec-
tively, were used for the training. To evaluate the variability of the 
predictions for the similarity matrices, ten models were trained using 
100,000 image triplets (from the training set of the temperature analy-
sis of zebrafish) for 40 epochs. The models for medaka, stickleback 
and C. elegans were trained for 30 epochs using 150,000, 150,000 and 
100,000 image triplets, respectively, using model version 1. These 
trainings were performed with GPU-acceleration using an NVIDIA 
GeForce RTX3090 graphics card (ASUS).

Similarity calculation between images
For further similarity calculations, the trained ResNet50 model was 
used to generate embeddings of given images. Model-generated 
embeddings were used to calculate cosine similarities between two 
inputs, hereby returning a numeric estimation of the concordance 
between two images. Cosine similarity was calculated as follows:

cosine similarityφ = a ⋅ b
‖a‖‖b‖ =

∑n
i=1aibi

√∑n
i=1a

2
i √∑n

i=1b
2
i

Image comparison types
Similarity calculations were performed based on different test and 
comparison images and image sequences. A complete overview of 
performed comparisons is shown in Supplementary Table 2. Two dif-
ferent types of reference images were used in the example applications 
of Twin Network to embryonic development: reference images were 
selected either as a distribution of different acquisition timepoints, 

representing different developmental stages, or at the same acquisi-
tion timepoint as a distribution of different phenotypic characteristics. 
Reference images from different acquisition timepoints were used to 
predict developmental stages, establish developmental trajectories, 
determine developmental epochs and detect abnormal development 
based on deviations in predicted developmental stages. Reference 
images from similar imaging timepoints were used to illustrate vari-
ability in embryonic phenotype, to predict the effects of chemical 
compounds on embryonic phenotype and to detect spontaneous 
maldevelopment during embryogenesis.

Image sorting
A set of n images to be ordered was passed to the trained ResNet50 
architecture, and n image embeddings were generated. Euclidian 
distances and cosine similarities between all n embryo embeddings 
were calculated; z-scores were calculated for both distance metrics, 
and z-scores of Euclidian distances were subtracted from z-scores 
of cosine similarities. The embedding index with the overall high-
est similarity z-score to any other embedding was selected as start 
index. Beginning at the embedding value with the start index, for the 
next index the index with the highest z-score of the start index was 
selected. This process was iteratively repeated until all indices were 
assigned an order index. Each time an index was selected, the index 
was removed from a list of available indices. In case that the index with 
highest similarity to the last index was already assigned an order index, 
the index with second highest, third highest and so on, similarity value  
was selected.

For the comparison of the Twin Network and classical vector 
diffusion map-based image ordering, a Kolmogorov–Smirnov test 
was first performed to check whether the absolute deviations from 
the groundtruth were distributed normally for both approaches. A 
two-sided Wilcoxon signed-rank test was used to compare whether the 
difference in non-normally distributed data between the two methods 
was significant.

Developmental stage and epoch prediction
For prediction of developmental stages of zebrafish embryos, similari-
ties were calculated between images of a test embryo from 0.5–2.0 to 
24–25 h postfertilization (hpf) and reference embryos at different 
developmental timepoints. One image of the test embryo was com-
pared with an image timeseries with n images of ten reference embryo 
anchors, where for each image the acquisition timepoint was known. 
The ten embryo anchors were selected randomly (frame by frame) 
from a pool of untreated, normally developing embryos. This com-
parison of a single test image with several reference images returned 
ten similarity profiles, in which the similarities of the test embryo to 
different developmental stages of reference embryos were displayed. 
The developmental stage of the test embryo was predicted by taking 
the timepoint of reference embryos at which the maximum similarity 
with the test images was the highest.

In a second approach, instead of reference images of different 
embryos, earlier acquisition images of the same embryo were used for 
similarity calculation for each acquisition timepoint of one timeseries 
acquisition, resulting in k – 1 similarity values at each acquisition time-
point index k. Changes of developmental epochs were located at local 
maxima of changes in similarity values.

Growth rate and apparent activation energy estimation
To estimate the growth rate for each temperature, first the estimated 
developmental age for an image timeseries of the evaluated embryos 
was calculated. The data of all embryos were pooled and fitted with a 
linear model using the RANSAC (RANdom SAmple Consensus) algo-
rithm with a minimum sample number of 2,000 and a residual thresh-
old of 2.0. Then the growth rate (g) was defined as the slope of the fitted 
model.
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To estimate the relative activation energy (Ea), the Arrhenius equa-
tion43 was used as follows:

g = Ae−Ea/RT

ln g = −Ea
R

1
T + c

with the universal gas constant R = 8.314 J K−1 mol−1. By fitting a linear 
model to the data using RANSAC, the apparent activation energy was 
estimated; 99.99% confidence intervals were obtained using bootstrap-
ping with 100 samples.

Phenotypic comparison of embryos at the same 
developmental stage
For comparison of phenotypic characteristics of zebrafish embryos, 
similarities were calculated between one image of a test embryo from 
0.5 to 25 hpf and reference embryos at different developmental time-
points. For calculation of similarity distributions at different acquisi-
tion timepoints, a batch of n embryos was selected, and n × (n − 1) 
similarities between all embryos were calculated. For each embryo, 
similarities to other embryos were averaged. Variability of phenotypic 
characteristics was derived from the distribution width of similarity 
values at different acquisition timepoints.

Detection of aberrant phenotypes with Twin Networks
Two approaches for the early detection of abnormal development were 
implemented using Twin Networks. First, defects were assessed based 
on the variation of predicted embryonic stages. Developmental stages 
of several embryos were predicted at each acquisition timepoint of a 
timeseries experiment with the previously described approach. Mal-
developing embryos were identified if their predicted developmental 
stage did not correspond to the expected developmental stage at the 
respective acquisition timepoint and the predicted stages for other 
embryos of the same batch.

Second, embryonic phenotypes of several embryos within a batch 
were compared among each other for each timepoint in the timeseries 
experiment, as described in the previous section. For each embryo, 
average similarity values served as an index representing the similar-
ity of the phenotype of each embryo to the average phenotype of 
the embryo batch; z-scores were calculated for each embryo based 
on the mean and s.d. of the similarity indices within the respective 
embryo batch. In parallel, for each new acquisition timepoint in the 
timeseries experiment, the cumulative sum of the similarity indices 
for all previous acquisition timepoints was calculated individually for 
each embryo. Similar to the calculation of z-scores based on similarity 
indices calculated for a specific timepoint, z-scores were calculated 
for cumulative similarity indices for each acquisition timepoint of 
each embryo. Detection of deviation of embryonic phenotypes was 
performed based on the z-scores of both the similarity index calcu-
lated for the tested timepoint and the cumulative similarity index of  
each embryo.

Detection of group phenotypes with Twin Networks
To identify drug-induced embryonic phenotypes, groups of embryos 
were compared with a reference group of untreated normally devel-
oping embryos. For each embryo, the similarity distance to the refer-
ence group was estimated by calculating the median of the similarity 
matrices obtained by comparing the test embryo series with each 
embryo series of the reference group. Next, the temporal series of 
similarity distributions was calculated for the reference group and the 
group of embryos to be evaluated. To test for significant differences 
in the temporal series similarity distributions between the reference 
and the test group, the nonparametric one-sided Mann–Whitney U 
test over each timepoint of the image series was used. A threshold 

P value of 0.01 was applied to define significant differences. Then, 
a group of embryos was set to be detected as abnormal if a certain 
percentage of image frames were significantly different from the refer-
ence group. A fraction equal to 0.3 was used to define a detection; in 
other words, a set of embryos should be different from the reference 
group by at least 30% of the total imaging time to be considered as an  
abnormal detection.

The dependence of the accuracy of abnormality detection for 
different conditions with respect to the number of embryos used 
for the detection was evaluated as follows: first, a defined number of 
embryos for the test and reference groups was selected randomly from 
a pool of available ones (44, 65, 51, 50, 14, 47, 18 and 46 embryos for 
untreated, –BMP, –FGF, –Nodal, –PCP, –Shh, –Wnt and +RA embryos, 
respectively). Then, the groups of embryos were compared statistically 
as described above to determine whether the test group was detected 
as normal or abnormal. The process was done for 20 random samples 
of 3–44 embryos, and repeated five times. In the case of the detailed 
analysis of –BMP embryos, a pool of 79 (C5), 79 (C4), 117 (C3) and 88 (C2) 
embryos was used in addition to 17 embryos for the bmp2b-defective 
swirl mutant.

Automatic generation of staging atlases from cosine 
similarities
Cosine similarity matrices were stored as .mat files exported from the 
Twin Network analysis, and subsequent results were stored as JSON 
files. A threshold was derived from the histogram of cosine similarity 
distributions. This threshold was used to mask areas of high noise, 
and values below that threshold were set to zero. Boundaries within 
the inverse of the sums of diagonals were identified as local maxima 
with find_peaks (scipy.signal, Scipy v.1.10.1). The first and last frames 
of the image sequence were set as additional boundaries. From the full 
set of embryos, sequences with comparable normal development were 
considered representative.

Analysis of technical and biological variability in 
self-similarity matrices
Ten models of TwinNet were trained on a set of training images (61 
embryos). All models were trained with the same embryo images and 
parameters, but the random image triplets and initial weights were 
different. Ten self-similarity matrices were then calculated for each 
embryo with one prediction per model. The variability arising from 
random variations in the models was assessed by analyzing the matrices 
generated by the different models for the same embryos (that is, mean 
and s.d.). For each embryo, an ensemble matrix (average similarity 
matrix) was calculated.

Image processing for representative embryos in display items
Brightness and contrast in representative embryos were uniformly 
adjusted, and embryos were cropped manually in Fiji (ImageJ v.1.54f)80, 
Adobe Illustrator (V. 26.2.1) and Adobe Photoshop (V. 23.3.1.426) along 
the chorion outlines to enhance visibility. Note that for illustration 
purposes a subset of embryo images was reused for display in differ-
ent figures. Raw data are available from https://doi.org/10.48606/50.

Ethics statement
All procedures involving animals were executed in accordance with 
the guidelines of the EU directive 2010/63/EU and the German Ani-
mal Welfare Act as approved by the local authorities represented by 
the Regierungspräsidium Tübingen and the Regierungspräsidium 
Freiburg. Experiments were performed exclusively with embryos and 
larvae that were not yet freely feeding.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
Training, evaluation and temperature datasets are available from 
https://doi.org/10.48606/50. Additional data used for training and 
evaluation is available from https://doi.org/10.48606/15, https://www.
youtube.com/watch?v=M2ApXHhYbaw (accessed on 20 March 2023) 
and https://doi.org/10.7554/eLife.07410.021. Source data are provided 
with this paper.

Code availability
The Twin Network open-source code is available from https://
github.com/mueller-lab/TwinNet.git (https://doi.org/10.5281/
zenodo.8419446).
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Extended Data Fig. 1 | Architecture of the Twin Network to analyze 
developmental dynamics. (a) High-throughput imaging pipeline and 
ResNet101-based image segmentation to generate developmental trajectories 
of individual embryos. Embryos are individually tracked, as indicated by equally 
colored bounding boxes in the segmentation steps. (b) Model architecture of 
the core of the Twin Network based on ResNet50. (c) Image triplets consist of 
an anchor image, a positive image, and a negative image, and are passed to Twin 

Network for training with triplet loss. Anchor and positive images contain similar 
objects, while anchor and negative images show dissimilar objects. Triplet loss is 
used during the training to reduce the Euclidian distance between embeddings 
generated for the anchor image and positive image, and increase the distance 
between embeddings of the anchor image and negative image. Embryos for 
illustration also shown in Fig. 1a. Scale bar, 500 μm.
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Extended Data Fig. 2 | Identifying developmental progression with Twin 
Networks. Comparison of two subsequently acquired images of the same 
embryo. Similarity plots calculated by comparison with reference images differ 
minimally with respect to the peak of similarity as well as similarity to distant 
embryonic stages. Subtracting the similarity of the earlier acquired image 
(turquoise) from the similarity profile of the later acquired image (purple) shows 
positivity following the peak of the similarity (blue), suggesting the attribution 

of the later acquired image towards later developmental stages. Comparisons 
of subsequent images taken 3 min and 8 seconds apart are shown for images of 
embryos captured at 5.1 hpf in (a) and of subsequent images of embryos captured 
at 7.8 hpf in (b). Two images per plot from the acquisition of one embryo, 
representative for three independent experiments, are shown. The temporal 
limits for this approach have not yet been defined. Embryos for illustration are 
also shown in Fig. 1c,e. Scale bars, 500 μm.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Developmental age estimation for zebrafish embryos 
at different temperatures. Error envelopes represent two times the median 
absolute deviation (MAD) and are shown together with the corresponding 
linear fit (solid line) plus 99% confidence interval (dashed lines). (a) 23.5 °C 
(slope = 0.623 (0.613, 0.630), R2 = 0.972), (b) 25 °C (slope = 0.696 (0.680, 0.716), 
R2 = 0.968), (c) 26.5 °C (slope = 0.861 (0.854, 0.871), R2 = 0.982), (d) 28 °C (slope 
= 0.951 (0.937, 0.967), R2 = 0.979), (e) 28.5 °C (slope = 1.000 (0.991, 1.009), 

R2 = 0.987), (f ) 30 °C (slope = 1.117, (1.099, 1.134), R2 = 0.983), (g) 30.5 °C (slope = 
1.182 (1.165, 1.204), R2 = 0.981), (h) 31.5 °C (slope = 1.207 (1.183, 1.237), R2 = 0.981), 
(i) 33 °C (1.284 (1.259, 1.305), R2 = 0.983), ( j) 34.5 °C (slope = 1.273 (1.238, 1.306), 
R2 = 0.981), (k) 35.5 °C (slope = 1.246 (1.216, 1.287), R2 = 0.981). n(23.5 °C) = 211, 
n(25 °C) = 198, n(26.5 °C) = 209, n(28 °C) = 168, n(28.5 °C) = 126, n(30 °C) = 187, 
n(30.5 °C) = 102, n(31.5 °C) = 130, n(33 °C) = 98, n(34.5 °C) = 70, n(35.5 °C) = 119. 
Data for 26.5 °C, 28.5 °C and 31.5 °C also shown in Fig. 2b.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Developmental age estimation for medaka embryos 
at different temperatures. Error envelopes represent two times the median 
absolute deviation (MAD) and are shown together with the corresponding linear 
fit (solid line) plus 99% confidence intervals (dashed lines). (a) 18 °C (slope = 
0.323 (0.272, 0.378), R2 = 0.798), (b) 21 °C (slope = 0.361 (0.325, 0.397), R2 = 0.825), 
(c) 23 °C (slope = 0.588 (0.568, 0.607), R2 = 0.945), (d) 26 °C (slope = 0.842 
(0.815, 0.872), R2 = 0.965), (e) 28 °C (slope = 0.963 (0.929, 0.989), R2 = 0.979), 

(f ) 30 °C (slope = 0.966 (0.913, 1.119), R2 = 0.966), (g) 31 °C (slope = 1.189 (1.153, 
1.230), R2 = 0.979), (h) 32 °C (slope = 1.207 (1.188, 1.224), R2 = 0.978), (i) 33 °C 
(slope = 1.175 (1.059, 1.250), R2 = 0.980), ( j) 36 °C (slope = 1.180 (1.084, 1.245), 
R2 = 0.974). n(18 °C) = 65, n(21 °C) = 32, n(23 °C) = 92, n(26 °C) = 47, n(28 °C) = 46, 
n(30 °C) = 41, n(31 °C) = 21, n(32 °C) = 40, n(33 °C) = 42, n(36 °C) = 35. Data for 
26 °C, 28 °C and 31 °C also shown in Fig. 2e.
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Extended Data Fig. 5 | Characterization of morphological variability 
during zebrafish development. (a) Distribution widths of similarity values at 
different acquisition time points calculated for 77 embryos. The distribution 
width of similarities is wider at later acquisition time points. (b) Relation of 
average similarities (purple) and distribution width of similarity values (blue) at 
different embryonic stages. Representative images of embryos at corresponding 

developmental stages are shown below the x-axis. Average similarity is constant 
until gastrulation and then decreases. Distribution width of similarities is low 
until gastrulation and increases steplike after gastrulation. The embryo images 
are representative examples of the whole sample group (n = 77). Scale bars,  
500 μm.
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Extended Data Fig. 6 | Distinguishing phenotypes of different severity 
during zebrafish development. (a-f ) Detection of -BMP phenotypes of different 
strength. (a-e) Upper panels show the mean similarities and standard deviation 
of similarities of bmp (swr-/-) mutants (a) and -BMP drug-treated embryos with 
C5 (b), C4 (c), C3 (d) and C2 (e) phenotypes. The respective lower panels show 
significance levels of the difference from untreated embryos along the time 

axis in p-values determined using a nonparametric one-sided Mann-Whitney 
U test over each time point of the image series. No adjustments for multiple 
comparisons were made. n = 44 for all cases. (f) Dependency of the accuracy of 
abnormality detection on the number of embryos used for the analysis. Mean 
and standard deviation are shown for five repetitions with randomly selected 
samples. Raw data for analysis from https://doi.org/10.48606/15.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Automatic detection of developmental epochs and 
transitions in zebrafish (Danio rerio) embryos. The Twin Network detects and 
partitions embryo development into phases that are in line with the classical 
zebrafish staging atlas6. The term autostage describes a time phase within the 
recorded developmental period of an embryo that can be delineated by a plateau 
of coherently high similarity values calculated using the Twin Network. These 
similarity values were calculated by self-similarity comparison with images 
of previous developmental stages of the same test embryo. (a) Automatically 
selected images at the beginning, in the middle, and at the end of Twin Network-
predicted plateaus of similarity values, that is autostages, for one test zebrafish 
embryo (embryo 1). Embryos for illustration in (a) also shown in Fig. 5b. (b) 
Calculated similarities used as the basis for the selection of depicted images 
of embryo 1. (c) Time points in the classical staging atlas6 are shown at the top. 
Automatically generated autostages were calculated based on phases of high 
similarity in embryo morphology and are shown below. Embryos for illustration 
in (c) also shown in Fig. 5b. (d) Automatically selected images based on 

autostages as described in (a) for a zebrafish embryo (embryo 2). (e) Calculated 
similarities used as the basis for the selection of the depicted images of embryo 
2. (f ) Time points in the classical staging atlas6 are shown at the top. Autostages 
were calculated based on phases of high similarity in embryo morphology and 
are shown below. (g) Automatically selected images based on autostages as 
described in (a) for a zebrafish embryo (embryo 3). (h) Calculated similarities 
used as the basis for the selection of the depicted images of embryo 3. (i) Time 
points in the classical staging atlas6 are shown at the top. Autostages were 
calculated based on phases of high similarity in embryo morphology and are 
shown below; n = 3 out of 131 representative embryos. Images in (a), (d) and (g) 
correspond to the pictograms in (c), (f) and (i) at the indicated timepoints. The 
reference stages in the upper panels of (c), (f) and (i) are annotated with the time 
postfertilization (min). The example images in (a), (d) and (g), the similarities 
in (b), (e) and (h), and the autostages in the lower panels of (c), (f) and (i) are 
annotated with the experimental time (min). Imaging was started at 2 hpf (64-cell 
stage). Scale bars, 500 μm.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-02083-8

c

485 min 670 min 760 min 855 min

905 min

960 min

1,020 min

1,085 min 1,175 min 1,270 min

1,320 min

1,370 min

1,420 min

1,470 min 1,575 min 1,680 min

1,735 min

1,790 min 1,880 min 1,975 min

autostage 2
(3.1 h)

autostage 3
(1.75 h)

autostage 4
(2.1 h)

autostage 5
(3.1 h)

autostage 6
(1.7 h)

autostage 7
(1.7 h) 

autostage 8
(3.5 h)

autostage 9
(1.8 h)

autostage 10
(3.1 h)

autostage 1
(3.1 h)

Cleavage
(6.5 h)

Blastula stage
(6.5 h)

Gastrula stage
(12 h)

Organogenesis and segmentation stage
(57 h)

390 min 780 min 1,500 min 4,920 min

a b

485 min
(Blastula)

1,320 min
(Gastrula)

670 min
(Blastula)

1,370 min
(Gastrula)

760 min
(Blastula)

1,420 min
(Gastrula)

855 min
(Gastrula)

1,470 min
(Gastrula)

905 min
(Gastrula)

1,575 min
(Segmentation)

960 min
(Gastrula)

1,680 min
(Segmentation)

1,020 min
(Gastrula)

1,735 min
(Segmentation)

1,085 min
(Gastrula)

1,790 min
(Segmentation)

1,175 min
(Gastrula)

1,880 min
(Segmentation)

1,270 min
(Gastrula)

1,975 min
(Segmentation)

Medaka epochs

480

729

729

978

978

1,228

1,228

1,477

1,477

1,726

1,726

t (
m

in
)

1,975

1,975

1.0

0.0

C
os

in
e 

si
m

ila
rit

y 
φ0.8

0.6

0.4

0.2

t (min)

0 min

480

Extended Data Fig. 8 | Automatic detection of developmental epochs and 
transitions in medaka (Oryzias latipes) embryos. The Twin Network detects 
and partitions embryo development into phases that are in line with the classical 
medaka staging atlas7. (a) Automatically selected images from autostages and 
boundaries for a single embryo. (b) Calculated similarities used as the basis for the 
selection of the depicted images. (c) Time points in the classical medaka staging 

atlas are shown at the top. Automatically generated autostages were calculated 
based on phases of high similarity in embryo morphology and are shown below; 
n = 1 representative out of 232 embryos. Images in (a) correspond to the pictograms 
in (c) at the indicated timepoints. Scale bars, 500 μm. Raw data for analysis from 
https://doi.org/10.48606/15.
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Extended Data Fig. 9 | Automatic detection of developmental epochs and 
transitions in three-spined stickleback (Gasterosteus aculeatus) embryos. The 
Twin Network detects and partitions embryo development into phases that are in 
line with the classical stickleback staging atlas9. (a) A selected set of images from 
autostages and boundaries for a single embryo. (b) Calculated similarities used as 

the basis for the depicted images. (c) Time points in the classical staging atlas9 are 
shown at the top. Autostages were calculated based on phases of high similarity 
in embryo morphology; n = 1 representative out of 56 embryos. Images in (a) 
correspond to the pictograms in (c) at the indicated timepoints. Scale bars, 500 μm. 
Raw data for analysis from https://doi.org/10.48606/15.
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Extended Data Fig. 10 | Automatic detection of cell divisions in nematode 
(Caenorhabditis elegans) embryos. The Twin Network detects and partitions 
development into phases that are in line with human staging and early 
embryogenesis descriptions (http://www.wormbook.org)14. (a) A selected set 
of images from autostages and boundaries for a single embryo. (b) Calculated 
similarities used as the basis for the depicted images. Gross homology to a 
distant morphology at 5–7 min is present around 20–32 min of the acquisition. 

(c) Dashed lines indicate cytokinesis phases as detected by a human observing 
the original video. Automatically generated autostages were calculated based on 
phases of high similarity in embryo morphology and are shown below (frames 
taken in intervals of 17.5 s). Notably, the blastomere divisions giving rise to ABa, 
ABp, EMS and P2 cells were correctly identified; n = 1 embryo. Images in (a) 
correspond to the pictograms in (c) at the indicated timepoints. Scale bar, 10 μm. 
Raw data from https://www.youtube.com/watch?v=M2ApXHhYbaw.
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Reporting Summary
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection For data acquisition on an Acquifer Imaging Machine we used the Imaging Machine control software (Acquifer Imaging GmbH, Version ID 
4.00.21). Additionally, two Keyence BZ-X810 microscopes with the BZ-X800 viewer (Keyence, Version 01.03.00.01) were used. One of the 
Keyence BZ-X810 microscopes was equipped with a stage-top incubator (Oko-lab H301-KEYENCE-BZX with a UNO temperature controller).

Data analysis For image annotation, we used the Visual Object Tagging Tool (Microsoft, https://github.com/microsoft/VoTT, Version 2.2.0). For model 
training and testing, we used custom Twin Network software (https://github.com/mueller-lab/TwinNet). The training was performed on 
NVIDIA RTX 3070 and 3090 cards (ASUS) on Windows 10 and Ubuntu 20.04, CUDA 11.2. For comparison to vector diffusion maps, we used 
software provided with the original publication (Dsilva et al., Development 2012) in MATLAB R2022a (MathWorks). Segmented time-series of 
single embryos were loaded into Fiji (ImageJ 1.54f), Adobe Illustrator (V. 26.2.1) and Adobe Photoshop (V. 23.3.1.426) for visualization and 
manual cropping.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.



2

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Training, evaluation and temperature data sets are available from https://doi.org/10.48606/50. Additional data used for training and evaluation are available from 
https://doi.org/10.48606/15, https://www.youtube.com/watch?v=M2ApXHhYbaw (accessed on 03/20/2023) and https://doi.org/10.7554/eLife.07410.021. Source 
data for all graphs is provided in separate source data files alongside this paper.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size To determine a suitable sample size for the development of Twin Network as well as the segmentation network, we used an active learning 
approach. In an iterative process, we progressively increased the number of images/embryos used as training and validation sets until training 
metrics on the validation set reached a saturation level. The pool out of which the images were selected comprised more than 15,000 
embryos. For data analysis sample sizes of at least 5 embryos were found to provide good accuracy (Fig. 4j and Extended Data Fig. 6f). 
Analyses of morphological variability and variability of predicted embryonic stages between normally developing embryos were performed on 
77 embryos acquired in one experiment. Comparisons of morphological differences between normally and abnormally developing embryos 
were performed between 1 maldeveloping and 6 normally developing embryos from one image acquisition. Differences of predicted stages 
for normally and abnormally developing embryos were shown for 14 maldeveloping and 7 normally developing embryos from one 
experiment. Autostaging was performed on 131 zebrafish, 56 stickleback, 232 medaka and one C. elegans embryo. For the temperature 
analysis, 61 zebrafish and 146 medaka embryos were used for training. The zebrafish test data sample size per temperature was: n(23.5°C) = 
211, n(25°C) = 198, n(26.5°C) = 209, n(28°C) = 168, n(28.5°C) = 126, n(30°C) = 187, n(30.5°C) = 102, n(31.5°C) = 130, n(33°C) = 98, n(34.5°C) = 
70, n(35.5°C) = 119; and for medaka: n(18°C) = 65, n(21°C) = 32, n(23°C) = 92, n(26°C) = 47, n(28°C) = 46, n(30°C) = 41, n(31°C) = 21, n(32°C) = 
40, n(33°C) = 42, n(36°C) = 35. For the comparison to the vector diffusion maps approach (Dsilva et al., Development 2012), 2 zebrafish 
embryos were analyzed.

Data exclusions Embryos were excluded from data sets based on one of several criteria: 
- Partial visibility in images 
- Microscope image was taken without the embryo being in the correct focal plane 
- Embryo showed visible signs of artificially induced or natural malformation during embryogenesis 
- Particles obstructed the view of parts of the embryo 
- Illumination of the embryo during acquisition was insufficient or unbalanced 
- Embryos were unfertilized 
- Tracking was inconsistent, e.g. due to extensive embryonic movement

Replication Microscopy experiments for the provided training and testing data sets of Twin Network were carried out 34 times, and data was collected 
reliably and with comparable quality. Instructions for the replication of analyses using Twin Network and corresponding follow-along scripts 
are provided at https://github.com/mueller-lab/TwinNet. For embryonic age assessment experiments, at least three biological replicates were 
performed. The test data collection for the temperature analysis was performed once per temperature. 



3

nature portfolio  |  reporting sum
m

ary
M

arch 2021
Randomization Embryos from each species were randomly allocated into experimental groups.

Blinding Since embryos from each species were indistinguishable in different experiments, blinding of the investigators was not necessary.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals We performed experiments exclusively on embryos and larvae that were not yet freely feeding. We used zebrafish of different 
genetic backgrounds to maximize the utility of the approach:  
- Wild type TE (Pomreinke et al., eLife 2017) 
- Tg(sebox:EGFP) (Poulain et al., Development 2002) 
- Tg(gsc:GFP) (Doitsidou et al, Cell 2002) 
- Tg(gsc:TurboRFP) (Sako et al., Cell Reports 2016) 
- Tg(lhx1a:EGFP)  (Swanhart et al., Int J Dev Biol 2010) 
- sqt+/- (Dougan et al., Development 2003) 
Age of embryos: 0-27 hpf. 
In addition, medaka eggs of the Cab strain were used.

Wild animals We did not use wild animals.

Reporting on sex Sex-based analysis was not performed because phenotypical sex identification is not possible in early embryos.

Field-collected samples We did not use field-collected samples.

Ethics oversight All procedures involving animals were executed in accordance with the guidelines of the EU directive 2010/63/EU and the German 
Animal Welfare Act as approved by the local authorities represented by the Regierungspräsidium Tübingen and the 
Regierungspräsidium Freiburg. Experiments were executed exclusively on embryos and larvae that were not yet freely feeding.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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