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Bio-friendly long-term subcellular dynamic 
recording by self-supervised image 
enhancement microscopy

Guoxun Zhang1,2,6, Xiaopeng Li3,6, Yuanlong Zhang1,2,6, Xiaofei Han    1,2, 
Xinyang Li    1,2,4, Jinqiang Yu3, Boqi Liu3, Jiamin Wu    1,2,5  , Li Yu    3   & 
Qionghai Dai    1,2 

Fluorescence microscopy has become an indispensable tool for revealing 
the dynamic regulation of cells and organelles. However, stochastic 
noise inherently restricts optical interrogation quality and exacerbates 
observation fidelity when balancing the joint demands of high frame rate, 
long-term recording and low phototoxicity. Here we propose DeepSeMi, a 
self-supervised-learning-based denoising framework capable of increasing 
signal-to-noise ratio by over 12 dB across various conditions. With the 
introduction of newly designed eccentric blind-spot convolution filters, 
DeepSeMi effectively denoises images with no loss of spatiotemporal 
resolution. In combination with confocal microscopy, DeepSeMi allows for 
recording organelle interactions in four colors at high frame rates across 
tens of thousands of frames, monitoring migrasomes and retractosomes 
over a half day, and imaging ultra-phototoxicity-sensitive Dictyostelium 
cells over thousands of frames. Through comprehensive validations across 
various samples and instruments, we prove DeepSeMi to be a versatile and 
biocompatible tool for breaking the shot-noise limit.

The magnificence of harmonically orchestrated systems, organs, tissues  
and cells attracts people to explore the mystery of life1,2. In the com-
plex milieu of the cell, organelles collaborate and interact with the 
cytoskeleton, orchestrating an array of physiological functions  
that underpin the vitality of organisms. Such gorgeous patterns  
reflect how organelles interplay in highly dynamic yet organized inter-
actions capable of orchestrating complex cellular functions3. Visuali
zing the functionality and complexity of organelles in their native 
states requires high spatiotemporal resolution observation without 
perturbing this physiologically presented regulations in the long term.

Standing in the center of approaches dedicated to probing and 
deciphering the micro world is the noninvasive fluorescent microscope, 

which is capable of high spatiotemporal resolution4 and good protein 
specificity5. Combined with fluorescent proteins6,7 and indicators8, 
remarkable advances in enriched fluorescence microscopy1,9–12 have 
enabled discoveries across many disciplines, including cell biology13, 
immunology14 and neuroscience15. However, a fundamental chal-
lenge associated with fluorescence microscopy is the limited photon 
budget, leading to insufficient signal-to-noise ratio (SNR)16. The low 
quantum yield of fluorescent indicators and the stochastic nature of 
noise make the contamination inevitable6, aggravating measurement 
uncertainty and impairing downstream quantitative analysis, including 
cell segmentation17, cell tracking18 and signal extraction19. Overcoming 
this limitation physically requires increasing excitation dosage20 or 
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priors that root in data itself through concatenating newly designed 
eccentric convolution filters and eccentric blind convolution filters 
with intentionally limited receptive fields across both spatial and tem-
poral dimensions (Supplementary Fig. 1; Methods). DeepSeMi outper-
forms other methods in both performance and generalization, and 
computationally amplifies the photon budget of several instruments 
in long-term tracking of organellar and organismal activities without 
the burden of the higher light doses used in traditional approaches. 
Through DeepSeMi, organelle interactions in their native states inside 
four-color-labeled L929 cells were recorded over 30 min and 14,000 
timepoints in high SNR on a confocal microscope—a widely used instru-
ment that offers high resolution, often with the cost of photodamage. 
Aided by DeepSeMi, sensitive structures such as migrasomes and 
retractosomes were frequently tracked in a half-day-long session, 
uninterrupted and without measurable photobleaching, and several 
organelles in these images could be segmented free of false positives 
due to noise contamination. Even fragile and photosensitive sam-
ples like Dictyostelium cells were also clearly recorded over 36,000 
shots in multicolor, attributed to DeepSeMi enhancement. Not limited  
to cultured cells and organisms, the capability and generality of  
DeepSeMi are also demonstrated in a series of photon-limited imaging 
experiments over various species, including nematodes, zebrafish and 
mice, all intravitally.

Results
DeepSeMi accomplishes single-flow high-fidelity denoising
The innovation of DeepSeMi is rooted in a full exploitation of noise 
statistics. Studies show that mutual mappings from neighbors to a 
centered pixel can be well established, even excluding the pixel itself, 
due to local structure continuity37. Under noisy conditions, although 
those mappings are significantly degraded, the average of the degraded 
mappings relocate the clear pixel information, facilitating estima-
tion of each clear pixel from the surrounding noisy spatiotemporal 
neighborhood38 (Fig. 1a). Based on that observation, DeepSeMi thereby 
establishes mappings between each pixel of the noisy videography and 
its surrounding pixels to effectively denoise videography. The utility of 
pixel-level noise statistics makes DeepSeMi robust, even over a single 
noisy shot, and consequently eliminates the need for excessive captures 
to ensure performance compared with previous techniques34,35 (Fig. 1e).

To establish these special mappings, two new convolution kernels 
were developed to convey the aforementioned thought with optimized 
efficiency in DeepSeMi. The first convolutional kernels receive both 
the inferred pixel and its eccentrically surrounded neighbors to keep 
the DeepSeMi efficient in both restoring structures and eliminating 
noise (Fig. 1b and Supplementary Fig. 1b), and are named accordingly 
as eccentric convolution. The second convolution kernels resemble 

increasing the expression of indicators21, but these options can cause 
artifacts in living systems, altering the morphological and functional 
interpretations that follow. Such a condition is even worse in long- 
term imaging that necessitates repeated illumination over the same 
sample hundreds and thousands of times to observe pivotal processes 
like cell proliferation22, migration13,23, organelle interactions24,25 and 
neuronal firing26. To mitigate noise contamination without excessive 
light-exposure-induced photobleaching and phototoxicity, which 
perturbs the sample in its native state, microscopists have to sacrifice 
imaging speed, resolution or dimension27.

Despite limited advances achieved across physical approaches, 
numerous algorithmic approaches have been proposed to break  
the shot-noise limit by using statistics of the noise28. Traditional  
denoising methods that exploit canonical properties of the noise 
(such as Gaussianity29 and structures in the signal30) achieve great 
success in photographic denoising30 but have limited performance in 
complex, turbulent and dynamic living systems and come at marked 
computational cost. In contrast, supervised learning methods utiliz-
ing a data-driven prior learned from paired noisy and clean measure-
ments have proven valid as long as samples are drawn from the same  
distribution31,32. To extend the generalization, the requirement of 
clean data can be further replaced by additional independent 
noisy measurements33, fertilizing breakthroughs in interpolating 
noise-contaminated functional data34,35. However, for many reasons, 
neither of these supervised methods circumvents the denoising of 
videographic high-resolution recording, with both intensity fluctua-
tions and deformations of living organisms or organelles. First, since 
the same physiological phenomenon would not repeat twice for each 
cell or organism, the requirement of clean or ‘groundtruth’ data by 
supervised methods can be satisfied only through simulations, which 
have marked gaps between training and inferring domains36. Second, 
even only the paired noisy data is required in interpolation-based 
methods like DeepInterpolation35 and DeepCAD34, the precondition of 
interframe continuity probably limits visualizing rapid transformations 
of living organisms or organelles. Third, the imperfect blind-spot tech-
niques employed in these self-supervised methods curtail denoising 
performance, thereby necessitating a compromise between preserv-
ing accurate visualization and maintaining the safety of the organism 
or, alternatively, risking the health of the sample through excessive 
captures to ensure quality visualization.

Here, we overcome the aforementioned limitations and propose a 
deep self-supervised learning enhanced microscope (DeepSeMi)—an 
open-source tool that readily and veritably increases the SNR over 
12 dB across various conditions and systems, and catalyzes noise- 
free videography of diverse structures and functional signals with 
minimized photodamage in the long term. DeepSeMi explores noise 

Fig. 1 | DeepSeMi accomplishes self-supervised video denoising based on 
the statistical characteristics of noise. a, Statistical principle of DeepSeMi. 
In pristine conditions, a well-defined mapping from neighboring pixels to 
a central pixel can be established, owing to local structural continuity (first 
row). However, when neighboring pixels are corrupted by noise (second row), 
and a neural network is tasked to establish the learned mapping (third row), 
it ultimately results in averaged gradients on the target pixel. In this context, 
the assumption of noise contaminations having a zero mean ensures that the 
averaged gradients can retrieve clean information from the target pixel, which 
was initially unobserved (fourth row). This rationale forms the basis of the 
operation of DeepSeMi. b, Schematics of the 3D eccentric convolution. In a 3D 
(x, y, t) patch (blue), an eccentric neighborhood (yellow) surrounding the target 
pixel (red) is multiplied with a learnable kernel (green), and the dimension-
reduced summation forms an output pixel (gray) in the output patch; in eccentric 
convolution, the eccentric neighborhood still contains the target pixel.  
c, Schematics of the 3D eccentric blind-spot convolution. Symbols as in b; in 
eccentric blind-spot convolution, the eccentric neighborhood does not contain 
the target pixel, and thereby the output pixel (gray) excludes the information 

of the target pixel (red). d, Structure of the proposed spatiotemporal hybrid 
3D blind-spot convolutional neural network. The neural network consists of 
six subnetworks with the same structure and a final feature FFnet. Among six 
subnetworks, four spatial 3D blind-spot convolutional neural networks (SBSnet, 
top four) and two temporal 3D blind-spot convolutional neural networks 
(TBSnet, bottom two) share the same network architecture. The input patch 
is rotated and fed into each subnetwork, and the output features are rotated 
accordingly to match each other’s size before feature fusion (Methods).  
e, DeepSeMi enables SNR enhancement with only experimental data through 
a single shot. Low-SNR recordings can be used to train the proposed self-
supervised neural network in situ, which enables the trained network to enhance 
low SNR recordings itself. f, Raw (right) and DeepSeMi denoised (left) images of 
mitochondria (green), peroxisomes (blue) and Golgi (red) in a L929 cell at 1,800 
frames per channel during 180 s. The lower images show enlarged views of the 
regions enclosed in white boxes in the upper image. Scale bar, 10 µm (upper) 
and 4 µm (lower); n = 9 cells examined over three independent experiments. 
g,h, DeepSeMi denoising performance indicated by the SNR over different noise 
levels (Supplementary Figs. 7 and 8) and content speeds (Supplementary Fig. 9).
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the blind-spot property by receiving only the eccentrically surrounded 
neighbors of the inferred pixel to achieve an even stronger noise  
cleanse ability (Fig. 1c and Supplementary Fig. 1c), and are named 
accordingly as eccentric blind-spot convolution. A single flow across 
the blind-spot convolution thereby facilitates each input noisy pixel 

to be synthesized only by the neighbors, without itself, accomplish-
ing denoising in a self-supervised learning manner very efficiently 
(Supplementary Figs. 2–4). The rationale for combining both filters in 
DeepSeMi is to achieve an appropriate balance between the preserva-
tion of detail and noise robustness with the assistance of the pixel-level 
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blind-spot technique (Methods). Six branches composed of these two 
convolutional filters deliver permutational receptive-limited fields 
of both spatial and temporal dimensions, and are further merged 
by a feature fusion network (FFnet) to form representations of  
the output video block (Fig. 1d). Computation losses are therefore 
differentiated between the input and output to guide the updates of 
the network parameters through backpropagation (Supplementary 
Fig. 5). Through ablation studies (Supplementary Fig. 6), we indeed 
confirmed that the multibranched structure of DeepSeMi is vital for 
achieving high-performance denoising. The comprehensively opti-
mized DeepSeMi also leverages a time-to-feature folding operation, 
which feeds more temporal information without increasing additional 
computational cost to increase performance (Methods).

We benchmarked the denoising capability of DeepSeMi through 
extensive simulations compared with various mainstream meth-
ods34,35,39–43. To fully emulate real experiments in complex situations, 
we evaluated those methods in Moving MNIST (Modified National 
Institute of Standards and Technology) datasets where both the noise 
level and the movement speed of the contents are varied over a large 
range of values. Among all methods tested, DeepSeMi achieved the 
best denoising results across all noise levels, achieving 15 dB higher 
SNR compared with raw capture under extremely noisy conditions 
(Fig. 1g and Supplementary Figs. 7 and 8). While most of the literature 
compares SNR merely in static scenes, we further evaluated the denois-
ing ability of those methods, encountering swift content across various 
speeds. With increasing moving speed of content, DeepSeMi stayed in 
the top tier in terms of restoration quality over other methods, with 
SNR improvement of at least 12 dB (Fig. 1h and Supplementary Fig. 9),  
where techniques using frame-level noise statistics (DeepCAD34 and 
DeepInterpolation35) lowered their performance quickly due to the 
frame interpolation nature (Supplementary Figs. 10 and 11). In more 
complicated Poisson noise contamination, where noise scale cor-
relates with image intensity (Supplementary Fig. 12), DeepSeMi still 
outperformed all other methods. Furthermore, DeepSeMi has been 
demonstrated to effectively handle mixed Poisson and Gaussian noise 
(Supplementary Fig. 13) and to preserve spatial resolution (Supple-
mentary Fig. 14).

Although DeepSeMi was trained at a moderate content speed 
(Supplementary Fig. 15a–c), performance remained high as content 
speed varied. We further tested the generalization of DeepSeMi in 
experiments where DeepSeMi was trained for the modality of mito-
chondrial membrane but tested with colabeled cell membrane and 
mitochondrial matrix data (Supplementary Figs. 16a and 17). We found 
the noise-contaminated mitochondrial matrix were cleaned by Deep-
SeMi, in both clustered forms close to the cell center and scattered 
forms at the cell edge (Supplementary Figs. 16b–e and 17). Composited 
interactions of both membranes and mitochondrial matrix were clearly 
shown after DeepSeMi enhancement that was trained only on third and 
unimodal data (Supplementary Fig. 16f–h and 17). Colabeled mitochon-
drial images were used to examine the self-consistency of DeepSeMi 
(Supplementary Fig. 18a). Here, we observed that the denoised results 
were highly aligned between the two channels, where each was labeled 
by a distinct fluorescent indicator (Supplementary Fig. 18c). The dem-
onstrated generalization and self-consistency of DeepSeMi ensure the 
fidelity of observation across complicated microenvironments during 
long-term cellular imaging, accomplishing apparent enhancement in 
recovering both structural and functional diversity (Fig. 1f, Supple-
mentary Fig. 19 and Supplementary Video 1).

Experimentally corroborating DeepSeMi denoising 
performance
To perform a direct and quantitative validation of performance and 
accuracy of DeepSeMi, we modified a commercial confocal system 
for acquiring simultaneous high- and low-SNR cell images (Supple-
mentary Fig. 20; Methods). By bias splitting the emission spectrum 

into two portions for two photomultiplier tubes (PMTs), we acquired 
paired images with 18.4-fold SNR differences for green fluorescent 
protein (GFP), 20.3-fold for mOrange2 and 15.5-fold for Fluor 657 (Sup-
plementary Fig. 21). We found that DeepSeMi appropriately removed 
shot-noise in imaging peroxisomes, mitochondria and membranes, 
and recovered accurate organelle structures compared with the 
high-SNR groundtruth (Fig. 2a and Supplementary Fig. 22). We noted 
the imaging SNR was improved more than 15-fold, considering that the 
noise of DeepSeMi-enhanced recordings were even more negligible 
than the corresponding high-SNR reference. We next benchmarked 
our DeepSeMi with other denoising technologies through the built 
simultaneous high- and low-SNR imaging system (Supplementary Figs. 
23–25). We found frame-interpolation-based methods (DeepIntern35 
and DeepCAD34) generated apparent artifacts that were highly similar 
to the natural morphologies of peroxisomes (Fig. 2a and Supplemen-
tary Fig. 23a) or mitochondria (Fig. 2b and Supplementary Fig. 23b), 
which might strongly alter potential biological conclusions. On the 
other hand, utilizing the pixel-level blind-spot technique, DeepSeMi 
consistently retrieved accurate organelle structures without exhibiting 
discernible artifacts regardless of apparent complicated morphology 
deformations (Supplementary Fig. 23a–c). In summary, DeepSeMi 
became top tier among the tested denoising techniques in terms of 
noise suppression (Supplementary Figs. 7, 8 and 12), artifact rejection 
(Supplementary Figs. 23–25) and complicated motion compatibility 
(Supplementary Figs. 9–11), as evidenced via various simulations (Sup-
plementary Figs. 7–12) and experiments (Supplementary Figs. 23–25). 
Our paired high- and low-SNR datasets, extensively covering various 
organelles, SNRs and structural complexity, have been made available 
as open-source tools to the research community (Data availability). 
Moreover, we have substantiated that DeepSeMi maintains the linearity 
of the intensities of the examined structures throughout the denoising 
process (Supplementary Fig. 26), while preserving high fidelity across 
a wide range of imaging speeds (Supplementary Fig. 27).

After corroborating the accuracy of DeepSeMi in removing noise 
contaminations, we next proved that DeepSeMi computationally 
amplifies the photon budget in long-term imaging of organelles and 
organisms without the burden of exacerbating sample health seen in 
traditional approaches. Photon budget is the eventual bottleneck of 
observing swift intracellular organelle interactions, cell migration 
and multicellular interactions over the long term44,45 which results in 
insufficient and scant data in most conditions due to the compromis-
ing effects of photobleaching and phototoxicity. To illustrate this, we 
conducted extensive evaluations to investigate imaging conditions 
in which light-sensitive mitochondria can be recorded in their native 
state (Supplementary Fig. 28). We found that healthy mitochondria  
can withstand only 45.3 μW laser power (2%, 488 nm) (Supplementary 
Fig. 29) for a 3-min session at 30 frames per second (fps) in a commer-
cial confocal microscope without apparent photobleaching (Supple-
mentary Fig. 28; Methods). Higher laser dosage quickly bleached the  
fluorescence, defiling the imaging process due to missing mitochon-
drial structural information. Although using such a low power dosage 
seems to be expedient for long-term cellular observation, it exacer-
bated the noise contamination associated with the observations and 
yielded barely characterized structures (Supplementary Fig. 28d); 
observation was even more difficult when the mitochondria were 
densely clustered. On the other hand, using DeepSeMi, under even 
14.6 μW (0.5%, 488 nm) power dosage, mitochondria can be denoised 
faithfully, with intact and natural form restored (Supplementary Figs. 
30 and 31). Under that excitation power, the fluorescent intensity drop 
was undetectable, suggesting that DeepSeMi enhancement not only 
accomplished high-fidelity recording but even eliminated potential 
photobleaching (Supplementary Video 2). From other perspectives, 
the computational enhancement of DeepSeMi increases the available 
photon budget of optical instruments. Considering that DeepSeMi 
achieves even higher visualization quality of mitochondrial structures 
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at 23.1 μW (1%, 488 nm) (Supplementary Fig. 28b) than raw captures at 
537 μW (32%, 488 nm) (Supplementary Fig. 28h), the available photon 
budget was enlarged at least tenfold.

We verified the photon budget enlargement of DeepSeMi 
quantitatively across three dimensions. In the first dimension, we 
approximated the photon budget enlargement as the multiplica-
tion of excitation power in raw captures through which the same or  
similar SNR of DeepSeMi enhancement can be achieved (Supplemen-
tary Fig. 32). We found that at least 15-fold greater power dosage in 
raw frames was required to produce the same level of imaging quality 
as DeepSeMi enhancement across various noisy conditions, verifying 
that DeepSeMi enlarges the photon budget by at least 15-fold (Supple-
mentary Fig. 32). In the second dimension, we investigated the photon 

budget enlargement as the excessive concentration of dyes in raw  
captures to approach the DeepSeMi-enhanced SNR. We proved  
that DeepSeMi achieved no-compromise results across migrasomes, 
lysosomes and mitochondria using dye concentrations diluted over 
50 times, and the resulting captures were comparable with nondiluted 
captures (Fig. 2c and Supplementary Fig. 33). In the third dimension, 
we investigated the excessive recording duration brought by DeepSeMi 
over imaging FM4-64-labeled cells. We found a 476-min recording 
length could be achieved through DeepSeMi enhancement over an 
imaging power of 0.5% with comparable quality and SNR compared 
with those achieved with 10% imaging power (Supplementary Fig. 34). 
On the other hand, necrosis due to phototoxicity appeared ∼42 min 
after the start of imaging session in 10% imaging power, precluding 
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investigation of any long-term cellular activities, such as migration, 
division and autophagy. Through the above validations, we demon-
strated that the photon budget as multiplied by DeepSeMi greatly 
extends the capacity of the optical microscope to pursue higher spec-
tral complexity, higher frame rate and longer recording sessions, elimi-
nating the risks of higher power dosage and dye concentration inducing 
greater cytotoxicity and perturbation than native regulation.

DeepSeMi unlocks high-speed long-term imaging with 
minimized photobleaching
Encouraged by the apparent SNR enhancement of DeepSeMi under 
sample-friendly power dosage across thousands of captures, we per-
formed imaging at 7.5 fps on L929 cells with four structures labeled 
by four colors (tagBFP-SKL, TOM20-GFP, SiT-mApple and WGA647 
for peroxisomes, mitochondria, Golgi and migrasomes, respectively) 
on a commercial confocal microscope (Fig. 3a; Methods) for 30 min 
and over 13,500 timepoints. Excitation power was set at 2% to avoid 
photobleaching and keep live cells healthy (Fig. 3b), at the expense 
of the extensive noise and ruptured structures that marred the raw 
captures. In contrast, the enhancement of DeepSeMi clearly revealed 
delicate structures of punctate peroxisomes, threadlike mitochondria 
and fluctuated membranes (Supplementary Video 3). Mitochondrial 
fission and fusion were clearly distinguished (Fig. 3c,d), highlighting 
the importance of combining minimization of illumination photon 
dose with SNR enhancement of DeepSeMi.

Together with its high temporal resolution and long-term capabil-
ity, DeepSeMi opens up new possibilities in tracking the subtle move-
ments of mitochondria. An individual rod-shaped mitochondrion was 
tracked based on DeepSeMi-enhanced recordings over 500 s, unveiling 
complicated trajectories and nonlinear movements (Fig. 3e,f). Sam-
pling the data at full temporal resolution revealed brief transitions 
between mitochondria leaving and approaching, and quick motions 
were seen when the leaving or approaching mitochondria paused 
temporally45 (Fig. 3g). Such transient processes cannot be captured 
if the sampling frequency drops by tenfold to 0.75 Hz, which was the 
compromised frame rate for a standard confocal microscope without 
DeepSeMi enhancement. We thereby demonstrated that the high tem-
poral resolution enabled by DeepSeMi is indispensable to character-
izing the true trajectories as complex movements between frames were 
likely to be missed when temporal resolution dropped (Fig. 3h). We 
measured mitochondria leaving and approaching rates of 0.53 μm s–1 
and 0.46 μm s–1, respectively. Furthermore, when analyzing these rates 
as a function of the displacement of each leaving or approaching event 
(Fig. 3i,j), we found that long displacing events correlated with slow 
rates of leaving or approaching. There was a broader range of leaving 
rates compared with approaching rates during short displacing events, 
leading to diverse fluctuations in mitochondria displacement. Overall, 
the SNR enhancement of DeepSeMi markedly enlarged the available 
photon budget of an optical instrument without compromising visual 
quality for downstream analysis. DeepSeMi allowed us to quantify 
not only dynamic mitochondrial displacement but also alteration of 

other organelles on a much finer temporal scale than that achieved in 
previous methods.

DeepSeMi enables monitoring migrasomes and 
retractosomes over a half day in their native states
The migrasome was recently recognized as an extracellular organelle 
that plays a significant role in various physiological processes, including 
mitochondrial quality control, organ morphogenesis and cell inter-
action46,47. Despite fruitful results related to migrasome regulation 
revealed by light microscopy, observing migrasomes without interrup-
tion during cell migration in a half-day-long period remains challenging, 
being limited by continuous imaging-induced photobleaching and 
phototoxicity (Supplementary Fig. 35).

Here, through DeepSeMi enhancement, we accomplished 
high-resolution 2 fps imaging of the generation, growth and rupture of 
migrasomes in a half-day-long term with more than 86,000 timepoints 
with only 2% power shots (45.3 μW of 488 nm, 49.8 μW of 561 nm). A 
representative two-color image frame from a video of the mitochondria 
and migrasomes clearly showed the enormous SNR enhancement by 
DeepSeMi compared with raw capture (Fig. 4a and Supplementary 
Video 4). Near the cell body, DeepSeMi enabled us to find migrasomes 
that presented the entire generation and growth procedure across 
∼300 min of imaging windows, which was 41% of the whole imaging 
session (Fig. 4b). The DeepSeMi-enhanced results clearly show that 
some mitochondria were expelled by the cell and kept inside a migra-
somes (Fig. 4d,e), known as the mitocytosis46. Compared with barely 
recognized migrasomes in the raw images (Fig. 4c), 51 migrasomes were 
segmented from the whole DeepSeMi-enhanced capture (Methods), 
with color-coded area and longevity statistics summarized in Fig. 4f. 
We measured an averaged maximum area of 5.81 μm2 (Fig. 4g) during 
an average 141-min migrasome lifespan (Fig. 4h), which were weakly 
correlated with each other (Fig. 4i). We noticed a general pattern of the 
maximum area across those migrasomes consisting of a quick increase 
representing growth, a slightly declined plateau and a sharp drop rep-
resenting rupture (Fig. 4j). The dynamics of rupture were much faster 
than the other two processes (Fig. 4k), necessitating DeepSeMi-enabled 
high temporal resolution and uninterrupted capture across a long time 
period to catch these features.

The retractosome was reported recently as a new type of small 
extracellular vesicle that is generated from broken-off retraction fibers 
and related closely to cell migrations48. Since uninterrupted cell migra-
tions can be imaged continuously, benefiting from DeepSeMi-enabled 
low phototoxicity, high-SNR and long-term recording ability, retracto-
somes that were transformed from broken-off retraction fibers were 
clearly recognized (Fig. 4l,m). Although the beads-on-a-string features 
were indistinguishable in the raw captured video, retractosomes were 
clearly recognized when they moved along with the wobbly retraction 
fibers (Supplementary Video 5). After the cell migrated away, plenty of 
retraction fibers and retractosomes were left behind, forming a com-
plicated network structure that appeared fractured due to signal noise. 
DeepSeMi reunited the network by wiping out noise contamination, 

Fig. 3 | Long-term, high-temporal resolution and low phototoxicity imaging 
of organelle interactions by DeepSeMi. a, Left: raw (top) and DeepSeMi-
enhanced (bottom) micrographs of an L929 cell expressing fluorescent proteins 
(TOM20-GFP, TagBFP-SKL and SiT-mApple) and labeled by WGA647. Right: 
individual channels of the yellow box marked in the left panel are displayed 
separately. Scale bar, 10 μm for both global and enlarged views. n = 14 cells 
examined over four independent experiments. b, Fluorescence intensity 
fluctuations (n = 10) of four channels during a 30-min imaging session (13,500 
frames) at 2% light intensity. Fluorescence intensity curves were normalized to 
initial values. c,d, DeepSeMi-enhanced (c) and raw (d) timelapse images that 
reflect mitochondrial morphological changes during low-light recording. White 
arrows mark the process of mitochondrial fission and fusion. Scale bar, 5 µm. 
n = 14 cells examined over four independent experiments. e, Raw (left) and 

DeepSeMi-enhanced (right) four-color cellular imaging in low-light conditions, 
with trajectories of a rod-shaped mitochondria tracked and enlarged (inset); 
color-coded timestamps are labeled at the bottom. Scale bar, 5 µm. n = 14 cells 
examined over three independent experiments. f, Displacement of the rod-
shaped mitochondria plotted as a function of time. g, Inferred mitochondria 
displacements versus time under different imaging frame rates. Different 
colors represent different relative states of rod-shaped mitochondria to the 
cell body. Red arrows mark differences between displacement inferences of 
full sampling rate (7.5 Hz) and tenfold subsampling rate (0.75 Hz). h, Tracked 
drifting distances of mitochondria during 500 s with full sampling rate (7.5 Hz) 
and tenfold subsampling rate (0.75 Hz). i,j, Distributions of the moving rates 
and displacements of tracked rod-shaped mitochondria during leaving (i) and 
approaching (j) states, respectively.
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thus delivering the potential to study the physiological functions of 
retractosomes in the future.

DeepSeMi facilitates automated analysis of cellular structures 
from massive data
Uncovering the peculiarities of important life-preserving and 
disease-driving organelles requires robust and unbiased segmentation 
and tracking tools. Given the growing requirement for long-term record-
ings and attendant generation of considerable amounts of cellular 
imaging data measured in hundreds of gigabytes49, automated cellular 
analysis is becoming indispensable for new physiological discoveries. 
Here, we verify the compatibility of DeepSeMi with cutting-edge auto-
mated segmentation tools50. We trained three segmentation networks 
for mitochondria, migrasomes and retraction fibers (Fig. 5a; Methods).  
We found that raw captures of mitochondria under 14.6 μW (0.5%  
of 488 nm)—a bio-friendly power dosage—suffered pronounced  
segmentation errors due to noise contamination (Fig. 5b–d and Supple-
mentary Fig. 36). Incorrect segmentation fragments in the background 
were eliminated only when the power dosage was pushed into 537.6 μW 
(32% of 488 nm), at a cost of significant photobleaching (Fig. 5b–d  
and Supplementary Fig. 28h). By contrast, DeepSeMi enhancement 
enabled the segmentation model to produce reasonable and gap- 
free results even at 14.6 μW (0.5% of 488 nm) (Fig. 5b and Supple-
mentary Fig. 36), permitting reliable segmentation during long-term  
imaging thanks to heavily reduced photobleaching. Through addition-
ally performing mitochondrial skeletonization and keypoint detection 
based on instance segmentation17 (Supplementary Fig. 37), we found 
that the markedly noisy areas in raw captures were recognized as end-
points and junctions of broken skeletons (Fig. 5b and Supplementary 
Fig. 36). These false positives were well avoided in DeepSeMi-enhanced 
results, and the skeletonization result produced by DeepSeMi at 
14.6 μW (0.5% of 488 nm) is comparable with that in the raw image at 
537.6 μW (32% of 488 nm). Quantitively, DeepSeMi-enhanced videogra-
phy achieved significantly larger mitochondrial area (P < 0.0001, two- 
sided Wilcoxon rank sum test; Fig. 5e and Supplementary Fig. 36;  
Methods) and longer branch length (P < 0.0001, two-sided Wilcoxon 
rank sum test; Fig. 5f and Supplementary Fig. 36; Methods) com-
pared with those based on raw data at a sample-friendly power dos-
age (14.6 μW (0.5% of 488 nm). These statistics were comparable only 
when the power reaches the harmful level of 537.6 μW (32% of 488 nm; 
P > 0.1, two-sided Wilcoxon rank sum test). The >15-fold power reduc-
tion of DeepSeMi in achieving high-quality subcellular segmentation 
validated with >15 times greater photon budget compared with a previ-
ous photobleaching study Supplementary Fig. 28), together indicate 
the strong advantages of DeepSeMi over optical instrument in terms 
of being bio-friendly, resolving ability and data fidelity.

To further evaluate the improvement of segmentation accuracy 
brought by DeepSeMi enhancement, we segmented migrasomes and 
retraction fibers manually as the groundtruth and compared the results 
with automated segmentations on DeepSeMi-enhanced videography 

(Methods). DeepSeMi apparently achieved much clearer micrographs 
and hence cleaner segmentations (Fig. 5g,h). Statistically, DeepSeMi 
enhancement achieved 0.9449 ± 0.0782 recalls (n = 32 images) in 
migrasome segmentations, holding a safe advantage compared with 
raw-video-based segmentation (0.5522 ± 0.1359 recalls, n = 32 images). 
The same advantages were held in segmenting string-like retraction fib-
ers (Fig. 5j,k), where DeepSeMi enhancement achieved 0.9493 ± 0.0618 
recalls (n = 12 images) compared with 0.3391 ± 0.1848 recalls by raw 
video (n = 12 images; Fig. 5l). We subsequently substantiated the 
enhancement in segmentation accuracy conferred by DeepSeMi using 
our simultaneous high- and low-SNR imaging system. We observed that 
DeepSeMi outperformed other benchmarked denoising methodolo-
gies, as evident from several segmentation metrics including accuracy, 
F1 score, intersection over union and recall (Supplementary Fig. 38). 
Furthermore, DeepSeMi demonstrated an unwavering consistency 
in delivering high-performance cellular segmentation across various 
imaging speeds (Supplementary Fig. 39). The high segmentation accu-
racy enabled by DeepSeMi under sample-friendly power dosage would 
be the key to massive data analysis through automated algorithms after 
long-term recordings.

DeepSeMi accomplishes SNR enhancement across various 
samples
Last, we demonstrated that DeepSeMi effectively increases SNRs 
across various samples, including cultured cells, unicellular organ-
isms, nematodes, nonmammalian vertebrates and mammals. We 
have demonstrated DeepSeMi-enabled high-temporal-resolution 
imaging of mitochondria, low phototoxicity half-day-long imaging 
of migrasomes and retractosomes, and facilitated automated analysis 
in massive data under biofriendly illumination dosage, but the power 
of DeepSeMi could be extended further. We next demonstrated that 
DeepSeMi can be used to study the rearrangement of organelles after 
disrupting the cytoskeleton and other organelle-related structures. By 
dosing an appropriate concentration of latrunculin-A (lat-A) to induce 
the depolymerization of the intracellular actin cytoskeleton, a new 
spatial distribution of intracellular organelles was formed (Supplemen-
tary Fig. 40). We found the migrasomes were generated following the 
rapid contraction of the cell membrane after depolymerization of the 
cytoskeleton (Fig. 6a). All those observations relied on the enhance-
ment of DeepSeMi, which restored mitochondria and other organelles 
of diverse morphologies from noise. Similar improvements happened 
in the study of vesicle fission (Supplementary Fig. 19h and Supplemen-
tary Video 1), where kymographs (x–t projections) clearly presented 
the enhancements of DeepSeMi (Supplementary Fig. 19i), and also in 
the study of migrating cell interacting with a migrasome (Supplemen-
tary Fig. 41b), producing migrasomes (Supplementary Fig. 41c) and 
expelling mitochondria in low light dosage (Supplementary Fig. 41d 
and Supplementary Video 6).

DeepSeMi also ena bled high-SNR, half-hour-long imaging of cells 
from Dictyostelium—an important amoeba-like eukaryote model for 

Fig. 4 | DeepSeMi enables half-day-long observations of migrasomes and 
retractosomes with low phototoxicity. a, Raw (top left) and DeepSeMi-
enhanced (bottom right) micrograph of L929 cells expressing both TOM20-
GFP and TSPAN4-mCherry. Scale bar, 20 μm. n = 5 cells examined over five 
independent experiments. b,c, Higher magnification panels visualizing 
extracellular migrasome generation and displacement by raw (b) and DeepSeMi-
enhanced (c) recordings. Migrasomes marked by white arrows burst at the 
end of their lives. Scale bar, 10 μm. n = 5 cells examined over five independent 
experiments. d,e, Higher magnification panels visualizing mitocytosis and 
displacement by raw (d) and DeepSeMi-enhanced (e) recordings, respectively. 
Scale bar, 10 μm. f, Areas of extracellular migrasomes changing with time in 
DeepSeMi-enhanced videos. Different colors represent different migrasomes 
(n = 51). g, Violin plot of the maximum area of extracellular migrasomes in 
DeepSeMi-enhanced videos. White circle, median; thin vertical lines, upper 

and lower proximal values. Violin-shaped area: kernel density estimates of data 
distribution. n = 51 datapoints. h, Violin plot of the longevity of extracellular 
migrasomes in DeepSeMi-enhanced videos. Symbols as in g; n = 51 datapoints. 
Central black mark, median; bottom and top edges, 25th and 75th percentiles; 
whiskers extend to extreme points excluding outliers (1.5 times above or below 
the interquartile range). i, Scatter plot of longevity and maximum area of 
extracellular migrasomes in DeepSeMi-enhanced videos; n = 51 datapoints.  
j, Statistics of the normalized migrasome area changing across the migrasomes 
lifespan. Gray curves, trend of each migrasome (n = 51); red curve, average.  
k, Histogram of the area changing rate of migrasomes across n = 51 migrasomes. 
l,m, Generation of retractosomes in regions through which cells have migrated.  
A global view where the first row represents images enhanced by DeepSeMi and 
the second row represents the raw images. Scale bar, 20 μm. n = 3 cells examined 
over three independent experiments.
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studying genetics, cell biology and biochemistry51. Despite the great 
value of Dictyostelium cells in research, it is ultrasensitive to photodam-
age; 215 μW of laser dosage at 638 nm and 50.6 μW of laser dosage at 
561 nm killed 30% of D. discoideum after 30-min imaging, preventing 
high-SNR long-term imaging using conventional approaches (Sup-
plementary Figs. 42 and 43). We applied DeepSeMi to circumvent 
the problem, which enabled dual-color and high-SNR imaging at the 

45.3 μW dosage at 488 nm and the 49.8 μW dosage at 561 nm over 
30 min without apparent photodamage (Fig. 6b and Supplementary 
Figs. 42 and 44). Contractile vacuoles and membranes of Dictyos-
telium cells were easily recognized with clear boundaries through 
DeepSeMi enhancement (Fig. 6c and Supplementary Fig. 45), and 
the uninterrupted videography enabled by DeepSeMi unveiled star-
tling images of Dictyostelium cell motions such as contracting (Fig. 6d  
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Fig. 5 | DeepSeMi facilitates accurate automated analysis of cellular structures 
with low light dosage. a, Schematic diagram illustrating the segmentation of 
mitochondria, migrasomes and retraction fibers through three neural networks 
(Methods). b–d, Differences in mitochondrial analysis based on raw images 
(bottom left) and DeepSeMi-enhanced (top right) images decrease as power 
dosage increases (b for 0.5% power, c for 1% power and d for 32%). The first 
row represents the raw captures (bottom left) and the DeepSeMi-enhanced 
fluorescence images (top right). The second row represents the instance 
segmentation of the raw captures (bottom left) and the enhanced images 
(top right). The third row represents the skeletonization of the raw captured 
mitochondria (bottom left) and the enhanced mitochondria (top right). Scale 
bar, 20 μm. e, Statistics of mitochondria area based on the instance segmentation 
before (red) and after (blue) DeepSeMi enhancement. White dots, median; 
thin vertical lines, upper and lower proximal values; violin-shaped area, kernel 
density estimates of data distribution. Two-sided Wilcoxon signed-rank test; 
n = 1,000 images per intensity. n = 10 cells examined over two independent 

experiments. f, Statistics of branch length of mitochondria based on the 
skeletonization before (red) and after (blue) DeepSeMi enhancement. Symbols 
as in e. Two-sided Wilcoxon signed-rank test; n = 1,000 images per intensity. 
g,h, Instance segmentation of migrasomes before (bottom left) and after (top 
right) DeepSeMi enhancement. Scale bar, 20 μm. i, Segmentation precision, 
recall, F1 score and accuracy scores of the migrasomes before (red) and after 
(blue) DeepSeMi enhancement. Groundtruth data were annotated manually 
(Methods). Two-sided Wilcoxon signed-rank test; n = 32 images. j,k, Instances 
(j,k) segmentation of retraction fibers before (bottom left) and after DeepSeMi 
enhancement (top right). Scale bar, 10 μm. l, Segmentation precision, recall, F1 
scores of the retraction fibers before (red) and after DeepSeMi enhancement 
(blue). Groundtruth data is manually annotated (Methods). Two-sided Wilcoxon 
signed-rank test; n = 12 images. In i and l, central black mark, median; bottom and 
top edges, 25th and 75th percentiles; whiskers extend to extreme points excluding 
outliers (1.5 times above or below the interquartile range).
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and Supplementary Video 7). The ability of DeepSeMi to greatly 
improve SNR without increasing power dosage will shed new light on 
photodamage-sensitive but valuable animal models like Dictyostelium.

Caenorhabditis elegans and zebrafish are used as central model 
systems across many biological disciplines52,53. The rather scattered 

tissues of C. elegans exaggerate noise contamination even more  
than cultured cells (Fig. 6e and Supplementary Fig. 46a); DeepSeMi 
substantially improved the contrast and sharpness of cell images  
(Supplementary Fig. 46b–f). Although utilizing a higher numerical 
aperture (NA) objective results in even greater scattering, DeepSeMi 
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Fig. 6 | DeepSeMi seamlessly improves SNRs over various species. a, Generation 
of a migrasome from the L929 cell with four organelles labeled with different 
colors (TOM20-GFP, WGA647, TagBFP-SKL and SiT-mApple; Supplementary 
Fig. 40) after treatment with lat-A (0.5 μg ml–1; Methods). For each panel, the 
right part represents DeepSeMi-enhanced results and the left panel represents 
the raw image. Scale bar, 10 μm. n = 12 cells examined over three independent 
experiments. b, Raw (top right) and DeepSeMi-enhanced (bottom left) long-term 
high-speed imaging of photosensitive Dictyostelium cells. Scale bar, 10 μm. n = 36 
cells examined over four independent experiments. c, Enlarged images of the 
white boxes marked 1–4 in b representing contractile vacuoles and membranes. 
Intensity profiles along the white dashed lines are plotted at the bottom. Scale 
bar, 3 μm. n = 36 cells examined over four independent experiments. d, Timelapse 
imaging of expansion and contraction of the contractile vacuole enhanced 
by DeepSeMi. Scale bar, 4 μm. n = 36 cells examined over four independent 

experiments. e, In vivo imaging of C. elegans in a millimeter-scale field-of-view by 
raw (top) and DeepSeMi-enhanced (bottom) captures. Scale bar, 100 μm. n = 8 
examined over two independent experiments. f, In vivo imaging of zebrafish 
larvae in a millimeter-scale field-of-view by raw (bottom left) and DeepSeMi-
enhanced (top right) captures. Scale bar, 200 μm. n = 12 examined over four 
independent experiments. g, Observation of macrophage in zebrafish larvae in 
vivo by raw (left) and DeepSeMi-enhanced (right) images, respectively. Scale bar, 
5 μm. n = 12 examined over four independent experiments. h, Low-SNR (left), 
DeepSeMi-restored (middle) and high-SNR (right) images recorded by tenfold 
higher photon flux as references. Low-SNR and high-SNR images were recorded 
through a hybrid multi-SNR two-photon system for validation34. Eight timepoints 
are displayed for each modality. Roi 1 and Roi 2 were two regions from a recording 
of GGaMP6f-labeled neurons in in vivo mouse cortex. Scale bar, 20 μm. n = 12 
examined over six independent experiments.
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restores delicate structures with sharp edges and high contrast from 
noise (Supplementary Fig. 46g–j). On the other hand, the transparency 
of zebrafish larvae not only helps better observation of structures and 
functions of cells and organisms in vivo, but also eliminates the protec-
tive barrier to photodamage during optical observation54. Thereby, 
imaging zebrafish larvae necessitates low illumination power to avoid 
affecting the health and normal physiological regulation of the sample, 
which inevitably raises challenges from noise contamination (Fig. 6f 
and Supplementary Fig. 47a). We proved that DeepSeMi enhance-
ment solved this dilemma and provided a clear view of macrophage 
in zebrafish larvae under a mild power dosage (45.3 μW; Fig. 6g and 
Supplementary Fig. 47b,c), showing the potential for long-term obser-
vations for studying development and function in a highly complex 
vertebrate model system.

DeepSeMi is also demonstrated to be operative in functional 
imaging in mice, which are widely used in systems and evolutionary 
neuroscience. We tested the generalization of DeepSeMi in nonlinear 
microscopy, where neurons were excited sequentially by a focused 
femtosecond laser in vivo. DeepSeMi readily enhanced visualization of 
morphologies of neuronal structures (Fig. 6h and Supplementary Figs. 
48a–c and 49a–i) from barely recognizable noisy captures, and also 
demonstrably increased the temporal contrast of calcium transients 
(Supplementary Figs. 48d and 49j). Videos denoised by DeepSeMi 
found 1.5 times more neurons, which could impel potential interro-
gation of neuronal circuits (Supplementary Figs. 48e and 49k). For 
observing even smaller structures, such as wobbled neuronal dendrites 
and axons in vivo in the mouse brain, the enhancement brought by 
DeepSeMi has no equal (Supplementary Fig. 50).

Discussion
The ability to image live biological specimens over time with high 
spatiotemporal resolution and low photodamage will be of great 
scientific value. To improve such imaging, we present DeepSeMi, a 
versatile self-supervised paradigm capable of enhancing SNR over 
12 dB, improving photon budget 15-fold and reducing fluorescent 
dye concentration 50-fold across various samples and instruments 
with only noisy images required as input. DeepSeMi features specially 
designed receptive field-limited convolutional filters that readily 
accomplish noise contamination removal without clean data refer-
ence or interframe interpolations, achieving superior performance 
over other methods, especially in data with complicated transforma-
tion. The computationally enhanced photon budget produced by 
DeepSeMi enabled high-frame-rate four-color organelle recordings 
across tens of thousands of frames, allowing the tracking of migras-
omes and retractosomes over a half day, and the long-term imaging of 
ultra-photodamage-sensitive D. discoideum with high fidelity. Moreo-
ver, DeepSeMi was proven to help the automated analysis of cells and 
organelles, which is a strong aid in processing massive imaging data. The 
performance of DeepSeMi on various species, including nematodes, 
zebrafish and mice, on both widefield and two-photon microscopes 
was also validated both qualitatively and quantitatively. In conclusion, 
DeepSeMi offers a combination of high-resolution, high-speed, multi-
color imaging and low photobleaching and phototoxicity that makes 
it well suited to studying intracellular dynamics and more.

As a fundamental limitation in fluorescence imaging, stochastic 
noise determines the upper boundary of imaging quality and compro-
mises speed, resolution and sample health across any instrument. The 
proposed DeepSeMi can be extended seamlessly to various devices that 
most suffer from noise, including the three-photon microscope, which 
has as ultra-small absorption cross-section55, and the Raman micro-
scope with critical excitation conditions56. In other devices, such as 
widefield and lightfield microscopes where background contaminates 
more to scattering tissues than noise, DeepSeMi can collaborate with 
computational background elimination methods57 to jointly improve 
imaging quality with rejected background and increased SNR.

The rearrangement of computationally multiplied photon budg-
ets by DeepSeMi can be more diverse. We have shown the benefits of 
shortened exposure, which supports a higher frame rate for interro-
gating fast dynamics (Fig. 3), and reduced frame rate, which enables 
longer recording time for investigating long-term variations (Fig. 4). 
Furthermore, the temporal resolution of an optical system can be fur-
ther enhanced without losing spatial resolution through combination 
with multiplexing techniques58, and DeepSeMi readily mitigates the 
photodamage caused by excessive power dosage. When pushing the 
frame rate to the limit, a standard device may be capable of imaging 
ultrafast phenomena like spiking59,60 and flagellar locomotion61 without 
losing fidelity by using DeepSeMi.

Although basic exploration of DeepSeMi has been examined in 
this manuscript, continued diverse research could further increase its 
accessibility. Combining DeepSeMi with advanced model compression 
and pruning techniques59, will further compress the computation time 
of DeepSeMi for high-speed data inference. Training DeepSeMi across 
a large range of conditions with varied noise and transformations over 
several samples forms a general model and, in specific conditions, 
DeepSeMi can be distributed swiftly from the basic system to one with 
fine-tuning and better performance62.

In short, we believe DeepSeMi provides a robust solution to over-
come the shot-noise limitation in fluorescent microscopy. With the 
computational enhancement of DeepSeMi, various organelles and 
organisms can be recorded safely over long periods at high spati-
otemporal resolution, bringing fresh insight to new physiological 
discoveries.
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Methods
Network structure
DeepSeMi consisted of six three-dimensional (3D) hybrid blind-spot 
neural networks (four spatial blind-spot networks and two tempo-
ral blind-spot networks) and one FFnet (Supplementary Fig. 5). All 
six hybrid blind-spot networks had the same U-net-like structure for 
extracting features from input videos. Each hybrid blind-spot network 
consisted of 14 3D convolution layers. The first two layers were 3D 
eccentric blind-spot convolutional layers with 3 × 3 × 3 sized kernels 
(Fig. 1c). The encoding path of DeepSeMi was composed of alternate 
3D eccentric blind-spot convolutional layers (3 × 3 × 3 sized kernels) 
and MaxPooling layers (2 × 2 × 2). Similarly, the decoding path was 
implemented by alternate 3D eccentric convolutional layers (3 × 3 × 3 
sized kernels) and Upsampling layers (2 × 2 × 2). The numbers of 
input and output features in each layer were set to 32 to accommo-
date single-graphics-processing-unit training. The FFnet consisted 
of three 3D convolutional layers with 1 × 1 × 1 kernels. The number of 
input channels of the FFnet was 32 × 6 = 192 to match the size of con-
catenated features of the six branch networks, whereas the number  
of output channels of the FFnet matches the real image and depends 
on the experiment. The loss function of DeepSeMi was a summation  
of l1 norm and l2 norm, and the learning rate was set to 0.0001.

We usually picked up 1,000 patches from noisy videos to form 
the training set, and the size of each patch was 128 × 128 × 32. Good 
convergence could be obtained usually after 30–50 epochs of train-
ing. The entire training process took about 6 h on an NVIDIA 3090 Ti 
graphics card.

Eccentric blind-spot convolution and eccentric convolution
Eccentric blind-spot convolution stemming from traditional convo-
lutions plays a significant role in DeepSeMi. Here, we illustrate the 
concept of eccentric blind-spot convolution through derivations.  
To simplify the description, all following operations are derived in  
two dimensions, while 3D operations can be extended easily.

The traditional discrete convolution (Supplementary Fig. 1a) can 
be formulated as:

ym,n =
h
∑
i=−h

h
∑
j=−h

xm−i,n−jkh−i+1,h−j+1

where y is the output of the convolution, x is the input image, k is the 
kernel of convolution with a size of [2h + 1, 2h + 1], m and n are the 
two-dimensional (2D) index of a pixel in the image, h is used to describe 
the size of the convolution kernel, and i and j are variables of discrete 
convolution. Note the information of input pixel xm,n will be transmit-
ted to the output pixel ym,n in the above traditional convolution process 
when i = 0 and j = 0, resulting the noise of input pixel xm,n will also be kept 
at the output pixel ym,n. Training a neural network composed of such 
convolutional layers in noise-only data will generate trivial results with 
the identified mapping, and only noisy-clean data pairs or sequential 
noisy acquisitions can fuel that neural network with the deficiency of 
self-supervision. To give the neural network the ability to self-supervise 
denoising, we construct an eccentric blind-spot convolution kernel 
(Supplementary Fig. 1c), which can be formulated as:

ym,n =
h
∑
i=−h

h
∑
j=−h

xm−i+h+1,n−jkh−i+1,h−j+1

where the symbols are the same as the above equation. With the  
proposed eccentric blind-spot convolution, the noisy information 
of input pixel xm,n will not be conserved in the output pixel ym,n, and 
information of the output pixel ym,n can be estimated only from local 
pixels around the input pixel xm,n.

Next, we derive the proposed eccentric convolutional filter and 
explain why it is important to DeepSeMi. We found that, when directly 

combining the aforementioned eccentric blind-spot convolution  
kernels with traditional convolutional kernels, the blind-spot proper-
ties that are key to ensuring self-supervision would be lost. To illustrate 
that, we concatenate a 2D eccentric blind-spot convolution and a 2D 
traditional convolution:

ym,n =
h
∑
i=−h

h
∑
j=−h

xm−i+h+1,n−jk1h−i+1,h−j+1

zm,n =
h
∑
i=−h

h
∑
j=−h

ym−i,n−jk2h−i+1,h−j+1

where x is the input, y is the intermediate variable from the eccentric 
blind-spot convolutional kernel k1 and z is the output from the tradi-
tional convolutional kernel k2. Both kernels are with size [2h + 1, 2h + 1]. 
It can be easily found that, when h > 0, if

k1a,b = {
1, a = 1and b = h + 1

0,others

and

k2a,b = {
1, a = h and b = h + 1

0, others

the above formula can be simplified to:

ym,n = xm+1,n

zm,n = ym−1,n

This is equivalent to:

zm,n = ym−1,n = xm,n

In other words, the original noise pixel xm,n is mapped directly 
onto an output pixel zm,n with the same position, indicating that the 
blind-spot properties are dropped. The above examples are illustrated 
in Supplementary Figs. 2 and 3. In the extreme condition h = 0, such 
blind-spot properties can be still held, explaining why we utilized 3D 
convolutions with kernel size 1 × 1 × 1 in the FFnet.

To circumvent this shortage, we designed another eccentric con-
volution which can be formulated as:

ym,n =
h
∑
i=−h

h
∑
j=−h

xm−i+h,n−jk1h−i+1,h−j+1

Following similar derivations as shown above, it can be proved 
that the blind-spot properties are retained in the combination of  
fully blind convolutions and eccentric convolutions.

Although the introduction of blind-spot convolutional kernels 
enabled the neural network to learn denoising without excessive  
data, the receptive field is limited to only one direction for both  
the kernels and kernels composited networks (Supplementary Fig. 2). 
We thus established the hybrid blind-spot network as several branches 
to extract features from different directions, and then fuse these  
features by FFnet to achieve the all-direction-received output result.

Time-to-feature operation
We inserted a time-to-feature operation at the beginning of the input 
of the neural network for inputting more temporal information but 
without noticeably increasing computing time. To achieve that, twice  
as many input frames were added to the network and stacked in the  
channel dimensions instead of temporal dimensions, which can be 
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squeezed quickly after interacting with the next convolutional kernel. 
As an example, when a video block with a size of C × (T + 2 × F) × H × W 
was desired to be input, we realigned it to a tensor of size (2 × F ×  
C + C) × T × H × W by multiplexing some frames as the real input of the 
DeepSeMi, where C is the channel number of each frame from the video 
block, T is the length of the video block output by the neural network, 
F is the number of additional frames fed into the neural network and 
H is the height of the video block. W is the width of the video block.

Generation of simulated motion datasets
To fully compare the denoising performance of different algorithms 
on the video denoising task, we utilized the Moving MNIST dataset, 
which is used widely in the field of computer vision, as the simulated 
dataset. The images from the MNIST handwritten digit database served 
as the main moving contents in generated videos, while each frame is 
256 × 256 pixels in size. In the beginning, we randomly selected ten 
handwritten digits to form the basic content, and generated random 
motions for each of the digits. Then, the whole video was generated 
frame by frame by keeping shifting the digits in predefined tracks. To 
keep the handwritten digits within the bounds of the video frame, the 
handwritten digit bounced at the edges of the video frame. The size of 
the video we usually generate was 256 × 256 × 1,000 pixels.

Noise simulation and analysis
We evaluated the performance of DeepSeMi in both Gaussian noise 
and Poisson noise. Gaussian noise was simulated by dataset by the 
getExperimentNoise function derived from the blind denoising method 
BM3D with varied noise scales. The Poisson noise was simulated  
by the MPG_model function derived from DeepCAD34. We utilized  
several indicators to evaluate the noise scale. Peak SNR is used  
widely for measuring the similarity between recovered images and 
paired groundtruth images. Peak SNR (in dB) is calculated as:

PSNR = 10 × log10 (
MAX2

I
1

n1n2
∑n1

i ∑
n2
j (Ii, j − Xi, j)

2 )

where X is a n1 × n2 recovered image, I is the paired noise-free image. 
MAXI is set to 65,535 for 16-bit unsigned integer images. SNR was also 
selected to quantify the image quality after denoising. SNR (in dB) is 
calculated as:

SNR = 10 × log10 (
∑n1

i ∑
n2
j Xi, j

2

∑n1
i ∑

n2
j (Ii, j − Xi, j)

2 )

Evaluation of photobleaching
Photobleaching represents the inability of a fluorescent protein to 
emit photons after continuous excitation. To evaluate photobleach-
ing under different power dosage conditions, we averaged all pixel  
intensities from the acquired image. To eliminate the influence of  
sensor background noise even without the input of fluorescence  
photons, we calculated the averaged intensity in a sample-free area, 
and updated the averaged intensity accordingly across the whole image 
such that it represents net fluorescence photon flux. We then quanti-
fied the speed of photobleaching by fitting the photobleaching curve 
using an exponential function.

Training of organelle segmentation network
As the demand for studying cell biology through microscopic  
fluorescence imaging increases, it is necessary to utilize automated 
analysis tools to process massive imaging data in a relatively short  
time to enrich quick experiment iterations. We demonstrated that  
DeepSeMi enhances automated analysis of organelles with high  
precision and low phototoxicity. We utilized a physics-based machine 

learning method for organelle segmentation50. We simulated both 
optical imaging results and segmented groundtruth of mitochon-
dria, migrasomes and retraction fibers based on the morphological 
characteristics. A total of 1,500 paired images were prepared for each 
organelle. We then built and trained a traditional 2D U-net using the 
simulated datasets, with the size of the input image of 256 × 256 pixels. 
It took about 10 min on an NVIDIA 3080 Ti graphics card to achieve 
good convergence results in about four to ten epochs. The learning 
rate was set to 0.0001.

We utilized merits of precision, recall, F1 score and accuracy for 
segmentation evaluation of the network:

Precision = TP
TP + FP

Recall = TP
TP + FN

F1 score = 2TP
2TP + FN + FP

Accuracy = TP + TN
TP + TN + FP + FN

where TP is true positive, TN is true negative, FP is false positive and 
FN is false negative.

Mitochondrial analysis
After mitochondrial segmentation through the methods described 
above, the connected regions from the segmented binary masks  
were detected using the bwlabel function in MATLAB to accomplish 
mitochondrial instance segmentation. The mitochondrial area of  
each connected region was calculated, and the skeletons and key  
points of mitochondria were picked up through the bwmorph  
function in MATLAB. According to the different topological posi-
tions, the key points were classified into junctions or end points. We  
tracked the mitochondria with Imaris (Oxford Instruments) across 
recording sessions to indicate the movement state of mitochondria.

Cell culture and imaging system
L929 cells and NRK cells were cultured in DMEM (Gibco) medium sup-
plemented with 10% FBS (Biological Industries), 2 mM GlutaMAX and 
100 U ml–1 penicillin-streptomycin in 5% CO2 at 37 °C. The PiggyBac 
Transposon Vector System was used to generate the stably expressing 
cell line. For L929 cells, Vigofect was used for cell transfection accord-
ing to the manufacturer’s manual. NRK cell transfection was via Amaxa 
nucleofection using solution T and program X-001. Confocal dishes 
(35 mm) were precoated with fibronectin (10 mg ml–1) at 37 °C for 1 h. 
Cells were cultured in fibronectin-precoated confocal dishes for 4 h 
before imaging. AX2 axenic strain cells were provided by the Jeffrey 
G. Williams laboratory (University of Dundee). AX2 wild-type cells and 
the derived cell line were cultured in HL5 medium (Formedium, catalog 
no. HLF2), supplemented with antibiotics, at 22 °C. Plasmids pDM323 
and pDM451 were provided by the Huaqing Cai laboratory (Chinese 
Academy of Sciences). DNA fragments encoding dajumin and cAR1 
were PCR-amplified and cloned into the overexpressing plasmids.

C. elegans stably overexpressing OSM-3-GFP were provided by 
the Guangshuo Ou laboratory (Tsinghua University). We cultivated 
C. elegans on nematode growth medium agar plates seeded with  
the Escherichia coli OP50 at 20 °C. For live-cell imaging, worms were 
anesthetized with 1 mg ml–1 levamisole and mounted on 3% agarose 
pads at 20 °C.

Tg(mpeg1.1:PLMT-eGFP-caax) transgenic zebrafish were provided 
by B. Liu. All adult zebrafish were kept in a water-circulating system at 
28.5 °C. Fertilized eggs were raised at 28.5 °C in Holtfreter’s solution. 
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The embryos were embedded in 1% low-melting-point agarose for 
live-cell imaging. The use of all zebrafish adults and embryos was con-
ducted according to the guidelines from the Animal Care and Use 
Committee of Tsinghua University.

All imaging experiments in this research were based on a Nikon A1 
confocal microscope (Tsinghua University). All cellular imaging was 
conducted by a ×100 objective (NA 1.45, oil immersion). A ×10 objective 
(×10, NA 0.45, air) was used to capture the global image of C. elegans 
and zebrafish. Two-photon imaging was conducted with a customized 
two-photon imaging system under a commercial objective (×25, NA 
1.05, XLPLN25XWMP2, Olympus).

Calibration of the high- and low-SNR confocal system
For certifying the fluorescence intensity ratio between the images cap-
tured by the high-SNR and low-SNR detection paths, we imaged three 
kinds of fixed cell samples, labeled with Tom20-GFP, mOrange2-SKL 
and WGA647, respectively, for calibrating the system. To fairly 
compare the difference of the photon number collected by the two 
PMTs, we set the two PMTs at the same gain value to maintain equal 
photoelectric conversion efficiency. An imaging region was con-
tinuously scanned 200 times to obtain several imaging results of the  
same scene. To eliminate the influence of detection noise on  
calibration results, we averaged 200 frames to acquire a noise-free 
image of each PMT. We labeled signal and background regions manu-
ally on the final noise-free image. The net photon number was calcu-
lated by subtracting the background intensity from the total signal 
intensity. Based on our analysis, the photon number of the high-SNR 
detection path was about 15 times higher than that of low-SNR detec-
tion path.

Compared methods
We compared denoising performance against six other blind  
denoising methods: bm3d, vbm3d, Noise2Self, UDVD, DeepInten  
and DeepCAD. For bm3d and vbm3d, we downloaded the Matlab code 
from https://webpages.tuni.fi/foi/GCF-BM3D/. For each denoising 
image, we searched the best hyperparameters for denoising by tra-
versal. We set the sequence length of vbm3d to 32. For Noise2Self, we 
obtained the Python code from https://github.com/czbiohub/noise-
2self. The training set size is 10,000 and the learning rate is 0.00005. 
We selected the best denoised results from all epochs as the final 
result. For UDVD, we acquired the Python code from https://github.
com/sreyas-mohan/udvd. The training set size is 2,000 and the learn-
ing rate is 0.0001. The input sequence length is 15. We selected the best 
denoised results from all epochs as the final result. For DeepInten, we 
obtained the Python code from https://zenodo.org/record/5165320. 
The training set size is 2,000 and the learning rate is 0.0001. The input 
sequence length is 33. We selected the best denoised results from 
all epochs as the final result. For DeepCAD, we obtained the Python 
code from https://github.com/cabooster/DeepCAD. The training 
set size is 1,000 and the learning rate is 0.0005. The input sequence 
length is 64. We selected the best denoised results from all epochs as 
the final result.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Our DeepSeMi datasets can be found at https://drive.google.com/drive/
folders/1knd5Dpgl8C0zuHpgdkKkhev6lA-SN09t?usp=share_link.

Code availability
Our DeepSeMi can be found at https://github.com/GuoxunZhang-PhD/
DeepSeMi.
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