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Multi-layered maps of neuropil with 
segmentation-guided contrastive learning

Sven Dorkenwald1,2,3,7, Peter H. Li    1,7, Michał Januszewski    4, Daniel R. Berger5, 
Jeremy Maitin-Shepard1, Agnes L. Bodor6, Forrest Collman6, 
Casey M. Schneider-Mizell6, Nuno Maçarico da Costa    6, Jeff W. Lichtman    5 & 
Viren Jain    1 

Maps of the nervous system that identify individual cells along with 
their type, subcellular components and connectivity have the potential 
to elucidate fundamental organizational principles of neural circuits. 
Nanometer-resolution imaging of brain tissue provides the necessary raw 
data, but inferring cellular and subcellular annotation layers is challenging. 
We present segmentation-guided contrastive learning of representations 
(SegCLR), a self-supervised machine learning technique that produces 
representations of cells directly from 3D imagery and segmentations.  
When applied to volumes of human and mouse cortex, SegCLR enables 
accurate classification of cellular subcompartments and achieves 
performance equivalent to a supervised approach while requiring 400-fold 
fewer labeled examples. SegCLR also enables inference of cell types from 
fragments as small as 10 μm, which enhances the utility of volumes in 
which many neurites are truncated at boundaries. Finally, SegCLR enables 
exploration of layer 5 pyramidal cell subtypes and automated large-scale 
analysis of synaptic partners in mouse visual cortex.

Biological understanding has been enabled by annotating parts of 
organisms and elucidating their interrelationships. In the brain, numer-
ous types of neuronal and glial cells have been discovered and cata-
loged according to their morphological, physiological and molecular 
properties1–5, typically using methods that interrogate cells in a sparse 
or isolated setting. Further discoveries would be enabled by produc-
ing maps that contain dense assemblies of cells and multiple layers of 
annotation in the context of a neural circuit or region6–10.

Producing dense maps of neuropil is challenging due to the mul-
tiple scales of brain structures (for example, nanometers for a syn-
apse versus millimeters for an axon)11, and the vast number of objects 
in neuropil that must be individually segmented, typed and anno-
tated. Volumetric electron microscopy is an effective way to image 
brain structures over both large and fine scales12–14, and automated 

segmentation of volume electron microscopy data has also shown sub-
stantial progress15–19, including the demonstration of millimeter-scale 
error-free run lengths20.

Automated methods have also been used to infer annota-
tions of cell fragments, and have usually been trained in a super-
vised fashion for a specific task9,21–27. Self-supervised learning has 
emerged as an alternative to supervised learning, and is capable of 
producing representations of text28 and images29 without the use of 
labeled data. Specifically, contrastive learning is a commonly used 
method in which a model is trained to produce similar representa-
tions for augmented versions of the same two-dimensional (2D) 
or three-dimensional (3D) input image. This approach has been 
used to explore image retrieval in 2D and 3D datasets30,31, and to 
analyze coarse neuron morphologies32, synaptic ultrastructures33 

Received: 18 November 2022

Accepted: 2 October 2023

Published online: 20 November 2023

 Check for updates

1Google Research, Mountain View, CA, USA. 2Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA. 3Computer Science Department, 
Princeton University, Princeton, NJ, USA. 4Google Research, Zürich, Switzerland. 5Department of Molecular and Cellular Biology, Center for Brain Science, 
Harvard, Cambridge, MA, USA. 6Allen Institute for Brain Science, Seattle, WA, USA. 7These authors contributed equally: Sven Dorkenwald, Peter H. Li. 

 e-mail: viren@google.com

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-02059-8
http://orcid.org/0000-0001-6193-4454
http://orcid.org/0000-0002-3480-2744
http://orcid.org/0000-0003-2001-4568
http://orcid.org/0000-0002-0208-3212
http://orcid.org/0000-0003-1488-3505
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-023-02059-8&domain=pdf
mailto:viren@google.com


Nature Methods | Volume 20 | December 2023 | 2011–2020 2012

Article https://doi.org/10.1038/s41592-023-02059-8

(ref. 37), with convolutional filters extended to three dimen-
sions and three bottleneck layers reducing the representation to a 
64-dimensional embedding. During training, a projection head further 
reduced the output to 16 dimensions, on which the contrastive loss 
was applied36 (Fig. 1b).

We trained SegCLR separately on two large-scale, largely unproof-
read, publicly available electron microscopy connectomic datasets, 
one from human temporal cortex (h01)13 and one from mouse visual 
cortex (MICrONS)12, that were produced via different imaging and 
segmentation techniques. We then inferred SegCLR embeddings with 
overlapping fields of view over all non-trivial objects (at least 1,000 
voxels) in each volume. This produced a 64-dimensional embedding 
vector for each masked local 3D view, for a total of 3.9 billion and  
4.2 billion embeddings for the human and mouse datasets, respec-
tively. SegCLR thus adds modest storage overhead relative to the full 
electron microscopy dataset size (human: 980 GB versus 1.4 PB at 
4 × 4 × 33 nm; mouse: 1 TB versus 234 TB at 8 × 8 × 40 nm). Visualiza-
tion of an illustrative subset of the resulting embeddings after dimen-
sionality reduction via UMAP (uniform manifold approximation and 
projection)38 showed the structure across each embedding space  
(Fig. 1c,d). Visualization of embeddings over individual cells also 
showed the structure within and between them (Fig. 1e,f), suggest-
ing the potential for embeddings to solve diverse downstream tasks.

Cellular subcompartment classification
Embedding vectors representing local segment views throughout the 
electron microscopy datasets can be applied to a variety of downstream 
tasks, such as clustering, similarity search or classification (Fig. 2a). We 
first examined the use of SegCLR embeddings to distinguish cellular 
subcompartments such as axons, dendrites and somas (Fig. 2b). In 
the human cortical dataset we also included astrocytic processes, as a 
distinct subcompartment for which we had ground truth labeling. On 
a set of segmented object locations with expert labeled subcompart-
ment identities, the respective SegCLR embeddings formed largely 
separable clusters in embedding space (Fig. 2c,e). A linear classifier 
trained to distinguish embeddings from the human cortical dataset 
could identify subcompartments in a held out test set with a mean F1 
score of 0.997, while for the mouse dataset classification the mean F1 
score reached 0.958. The F1 score summarizes classification accuracy 
and reflects both precision and recall performance via their harmonic 
mean (Supplementary Table 3).

We also tested reducing the ground truth labeling require-
ments, and compared the performance of subcompartment clas-
sification using SegCLR embeddings with that of a directly trained, 
fully supervised subcompartment classification network24 at several 
reductions. The supervised network input data and network archi-
tecture (ResNet-18) were identical to the SegCLR setup, except that 
we replaced the SegCLR bottleneck and contrastive projection head 
with a classification softmax. On the 4-class h01 subcompartment 
task, the fully supervised model reached an F1 score of 0.993 when 
trained on the full dataset (n = 2,846,921). The embedding-based 
approach exceeded the performance of the fully supervised approach 
for all sample sizes, and still achieved high performance for small 
samples where the fully supervised approach performed poorly. We 
estimated the reduction in required ground truth labels at the point 
where the performance of the fully supervised model plateaued  
(10% of all labels; n = 284,692; F1 score = 0.991). Our embedding-based 
classification matched this performance with approximately 400-fold 
less labeled training data (n = 695). We also note that for the smallest 
sample sizes, certain random samples performed much better than 
the average random sample (Fig. 2d,f, light gray points), suggesting 
a potential for further gains in accuracy and efficiency under more 
sophisticated sampling strategies39.

In the experiments above, both the SegCLR model and the linear 
classifier were trained on the target dataset. To test whether a SegCLR 

and morphologies of non-neuronal cells34 in segmented electron  
microscopy datasets.

Here, we address the problem of efficiently inferring types and 
annotations of segmented structures by introducing segmentation- 
guided contrastive learning of representations (SegCLR), a 
self-supervised machine learning approach that is scalable in three 
important respects: first, precomputed SegCLR representations can 
be used for a diverse set of annotation tasks (for example, identification 
of subcompartments or cell types); second, SegCLR representations 
enable accurate downstream analyses with simple linear classifiers 
or shallow networks; and third, SegCLR representations reduce the 
amount of ground truth labeling required for specific tasks by orders of 
magnitude. Perhaps most intriguingly, we show that SegCLR enables a 
type of annotation that is challenging for either automated methods or 
human experts: inferring the cell type from a short length (~10–50 μm) 
of cortical cell fragment. This capability has important implications for 
the utility of electron microscopy datasets that so far encompass only 
subsets of whole brains.

SegCLR takes inspiration from advances in self-supervised con-
trastive learning29 while introducing a segmentation-guided augmen-
tation and loss function in which positive example pairs are drawn 
from nearby, but not necessarily overlapping, cutouts of the same 
segmented cell. In addition to raw volumetric data, this approach 
therefore also requires 3D segmentation of individual cells throughout 
the volume, which is a typical requirement for subcellular annotation 
methods. As we demonstrate, current automated segmentation meth-
ods are sufficiently accurate to be used to train SegCLR without further 
human proofreading. We also show that SegCLR can be combined with 
Gaussian processes35 to provide a practical means of uncertainty esti-
mation. Finally, we demonstrate the application of SegCLR to biological 
inference by detailed cell type analysis of upstream and downstream 
synaptic partners in mouse visual cortex.

Results
Training and inference of SegCLR embeddings
SegCLR enhances the analysis of electron microscopy reconstruc-
tions by producing tractable ‘embeddings’: vector representations that 
capture rich biological features in a dimensionally reduced space, and 
in which vector distance maps to a concept of biological distinctness 
(Fig. 1). These embeddings capture characteristics relevant to a range 
of downstream tasks without manual feature engineering. Depending 
on the downstream application, embeddings can also be deployed 
without any requirement for manual proofreading or ground truth 
labeling, or with these requirements substantially reduced36. Each 
SegCLR embedding represents a local 3D view of electron microscopy 
data, and is focused on an individual cell fragment within dense neuro-
pil via an accompanying segmentation. Computed for billions of local 
views across large connectomic datasets, embeddings can directly 
support local annotation tasks (Fig. 2), or be flexibly combined at larger 
scales to support annotation at the level of cells and cell fragments  
(Figs. 3–5), or circuits (Fig. 6).

SegCLR extends the contrastive learning approach29,36 by lever-
aging freely available dense automated instance segmentations of 
neurons and glia12,13. Contrastive methods aim to learn representations 
by maximizing agreement between matched (‘positive’) examples in a 
learned latent space. SegCLR selects example pairs with respect to the 
segmentation: positive pairs are drawn from nearby locations (along a 
≤150 μm skeleton path length) on the same object and trained to have 
similar representations, while negative pairs are drawn from separate 
objects and trained to have dissimilar representations (Fig. 1a). We also 
leveraged the segmentation for input preprocessing: local 3D views 
of electron microscopy data, 4–5 μm on a side at a voxel resolution 
of 32–40 nm, were presented to the embedding network after being 
masked to feature only the segmented object at the center of the field 
of view (Fig. 1b). The network architecture was based on ResNet-18  
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model trained on a different dataset could still be used to classify 
subcompartments with high accuracy, we repeated our experiment on 
the h01 dataset, but used the SegCLR model trained on the MICrONS 
dataset to produce the embeddings (Extended Data Fig. 1). A linear 
classifier trained on h01 labels using the MICrONS model embeddings 
achieved slightly lower performance than when using the h01 model 
embeddings (mean F1 score, 0.975), but overall accuracy was still 
high and replicated the good scaling behavior for small sample sizes, 
where this classifier beat the fully supervised model (<0.1% of all labels, 
n < 2,846, Extended Data Fig. 1d). Thus trained SegCLR models can be 
transferred to new datasets effectively without retraining, reducing 
barriers to adoption.

Finally, we asked whether minimal refinement of SegCLR embed-
ding models on a new dataset can improve performance without requir-
ing a large computer cluster. We tested the fine-tuning of the MICrONS 
embedding model on h01 data using a single TPU (tensor processing 
unit; TPUv2, 8 GB memory) for training (without freezing any layers). 
A linear subcompartment classifier trained on these refined embed-
dings indeed demonstrated improved accuracy (mean F1 score of 
0.984 versus a mean F1 score of 0.975 without refinement, 0.997 by 
the linear classifier using embeddings from a SegCLR model trained 
on the h01 data, and 0.993 by the fully supervised approach) (Extended 
Data Fig. 1d).

Classification of cell types for large and small fragments
Cell type classification is another important application for biologi-
cal analysis of dense neuropil. To assess performance on this task, we 
focused on neuron and glia types for which we had expert ground truth 
labels: 13 mouse cell types and 6 human cell types (Fig. 3a). We also 
restricted the labeled set to manually proofread cells, to avoid cell type 
ambiguities from any residual merge errors in the reconstructions. This 
restriction was important for the evaluation of SegCLR, but does not 
limit its applicability for segmentation datasets that lack proofreading.

Although individual SegCLR embeddings representing local 3D 
views 4–5 μm on a side were sufficient for subcompartment classifi-
cation (Fig. 2), for cell typing we found it helpful to aggregate embed-
ding information over larger spatial extents prior to classification 
(Fig. 3c). Starting from a position of interest on a cell, we collected 
all nearby embeddings for a set distance R along the skeleton path in 
all directions. We then combined the collected set of embeddings by 
computing a mean embedding value over each feature dimension; this 
simple aggregation approach proved effective as input to the shallow 
two-module ResNet classifiers used for cell typing.

Ultimately we wanted to classify not only large but also small 
cell fragments, which are common in automated reconstructions. 
Therefore, an important question was how many embeddings, over 
what spatial extent, need to be aggregated to achieve good cell typing.  
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Fig. 1 | SegCLR. a, In SegCLR, positive pairs (blue double-headed arrows) are 
chosen from proximal but not necessarily overlapping 3D views (small blue 
boxes) of the same segmented cell, while negative pairs (red double-headed 
arrows) are chosen from different cells. The SegCLR network is trained to 
produce an embedding vector for each local 3D view such that embeddings are 
more similar for positive pairs than negative pairs (cartoon of clustered points). 
b, The input to the embedding network is a local 3D view (4.1 × 4.1 × 4.3 μm at 
32 × 32 × 33 nm resolution for human data; 4.1 × 4.1 × 5.2 μm at 32 × 32 × 40 nm 
resolution for mouse) from the electron microscopy volume, masked by the 
segmentation for the object at the center of the field of view. An encoder network 
based on a ResNet-18 is trained to produce embeddings, via projection heads and 

a contrastive loss that are used only during training. c,d, Visualization via UMAP 
projection of the SegCLR embedding space for the human temporal cortex 
(c) and mouse visual cortex (d) datasets. Points for a representative sample 
of embeddings are shown, colored via 3D UMAP RGB, with the corresponding 
3D morphology illustrated for six locations (network segmentation mask 
input in black, surrounded by 10 × 10 × 10 μm context in gray; masked electron 
microscopy input data not shown). e,f, Embeddings visualized along the extent 
of representative human (e) and mouse (f) cells. Each mesh rendering is colored 
according to the 3D UMAP RGB of the nearest embedding for the surrounding 
local 3D view. Some axons are cut off to fit. Scale bars: c,d, 5 μm; e,f, 100 μm.
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We assessed this by constructing varying sized cutouts from the ground 
truth cells (Fig. 3b) corresponding to different aggregation distances R. 
For both mouse and human datasets, SegCLR supports high-accuracy 
cell typing at aggregation distances of only 10–25 μm (human 6-class 
mean F1 score of 0.957 at R = 10 μm; mouse 6-class mean F1 score of 
0.967 at R = 25 μm; mouse 10-class mean F1 score of 0.832 at R = 25 μm; 
mouse 13-class mean F1 score of 0.748 at R = 25 μm) (Fig. 3d–h). When 
using all 13 mouse ground truth types, most residual classification 
errors were between pyramidal cell subtypes (Fig. 3h and Extended 
Data Fig. 2), particularly in their axons.

Unsupervised data exploration via SegCLR
SegCLR also proved useful for data exploration beyond supervised 
classification tasks. Unsupervised UMAP38 readily separates puta-
tive subcompartment types, when sampling embeddings uniformly  
(Fig. 1c,d) as well as in manually labeled subsets (Fig. 2c,e). Focusing 
on subregions of embedding space reveals finer-grained distinctions. 
For example, embeddings representing dendritic arbors of layer 5 
pyramidal cells contain further structure, featuring three main distinct 
UMAP clusters (Fig. 4a).

Visualizing locations for which the embeddings fell within cluster 
1 revealed a strong association with apical dendrite subcompartments 
(Fig. 4b) across all 181 cells examined, whereas locations outside cluster 
1 were primarily basal dendrites. In contrast, we found that cluster 2 
comprised basal dendrites restricted to only a small subset (13%) of 
cells, with distinctive dendritic morphology featuring relatively little 

branching and basal dendrites descending laterally over long distances 
(Fig. 4b, inset).

Cluster 3 contained the basal dendrite nodes for the remaining 
majority (87%) of layer 5 pyramidal cells. Visualizing their entire recon-
structed morphologies showed that a subset of these cells had dis-
tinctive axon trajectories, consistent with their axons joining a major 
output tract (Fig. 4c, left). The dendritic embeddings for these ‘tract’ 
cells occupied only half of cluster 3. We then selected 30 cells from 
cluster 3 that were mostly excluded from the tract subregion. None of 
these 30 showed the axon tract morphology (Fig. 4c, right). Thus, basal 
dendrite embeddings can largely separate two pyramidal subgroups, 
which independently separate based on axon trajectories.

Based on its distinct morphology and relative rarity, the clus-
ter 2 group (Fig. 4b) probably corresponds to the type described as 
near-projecting (NP) or cortico-cortical non-striatal (CC-NS)40–42 cells. 
The cluster 3 tract group (Fig. 4c, left) probably corresponds to the 
type described as extra-telencephalic (ET), cortico-subcortical (CS), 
thick-tufted (TT) or pyramidal tract (PT), which provide the primary 
cortical output onto subcortical brain areas40–42. The cluster 3 no-tract 
cells (Fig. 4c, right) then probably correspond to the intra-telencephalic 
(IT) or cortico-cortical (CC) type. Although these subtypes have previ-
ously been distinguished by gene expression, developmental history, 
electrophysiology, morphology or their distal projection targets, we 
add evidence that they can be distinguished by their dendritic mor-
phology and proximal axonal trajectory, within both primary visual 
area (V1) and higher visual areas (HVA) (Fig. 4c).
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Fig. 2 | Subcompartment classification of SegCLR embeddings. a, Embedding 
vectors computed across the extent of the electron microscopy datasets can 
be used as compact inputs to downstream tasks, such as subcompartment 
classification. Each embedding represents a single local view (~4–5 μm on a side). 
b, Ground truth examples of axon and dendrite subcompartment classes from 
the human temporal cortex dataset. The local 3D views for single embeddings 
are indicated by the wireframe cubes. The embedding network also receives the 
electron microscopy image data from within the segment mask. c, Embedding 
clusters from the human cortical dataset visualized via 2D UMAP. Each point is 
an embedding, colored by its ground truth subcompartment class as judged 
without reference to the embeddings. d, Evaluation of linear classifiers trained 
for the subcompartment task on the human dataset. The mean F1 score across 

classes was computed for networks trained using varying sized subsets of the 
full available training data. For each training set sample size, mean and standard 
deviation of multiple subset resamplings are shown (error bars are obscured 
by the points for larger sample sizes). Light gray points show the best class-
wise mean F1 score obtained for any training subset sampled at a given size. 
The light blue line indicates the performance of a fully supervised ResNet-18 
classifier (a convolutional neural network, CNN) trained on the full and subsets 
of the available training data. Error bars are s.d. (n = 20 subsamples). See 
Supplementary Table 1 for the number of training samples per class. e, As in c, for 
the mouse visual cortex dataset and three ground truth classes (axon, dendrite, 
soma). f, As in d, for the mouse dataset. Error bars are s.d. (n = 20 subsamples). 
See Supplementary Table 1 for the number of training samples per class.
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Fig. 3 | Cell type classification of large and small cell fragments via 
aggregated embeddings. a, 3D renderings of representative proofread neuron 
and glia cells, for a selected subset of the types used in the mouse and human 
datasets. The pyramidal cell axon is cut off to fit. Cells are oriented from white 
matter (WM) to pia. b, Rendering of representative cutouts from a pyramidal 
dendrite (top inset) and axon (bottom inset). Different size cutouts are defined 
by the skeleton node aggregation radius R. c, Cell type classifiers are trained 
on top of SegCLR embeddings after aggregation into a mean embedding 
over the cutout. d, Cell typing performance of shallow ResNet classifiers over 
different aggregation radii for the six labeled cell types in the human dataset. 
Zero radius corresponds to a single unaggregated embedding node. Error bars 
are s.d. (n = 20 subsamples). See Supplementary Table 2 for the number of 
training samples per class. e, Confusion matrix for the 6-class human cell type 
task at a 10 μm aggregation radius. GT, ground truth. f, Illustration of SegCLR 
cell type predictions over the extent of a single basket cell from the mouse test 
set. The orange areas are predicted correctly, while the sparse black areas show 

mispredictions. g, Cell typing performance for the mouse dataset. The 13-class 
task (black) uses all of the ground truth-labeled classes, while the 10-class task 
(green) combines all pyramidal cell labels into a single class. The 6-class task 
(blue) further reduces the neuronal labels into excitatory and inhibitory groups, 
comparable to the labels available on the human dataset (d). Error bars are s.d. 
(n = 20 subsamples). See Supplementary Table 2 for the number of training 
samples per class. h, Confusion matrix for the mouse 13-class cell type task at a 
25 μm aggregation radius. Colored boxes indicate the group of four pyramidal 
cell types that were collapsed into the 10-class task, and the five excitatory and 
four inhibitory types collapsed into the 6-class task in g. Abbreviations: AC, 
astrocyte; BC, basket cell; BPC, bipolar cell; E, excitatory neuron; I, inhibitory 
interneuron; MC, Martinotti cell; MGC, microglia cell; NGC, neurogliaform cell; 
OGC, oligodendrocyte cell; OPC, oligodendrocyte precursor cell; P2–6, cortical 
layer 2–6 pyramidal cell; THLC, thalamocortical axon. Scale bars: a, neuronal 
100 μm, glia 25 μm; b,f, 100 μm;.
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Out-of-distribution input detection via Gaussian processes
A remaining issue with applications such as cell typing on large-scale 
datasets is how to gracefully handle examples that fall outside the 
distribution of labeled examples. These ‘out-of-distribution’ (OOD) 
input examples could contain imaging artifacts or segmentation merge 
errors, or they could represent genuine biological structures that were 
absent in the training set. For example, ground truth labels commonly 
do not contain all possible cell types, but one wishes to classify the 
known types across the dataset while avoiding spurious classifications 
of surrounding segments belonging to diverse unknown types.

We addressed OOD inputs via spectral-normalized neural Gaussian 
processes35 (SNGP), which add a prediction uncertainty to the model 
output (Fig. 5a) based on each example’s similarity to the training 
data. This enables OOD inputs to be detected and rejected, rather than 
spuriously classified, while requiring no extra labeling effort. To evalu-
ate SNGP, we constructed a human cortical cell type dataset in which 
only the glial types were used to train classifiers, while both glial and 
neuronal types were presented for testing (Fig. 5b). The neuronal types, 
making up 50% of the constructed test set, thus served as an OOD pool.

We first trained a small conventional network (lacking SNGP 
capabilities) on the glial classification task. Specifically, a shallow 
two-module ResNet classifier (‘ResNet-2’) was trained on locally aggre-
gated embeddings (radius 10 μm) from only the labeled glial cells. 
This network performed with high accuracy on the in-distribution 

glial half of the test set, but inherently misclassified all OOD neuronal 
examples (Fig. 5d). Next, we added an SNGP module to the ResNet-2 
(ref. 35), thereby equipping the classifier with an uncertainty output 
that estimates in part the degree to which each example is OOD with 
respect to the training distribution (Fig. 5e). This uncertainty can be 
thresholded at a task-appropriate level to determine how aggressively 
to reject OOD inputs.

The SNGP-ResNet-2 retained strong in-distribution glia classifica-
tion performance while effectively filtering out OOD neuronal exam-
ples (Fig. 5f). With uncertainty thresholded at a level that optimized 
F1 on a validation set, and the resulting OOD examples treated as a 
separate class, the overall mean F1 score reached 0.875 (5-class aver-
age). Note that the network layer substitutions for SNGP apply only 
to the small classifier network, with no modifications required to the 
underlying SegCLR embeddings. Furthermore, the neuronal ground 
truth labels used here were needed only to validate the results, while 
the training and deployment of a classifier with SNGP OOD detection 
requires no extra ground truth labeling beyond the in-distribution set.

Finally, we also evaluated the spatial distribution of local uncer-
tainty over larger segments. This is particularly relevant for unproof-
read segments that contain reconstruction merge errors between a 
labeled and an OOD type. For example, the uncertainty of our SNGP 
classifier can distinguish neuronal fragments erroneously merged 
onto a central glia (Fig. 5g). Automated merge error correction based 
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strongly associated with a subset of basal dendrites corresponding to cells with 

a distinct ‘near-projecting’ (NP) morphology (inset). c, Of the cells for which 
the projections fall within cluster 3, a subset have distinctive axon trajectories 
consistent with their axons joining a major output tract (left). These ‘tract’ 
cells also occupy a distinct subregion within cluster 3 (middle, green). Cells 
occupying the remainder of cluster 3 (middle, purple) consistently lack the 
axon tract morphology (right). The tract and no-tract groups are also able to be 
separated in both primary visual area V1 (left group of cells for both tract and no-
tract) and higher visual areas (right group of cells for both tract and no-tract). 
Scale bars, 100 μm.
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on these branch distinctions13,24 combined with direct detection of 
merge-specific embedding features43 would be an attractive applica-
tion for future investigation.

SegCLR cell typing of pre- and post-synaptic partners
In brain circuit analysis, a common goal is to identify the cell types of 
the thousands of synaptic partners upstream or downstream of a par-
ticular cell or circuit of interest44–46. Due to the incompleteness of cur-
rent automated reconstructions, contemporary connectomics-based 
circuit analysis efforts typically require substantial manual tracing to 
extend each partner neurite back from the synapse to provide sufficient 
morphological structure to enable an expert to propose a cell type iden-
tity. Furthermore, in many datasets the partner neurites may terminate 
at a volume boundary before their cell type is manually resolvable. 
However, as demonstrated here (Fig. 3), SegCLR is able to classify cell 
types of even relatively small cell fragments with high accuracy, ena-
bling large-scale analysis of synaptic partners without manual tracing.

We leveraged this capability to perform detailed analysis of synap-
tic partners across multiple cell types in mouse cortex (Fig. 6). For each 
synapse annotated in this dataset12 we gathered the predicted cell type 
annotation of the closest embedding nodes pre- and post-synaptically. 
We filtered out 9.2% of presynaptic and 7.8% of postsynaptic fragments 
that were too short (Rmax < 2.5 μm, see Methods) and ignored a further 
8.8% and 2.5%, respectively, because of high uncertainty scores.

First, we analyzed the distribution of presynaptic cell types for a 
representative sample of 919,500 synapses at varying cortical depths 
(Fig. 6a). Our method classified 72.3% of presynapses and 76.3% post-
synapses as excitatory (ignoring those marked as uncertain). We then 
focused on a core set of proofread cells (Fig. 6b) for which we collected 

all their input and output synapses, along with the corresponding 
(unproofread) presynaptic and postsynaptic partner fragments. For 
each proofread cell, we then analyzed the relative proportions of 
received inputs by cell type (Fig. 6c–e) as well as the proportion of 
downstream targets (Fig. 6h–l).

For upstream (presynaptic) partners, we found differences 
in the proportion of intracortical (from pyramidal cells) and sub-
cortical (from putative thalamocortical axons) excitatory inputs  
(Fig. 6e–g). In layer 4, the canonical cortical input layer, pyramidal cells 
had more subcortical innervation, with the putative thalamocortical 
synapses contributing 18% of their excitatory inputs (Fig. 6e,f). This 
percentage agrees with estimates based on immunohistochemistry 
in mouse V1 (ref. 47) and other mouse cortical regions48. When plot-
ting the prevalence of layer 4 thalamocortical synapses along an axis 
from V1 to HVA, however, we observed a drop in thalamocortical 
innervation that coincided with the boundary between the regions 
(Fig. 6g). Thalamocortical projections to HVA had been identified 
previously49–51 but had not been quantified, demonstrating how the 
proposed computational approach can provide quantitative insights 
into cortical cell type connectivity.

For downstream partners (Fig. 6h–l), we analyzed the relative 
proportion of output synapses onto excitatory versus inhibitory 
partners as a function of distance along the presynaptic axon (Fig. 6j–l 
and Extended Data Fig. 3c,d). For all cortical layers, the distribution of 
output synapses along pyramidal cell axons was biased towards more 
inhibitory postsynaptic partners in the proximal regions52,53, with 
excitatory downstream partners growing more common with increas-
ing distance from the soma54. Our analysis was thus broadly consist-
ent with previous reports for layers 2 and 3 visual52,53 and entorhinal 
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cortex54, but it further showed details of axonal sorting in layer 4 
and demonstrated that changes in inhibitory targeting over axonal 
distance are driven primarily by declines in targeting of basket cells 
and Martinotti cells.

Using SegCLR cell type predictions for pre- and post-synaptic 
fragments, we thus derived results consistent with prior reports that 
relied on laborious manual annotation, while extending their scale 
in terms of number of synapses, cell types and brain areas analyzed.

Discussion
We have introduced SegCLR, a self-supervised method for training 
rich representations of local cellular morphology and ultrastructure, 
and demonstrated its utility for biological annotation in human and 
mouse cortical volumes. Beyond the requirement for an accompany-
ing instance segmentation, the current SegCLR formulation has some 
limitations. First, the 32–40 nm voxel resolution of input views impedes 
capture of finer electron microscopy ultrastructural features, such as 
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vesicle subtypes or ciliary microtubule structure. This is a trade-off, 
because using higher resolution data reduces the field of view of the 
network (in nanometers) that can be held in accelerator memory and 
trained effectively. Training SegCLR on higher resolution inputs, or 
with multiscale capabilities, is worth detailed exploration.

Another limitation is that explicit input masking excludes electron 
microscopy context outside the current segment, while in some cases 
retaining surrounding context could be useful, for example for myelin 
sheaths, synaptic clefts and synaptic partners. We therefore tested a 
version of SegCLR that receives the unmasked electron microscopy 
block and the segmentation mask as two separate input channels rather 
than as a single explicitly masked electron microscopy input. This vari-
ant performed similarly on the subcompartment classification task but 
appeared more sensitive to subtle non-linear photometric differences 
across the extent of the dataset.

Finally, in the current work we have demonstrated that a simple 
mean embedding aggregation strategy is sufficient for reasoning over 
larger contexts. However, more sophisticated aggregation methods55,56 
could still prove useful for generating representations of larger con-
texts. There are also opportunities to extend representations beyond 
single cells. For example, neuronal embeddings could be extended 
with additional dimensions aggregated from pre- and post-synaptic 
partners to create connectivity-enhanced cell type signatures or to 
form motif representations.

By providing rich and tractable representations of electron 
microscopy data, SegCLR simplifies and democratizes downstream 
research and analysis. The previous state of the art in subcompart-
ment classification required millions of training examples assem-
bled from thousands of manually validated segments, thousands 
of GPU (graphics processing unit) hours to train a deep network, 
and hundreds of thousands of CPU (central processing unit) hours 
to evaluate a large-scale dataset13,24. With SegCLR embeddings, this 
benchmark is outperformed by a linear classifier, trained in minutes 
on a single CPU, with a few hundred manually labeled examples. We 
make Python code available for input preprocessing, network train-
ing and evaluation, and we release pretrained TensorFlow network 
weights and training data.

Arguably the most powerful application of SegCLR demonstrated 
here is the ability to classify neuronal and glial subtypes even from 
small fragments of cells. This capability has important ramifications, 
particularly for datasets in which reconstructed cells are incomplete, 
or in which only a portion of the brain tissue was imaged; identifying 
connectivity patterns between specific cell types is fundamental to 
interpreting large-scale connectomic reconstructions.

We release the full SegCLR embedding datasets for the human and 
mouse cortical volumes to the community, to enhance exploration and 
understanding of these rich and complex resources.
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Methods
Datasets
We used two large-scale serial-section electron microscopy connec-
tomic datasets for SegCLR experiments: one from the human temporal 
cortex (h01), imaged using scanning electron microscopy13; and one 
from the mouse visual cortex (MICrONS), imaged using transmission 
electron microscopy12. Both datasets are freely available and provide 
an aligned and registered electron microscopy volume with an accom-
panying automated dense instance segmentation. For SegCLR experi-
ments we downsampled the human and mouse data to 32 × 32 × 33 nm 
and 32 × 32 × 40 nm nominal resolution, respectively. The human elec-
tron microscopy volume was also normalized using CLAHE (contrast 
limited adaptive histogram equalization)57. We skeletonized both 
segmentation volumes as previously described13,26,27,58.

For subcompartment classification (Fig. 2), ground truth human 
data were collected on an earlier pre-release version of the dataset, 
as well as two smaller cutouts13. All three regions are contained in 
the publicly released dataset, although they differ slightly in their 
alignment and photometric normalization. For cell type classification 
(Fig. 3) it was important for evaluation purposes to have cells with 
minimal reconstruction merge errors in the ground truth-labeled set. 
We therefore proofread some cells in the human dataset to exclude 
regions close to observed merge errors from the embeddings cell type 
analysis (Fig. 3). On the mouse dataset, we restricted analysis to the 
set of ground truth-labeled cells that were already expert proofread 
prior to release12. Specifically, we trained SegCLR models on the public 
segmentation version 117 and then upgraded to the public version 343 
for all evaluations and analyses.

Training SegCLR embedding networks
SegCLR was inspired by SimCLR29,36. The embedding network was a 
ResNet-18 architecture37 implemented in TensorFlow, with convolu-
tions extended to three dimensions and three bottleneck layers prior 
to a 64-dimensional embedding output. During training we added 
three projection layers prior to a normalized temperature-scaled 
cross-entropy (‘NT-Xent’) loss29 with temperature 0.1. The total num-
ber of model parameters was 33,737,824.

We also found that downstream task performance was enhanced 
by adding a decorrelation term to the loss, defined as:

Ldecorrelation =
1

d2 − d

d
∑
i=1

∑
j≠i

C2
ij (1)

where d is the embedding dimensionality and C is the correlation matrix 
between embeddings over the batch. We trained SegCLR networks 
on 8 × 8 v2 Cloud TPUs for up to 350,000 steps with a full batch size 
of 512 positive pairs (1,024 individual examples) and a learning rate 
decay schedule starting at 0.2. Separate networks were trained for the 
human and mouse datasets. Training took approximately 1 week and 
proceeded at a speed of 0.5–0.6 steps per second.

The input to the network was a local 3D cutout of electron 
microscopy data 129 voxels on a side, nominally corresponding to 
4,128 × 4,128 × 4,257 nm in the human electron microscopy dataset, 
and 4,128 × 4,128 × 5,160 nm in the mouse dataset. We then masked 
the electron microscopy data by the segmentation for the object at the 
center of the field of view, so that possible confounds in the surround-
ing electron microscopy context would be excluded.

We also leveraged the segmentation and corresponding skel-
etonization to generate example pairs for contrastive training. For an 
arbitrary segment, we picked a 3D view to be centered on an arbitrary 
skeleton node, and then picked a positive pair location centered on 
a second node on a path length ≤150 μm away on the same skeleton. 
Positive pairs were preprocessed before training for higher perfor-
mance. Given that there are more possible pairs for larger distances, 
we sorted these positive pairs into four distance buckets from which we 

drew uniformly. The bucket boundaries were 0, 2,500, 10,000, 30,000  
and 150,000 nm.

As in SimCLR29, we used the 1,022 examples from the rest of the 
batch, which were drawn from 511 other segments throughout the 
volume, as negative pairs. We also applied random reflections and 
photometric augmentations23 to the inputs, to prevent the network 
from solving the contrastive task via trivial cues such as the orientation 
of processes, or the local voxel statistics.

The size of the bottleneck layer is a hyperparameter that deter-
mines the embedding dimension (64 in our case). Larger embedding 
dimensions generally improved performance slightly but increased 
storage requirements proportional to the embedding dimension and 
slowed down the downstream analyses accordingly.

SegCLR model refinement
We refer to refinement or fine-tuning as the further training of a pre-
trained model on a new dataset. In the present case (Extended Data 
Fig. 1), we used the model pretrained on the MICrONS dataset and 
added additional training on the h01 dataset. Specifically, we trained 
the model with a batch size of 8 positive pairs to test refinement with 
minimal resources. We used a single TPUv2 (8 GB memory). For con-
text, a P100 GPU commercially released 7 years ago can fit around 12 
positive pairs. We trained the model for another 250,000 steps, which 
took approximately 2 days. We did not freeze any layers of the network 
and used the same learning rate (scaled to the batch size) as during the 
original training.

SegCLR inference
We inferred SegCLR embeddings over the full extent of the human and 
mouse datasets. After removing trivial segments, we extracted local 
3D views centered on skeleton nodes for the remaining segments, 
with approximately 1,500 nm path length spacing. The set of views 
for each segment therefore had substantial overlap of approximately 
65–70% with typical nearest neighbor views. We then ran SegCLR on 
all selected views (3.9 billion and 4.2 billion for the human and mouse 
datasets, respectively) via an Apache Beam Python pipeline running 
on a large CPU cluster, and stored the resulting embedding vectors 
keyed by segment ID and spatial XYZ coordinates. Inference proceeded 
at approximately 1 example per second per CPU with a batch size of 
1. For visualization, we ran UMAP dimensionality reduction38 to 2–4 
dimensions on representative samplings or on subsets of interest from 
among the embeddings. When sampling from a large population of 
embeddings of local cutouts, we sampled such that all classes were 
represented with a significant number of examples.

Subcompartment classification
We trained linear classifiers to identify subcompartment types from 
embedding inputs based on expert ground truth labels on each dataset 
(Supplementary Table 1). For comparison, we also trained a fully super-
vised subcompartment classifier directly on voxel inputs using an iden-
tical 3D ResNet-18 architecture and input configuration (photometric 
augmentation was omitted and 90° 3D rotations were added), and 
replaced the bottleneck, projection heads and contrastive loss with a 
classification softmax and cross-entropy loss. The supervised network 
was trained on 8 GPUs with a total batch size of 64 via stochastic gradi-
ent descent with a learning rate of 0.003. Examples were rebalanced 
class-wise by upsampling all classes to match the most numerous class. 
We also trained fully supervised classifiers with photometric augmenta-
tion added and 90° rotations omitted, to match the SegCLR embedding 
augmentations, but did not find that this improved performance.

We also trained both SegCLR linear classifiers and fully super-
vised deep networks on multiple subsamplings to test performance in 
lower-label regimes (Fig. 2). During subsampling we ensured that every 
class was represented with at least 10% of the examples and at least 
three examples in total. For SegCLR linear classifiers we repeated each 
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sampling round 20 times. For fully supervised classifiers we repeated 
each sampling 2–5 times for sample sizes <20,000. The fully super-
vised deep networks were trained for 1.5 million steps, or for 150,000 
steps for sample sizes <1,000. We confirmed by inspection of online 
evaluations that earlier stopping would not have significantly enhanced 
average performance across classes.

Cell type classification
We tested cell type classification using a set of expert ground 
truth-labeled neurons and glia from both human and mouse (Supple-
mentary Table 2). These ground truth cells are generally large and con-
tain somas within the volume but they are not necessarily completely 
reconstructed. We manually proofread human ground truth cells for 
merge errors by marking bad agglomeration edges in the agglom-
eration graph prior to evaluation. In the mouse dataset we restricted 
analysis to proofread neurons included in the public v343 release. We 
trained shallow two-module ResNets to predict cell subtypes (Figs. 3, 
5 and 6, and Extended Data Fig. 3).

For cell typing, we aggregated local embeddings by collecting all 
of the embedding nodes in a 0–50 μm radius window along the cell’s 
skeleton path length. A simple aggregation method of taking the mean 
embedding value over each feature dimension performed well when 
using shallow ResNets for the downstream task (Figs. 3, 5 and 6) or for 
unsupervised data exploration (Fig. 4).

We evaluated classification performances by randomly select-
ing 75% of cells for each cell type for training and 25% for testing. We 
repeated this sampling 10 times for each aggregation distance and 
computed the mean across all runs. In each run we computed the F1 
score of each class individually and then combined them for an overall 
mean F1 score. In each run we sampled 30,000 (mouse) or 100,000 
(human) embeddings from the cells in the training set, equally dis-
tributed across all cell types. During testing, imbalances between 
classes were balanced by repeating examples from minority classes. 
The confusion matrices in Fig. 3 were generated by concatenating the 
test sets of all runs of one aggregation distance first. We then sampled 
100,000 test examples equally distributed across all cell types. For 
the mouse dataset we then repeated this procedure but restricted the 
sampling to nodes that were automatically labeled as dendrite or axon 
(Extended Data Fig. 2).

To obtain results for 10 and 6 classes (Fig. 3g) we summed the 
probabilities of the combined classes. For instance, we summed the 
probabilities for all pyramidal subtypes to a single pyramidal class for 
the 10-class evaluation. We then followed the same procedure as for 
the 13-class evaluation.

Cell-type ground truth
The different neuron types in the mouse dataset were manually classi-
fied based on the morphological and synaptic criteria as described10. 
Pyramidal cells were identified by the presence of a spiny apical den-
drite radiating toward the pia, spiny basal dendrites and an axon that 
formed asymmetric synapses. Putative thalamic axons also formed 
asymmetric synapses and although their soma was located outside 
the reconstructed volume, their gross morphology resembles previ-
ously described thalamic arbors59 and their fine morphology is also 
similar at the ultrastructure level48. Neuronal cells were classified as 
inhibitory interneurons if their axon formed symmetric synapses. 
Furthermore, the inhibitory interneurons were assigned subtypes 
using their synaptic connectivity and the morphology of axons and 
dendrites60–62. Basket cells were identified as having a larger number 
of primary dendrites and as having at least 12% of their postsynaptic 
targets be pyramidal cell somata. Martinotti cells were identified 
by having an apical axon that projected to cortical layer 1 and which 
targeted mostly distal dendritic shafts and spines of excitatory cells, 
consistent with ref. 60. Martinotti cells were also characterized by 
having a multipolar dendritic arbor that was usually spiny. Bipolar 

cells usually had two to three primary dendrites. The dendrites were 
usually spiny and showed a vertical bias. Neurogliaform cells were 
often (but not exclusively) in cortical layer 1. The axons of neuroglia-
form cells usually have a lower density of synapses, consistent with  
ref. 60. Neurogliaform cells also had a large number of primary den-
drites and have a different pattern of synaptic inputs when compared 
with other inhibitory cell types.

Unsupervised exploration of mouse visual cortex layer 5 
pyramidal cells
For the detailed exploration of mouse layer 5 pyramidal cells (Fig. 4) we 
selected only the embedding nodes that were subcompartment classi-
fied as dendrites (Fig. 2) from a set of cells that were dendrite proofread 
and labeled as layer 5 pyramidal cells by human experts (n = 181). We 
then randomly sampled up to 1,051 embeddings per cell for a total 
of 146,607 and ran unsupervised UMAP38 to project the embeddings 
to three dimensions using Manhattan distance, 100 neighbors, 500 
epochs and a learning rate of 0.5.

To semi-automatically collect the projections corresponding to 
the visualized 3D UMAP clusters (Fig. 4a), we ran k-means++ with 25 
groups and manually identified which k-means groups corresponded 
to UMAP clusters 1, 2 and 3. We found that running k-means on the raw 
embedding space was influenced by spurious dimensions, such as 
dimensions that primarily picked up subtle differences in the image 
statistics of groups of z-sections that were captured on different 
microscopes12. By contrast, we found that running k-means directly 
on 3D UMAP struggled to capture the visual clusters due to their some-
what irregular shapes. Therefore, using k-means on a rerun 5D UMAP, 
with the same 146,607 input embeddings and with other parameters 
unchanged, was found to be the most effective.

Selecting cells that had more than 40% of their dendrite projec-
tions in cluster 2 (n = 24) isolated the near-projecting pyramidal sub-
type (Fig. 4b, inset). To isolate the ‘tract’ (putative extra-telencephalic) 
subset, we rendered all of the cells with clear cluster 3 occupancy, 
equivalent to those with less than 25% of their projections in cluster 
2 (n = 157), and then manually selected the subset with distinct out-
put tract axon trajectories (n = 19; Fig. 4c, left). This group probably 
misses some extra-telencephalic cells in our set due to incomplete 
axon reconstructions, but it clearly identifies a ‘tract’ subregion of 
cluster 3 (Fig. 4c, middle) and corresponding ‘tract’ k-means groups. 
Finally, to isolate the no-tract (putative intra-telencephalic) subset, 
we scored all cluster 3 cells based on relative occupancy of ‘tract’ 
k-means clusters, and selected a subset (n = 30) that was least ‘tract’ 
weighted. Visualizing these cells showed that none of them had the 
tract axon morphology (Fig. 4c, right), providing an inverse confir-
mation of the clustering.

Out-of-distribution input detection
We detected OOD inputs via SNGPs35. As a baseline we trained a shal-
low ResNet-2 (two ResNet modules) to classify the glial cell types of 
10 μm radius fragments. We then modified the ResNet-2 by spectrally 
normalizing its hidden layers and replacing the output layer with a 
Gaussian process, using the SNGP package in TensorFlow. We used 
the BERT (bidirectional encoder representations from transformers) 
hyperparameter setting from Liu et al.35 for our analysis.

We evaluated performance on a test set constructed of a 50–50 
split between glia and OOD neuronal examples. First, we computed 
prediction uncertainty estimates for the test networks using the Demp-
ster–Shafer metric35:

u(xi) =
K

K +∑K
k=1 exp(hk(xi))

(2)

where K is the number of classes (in our case: 4) and hk are the classifi-
cation logits (network outputs prior to probability normalization). As 
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suggested in the SNGP tutorial, we replaced the Monte Carlo estimation 
of the output logits with the mean-field method63:

hλ(xi) =
h(xi)

√1 + λσ2(x)
(3)

using λ = 3/π2 and variances estimated with the Gaussian processes 
module.

For the evaluation, we repeated the fivefold cross-validation 
as outlined for the cell type fragment classification. We sampled 
100,000 unique examples and upsampled them such that each glia 
class accounted for 12.5% and each OOD class (excitatory, inhibitory) 
accounted for 25%. During each fold we trained a new classifier on 
a subset of the glia examples and then predicted the examples in 
the hold-out test set as well as the set of neuronal fragments that 
we reused for all five folds. For each fold we found the uncertainty 
threshold that maximized the F1 score of the in-distribution versus 
out-of-distribution task. For this, we set aside half the examples from 
the test set, which were then not used for calculating the scores. For 
each fold we replaced the original class prediction (one of four glia 
classes) with the OOD class when the uncertainty for an example 
exceeded this threshold. Finally, we calculated F1 scores for each of 
the five classes after scaling them such that OOD examples accounted 
for 50% and averaged them for a final F1 score per fold. We reported 
the mean F1 score across the five folds.

Automated analysis of synaptic partners
We applied the best-performing 25 μm ResNet-2+SNGP model from 
our 13-class cell type classification (Fig. 3) (as well as the same model 
restricted to three classes) to all embeddings in the dataset. Although 
classifications from the 13-class model can be aggregated to a 3-class 
classification, we were interested in the uncertainties produced by 
the 3-class model to filter out uncertain examples. Here, we set λ = 2 
to compute adjusted logits (eq. 3).

First, we labeled nodes as uncertain when the furthest aggregation 
distance was below 2.5 μm, indicating that the segment was very small 
(Extended Data Fig. 3a,b), often containing only a single embedding 
node. We note that this affects more nodes close to the dataset bounda-
ries where data quality is lower (Fig. 6a). Next, we labeled nodes as 
uncertain when the predicted uncertainty (eq. 2) was above 0.45 based 
on manual evaluation of several synapses. For the remaining nodes we 
assigned the label with the highest classifier probability. Some nodes 
were predicted to belong to the glia class; for the analysis in Fig. 6 we 
assigned these to the uncertain category.

Next, we attempted to assign subtype labels to nodes classified 
as inhibitory or excitatory. For inhibitory nodes, we assigned the 
subtype with the highest predicted probability when the predicted 
uncertainty was below 0.05. We assigned a generic I-UNC (uncertain 
interneuron) label for all remaining inhibitory nodes. For excitatory 
nodes we assigned subtypes when the predicted uncertainty was 
below 0.05. We calculate the overall probability for the pyramidal 
class by summing the probabilities across all pyramidal cell types. We 
assigned a thalamocortical label when the predicted thalamocorti-
cal probability exceeded the summed pyramidal class probability 
and the pyramidal subtype with the highest predicted probability 
otherwise. We assigned a generic P-UNC label for all remaining excita-
tory nodes.

We assigned cell type classifications to synapses by finding the 
closest embedding nodes in Euclidean space pre- and post-synaptically 
and using their cell type labels.

To analyze cell type distributions across the dataset, we randomly 
sampled 919,500 synapses from the entire dataset. We corrected the 
native coordinates to orient the dataset vertically between white mat-
ter and pia using the standard_transform package (https://github.com/
ceesem/standard_transform).

Axonal sorting
We skeletonized all of the cells used in the analysis to obtain distances 
between synapses and the respective soma along the axon. We assigned 
a distance to each synapse and binned synapses using a width of 20 μm, 
for which we computed the ratio of synapses predicted as excitatory 
and inhibitory (Fig. 6j,k) or their inhibitory subtypes (Fig. 6l) while 
ignoring synapses predicted as uncertain. For each bin we computed 
the mean and standard error of the mean across all of the cells included 
in the analysis.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All training datasets, precomputed embeddings and image datasets 
are publicly available. See the online documentation for examples 
of how to load the individual data products: https://github.com/
google-research/connectomics/wiki/SegCLR. The embeddings for 
the mouse and human datasets are available as sharded csv files: 
mouse, gs://iarpa_microns/minnie/minnie65/embeddings_m343/
segclr_csvzips/README; human, gs://h01-release/data/20220326/c3/
embeddings/segclr_csvzips/README. Precomputed annotations are 
viewable here: https://github.com/google-research/connectomics/ 
wiki/SegCLR#precomputed-embeddings. Pretrained models are 
available here: https://github.com/google-research/connectomics/
wiki/SegCLR#pretrained-embedding-models and https://github.com/
google-research/connectomics/wiki/SegCLR#classification-model- 
training-data-and-pretrained-models. Source data are provided with 
this paper.

Code availability
The code is deposited on GitHub under an Apache 2.0 open-source 
license: https://github.com/google-research/connectomics/tree/
main/connectomics/segclr. See the online documentation for more 
details: https://github.com/google-research/connectomics/wiki/Seg
CLR#code-release-and-demo-notebooks.
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Extended Data Fig. 1 | Subcompartment classification of SegCLR embeddings 
trained on a different dataset. a. The SegCLR model in Fig. 2f was trained on the 
MICrONS dataset using large training batches. b. The model from (a) was further 
trained (refined) on the h01 dataset with a small batch size on a single machine.  
c. The linear classifier was trained with subcompartment labels for the h01 
dataset. d. Comparison of linear classifiers trained for the subcompartment 

task on the h01 dataset using embeddings from the MICrONS model (gray), the 
MICrONS model with refinement on the h01 dataset (red), and the h01 model 
(black). For each training set sample size, mean and standard deviation of multiple 
subset resamplings is shown (error bars are obscured by the points for larger 
sample sizes). The light blue line indicates the performance of a fully supervised 
ResNet-18 classifier trained on the full and subsets of the available training data.
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Extended Data Fig. 2 | Cell type classification of large and small cell 
fragments via aggregated embeddings. a. Confusion matrix for the mouse 
13-class cell type task at 25 μm aggregation radius. Colored boxes indicate the 
group of four pyramidal cell types that were collapsed into the 10-class task, 
and the five excitatory and four inhibitory types collapsed into the 6-class task 
(similar to Fig. 3h). We restricted this evaluation to dendrites based on the 

automated subcompartment classification (Fig. 2) using the same classifier as 
in Fig. 3 that was trained on the entire ground truth (13-class). Consequently, the 
test set did not contain any examples of glia subtypes and thalamocortical cells. 
b. As in (a), but restricted to axons. There were no examples of glia subtypes in 
this test set.
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Extended Data Fig. 3 | Quantitative analysis of pre- and post-synaptic 
partner cell type frequencies. a. Distribution of the distance between the 
farthest embedding node and the selected embedding node at the synapse 
(Ragg=25 μm) for presynaptic segments. In most cases, the distance to the 
farthest embedding node is close to the maximal permitted distance. In a few 

cases the presynaptic segment was small, with only a few embedding nodes.  
b. As in (a) for postsynaptic segments. c.d. Inhibitory versus excitatory balance 
of downstream postsynaptic partners with increasing distance along P5 axons 
(N = 34) (c) and P6 axons (N = 6) (d).
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